CaPHOT1 Negatively Regulates the Pepper Resistance to Phytophthora capsici Infection
Abstract
1. Introduction
2. Materials and Methods
2.1. Identification and Cloning of PHOT Genes in Pepper
2.2. Multiple Sequence Alignment, Phylogenetic and Gene Structure Analysis
2.3. Analysis of RNA-Seq Data of CaPHOT Genes
2.4. Plant Materials and Pathogen Preparation
2.5. Transient Overexpression of CaPHOT1 in Pepper
2.6. Subcellular Localization of CaPHOT Proteins
2.7. RNA Isolation and Quantitative RT-PCR (qRT-PCR)
2.8. Statistical Analysis
3. Results
3.1. Cloning and Identification of PHOT Genes of Pepper
3.2. Phylogenetic and Gene Structure Analyses of the PHOT Gene Family Among Different Plant Species
3.3. Conserved Domain Analysis of CaPHOT Proteins
3.4. Expression Profiles of CaPHOT Genes in Various Tissues
3.5. Expression of CaPHOT Genes Under JA and SA Treatments
3.6. Expression Patterns of CaPHOT Genes Under P. capsici Infection
3.7. Subcellular Localization of CaPHOT1 and CaPHOT2
3.8. Overexpression of CaPHOT1 in Pepper Reduces the Resistance to P. capsici Infection
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kanojia, A.; Bhola, D.; Mudgil, Y. Light signaling as cellular integrator of multiple environmental cues in plants. Physiol. Mol. Biol. Plants 2023, 29, 1485–1503. [Google Scholar] [CrossRef]
- Chibani, K.; Gherli, H.; Fan, M. The role of blue light in plant stress responses: Modulation through photoreceptors and antioxidant mechanisms. Front. Plant Sci. 2025, 16, 1554281. [Google Scholar] [CrossRef]
- Mawphlang, O.I.L.; Kharshiing, E.V. Photoreceptor mediated plant growth responses: Implications for photoreceptor engineering toward improved performance in crops. Front. Plant Sci. 2017, 8, 1181. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Shi, Y.; Li, M.; Fu, D.; Wu, S.; Li, J.; Gong, Z.; Liu, H.; Yang, S. The CRY2-COP1-HY5-BBX7/8 module regulates blue light-dependent cold acclimation in Arabidopsis. Plant Cell 2021, 33, 3555–3573. [Google Scholar] [CrossRef]
- Liu, S.; Wang, Q.; Zhong, M.; Lin, G.; Ye, M.; Wang, Y.; Zhang, J.; Wang, Q. The CRY1-COP1-HY5 axis mediates blue-light regulation of Arabidopsis thermotolerance. Plant Commun. 2025, 6, 101264. [Google Scholar] [CrossRef]
- Li, X.; Wu, Y.; Liu, Z.; Wei, H.; Wang, H.; Yu, S. Apical meristem transcriptome analysis identifies a role for the blue light receptor gene GhFKF1 in cotton architecture development. Crop J. 2024, 12, 1126–1136. [Google Scholar] [CrossRef]
- Yuan, N.; Mendu, L.; Ghose, K.; Witte, C.S.; Frugoli, J.; Mendu, V. FKF1 interacts with CHUP1 and regulates chloroplast movement in Arabidopsis. Plants 2023, 12, 542. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Kang, Y.; Liu, L.; Lei, J.; He, B.; He, Y.; Li, J.; Liu, F.; Du, Q.; Zhang, X.; et al. The blue light receptor ZmFKF1a recruits ZmGI1 to the nucleus to accelerate shoot apex development and flowering in maize. Plant Cell 2025, 37, koaf199. [Google Scholar] [CrossRef]
- Jiang, X.; Zhang, L.; Li, Y.; Long, R.; Yang, Q.; Kang, J. Functional characterization of the MsFKF1 gene reveals its dual role in regulating the flowering time and plant height in Medicago sativa L. Plants 2024, 13, 655. Plants 2024, 13, 655. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Du, H.; He, M.; Wang, J.; Wang, F.; Yuan, W.; Huang, Z.; Cheng, Q.; Gou, C.; Chen, Z.; et al. Natural variation of FKF1 controls flowering and adaptation during soybean domestication and improvement. New Phytol. 2023, 238, 1671–1684. [Google Scholar] [CrossRef]
- Xin, G.Y.; Li, L.P.; Wang, P.T.; Li, X.Y.; Han, Y.J.; Zhao, X. The action of enhancing weak light capture via phototropic growth and chloroplast movement in plants. Stress Biol. 2022, 2, 50. [Google Scholar] [CrossRef]
- Kinoshita, T.; Doi, M.; Suetsugu, N.; Kagawa, T.; Wada, M.; Shimazaki, K. Phot1 and phot2 mediate blue light regulation of stomatal opening. Nature 2001, 414, 656–660. [Google Scholar] [CrossRef]
- Briggs, W.R.; Beck, C.F.; Cashmore, A.R.; Christie, J.M.; Hughes, J.; Jarillo, J.A.; Kagawa, T.; Kanegae, H.; Liscum, E.; Nagatani, A.; et al. The phototropin family of photoreceptors. Plant Cell 2001, 13, 993–997. [Google Scholar] [CrossRef]
- Hohm, T.; Preuten, T.; Fankhauser, C. Phototropism: Translating light into directional growth. Am. J. Bot. 2013, 100, 47–59. [Google Scholar] [CrossRef]
- Jain, M.; Sharma, P.; Tyagi, S.B.; Tyagi, A.K.; Khurana, J.P. Light regulation and differential tissue-specific expression of phototropin homologues from rice (Oryza sativa ssp. indica). Plant Sci. 2007, 172, 164–171. [Google Scholar] [CrossRef]
- Suzuki, H.; Okamoto, A.; Kojima, A.; Nishimura, T.; Takano, M.; Kagawa, T.; Kadota, A.; Kanegae, T.; Koshiba, T. Blue-light regulation of ZmPHOT1 and ZmPHOT2 gene expression and the possible involvement of Zmphot1 in phototropism in maize coleoptiles. Planta 2014, 240, 251–261. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.J.; Chen, Y.C.; Tseng, K.C.; Chang, W.C.; Ko, S.S. Phototropins mediate chloroplast movement in Phalaenopsis aphrodite (moth orchid). Plant Cell Physiol. 2019, 60, 2243–2254. [Google Scholar] [CrossRef] [PubMed]
- Shang, B.; Zang, Y.; Zhao, X.; Zhu, J.; Fan, C.; Guo, X.; Zhang, X. Functional characterization of GhPHOT2 in chloroplast avoidance of Gossypium hirsutum. Plant Physiol. Biochem. 2019, 135, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Muthusamy, M.; Kim, J.A.; Lee, S.I. Phylogenomics-based reconstruction and molecular evolutionary histories of Brassica photoreceptor gene families. Int. J. Mol. Sci. 2022, 23, 8695. [Google Scholar] [CrossRef]
- Christie, J.M.; Swartz, T.E.; Bogomolni, R.A.; Briggs, W.R. Phototropin LOV domains exhibit distinct roles in regulating photoreceptor function. Plant J. 2002, 32, 205–219. [Google Scholar] [CrossRef]
- Cho, H.Y.; Tseng, T.S.; Kaiserli, E.; Sullivan, S.; Christie, J.M.; Briggs, W.R. Physiological roles of the light, oxygen, or voltage domains of phototropin 1 and phototropin 2 in Arabidopsis. Plant Physiol. 2007, 143, 517–529. [Google Scholar] [CrossRef]
- Waksman, T.; Suetsugu, N.; Hermanowicz, P.; Ronald, J.; Sullivan, S.; Łabuz, J.; Christie, J.M. Phototropin phosphorylation of ROOT PHOTOTROPISM 2 and its role in mediating phototropism, leaf positioning, and chloroplast accumulation movement in Arabidopsis. Plant J. 2023, 114, 390–402. [Google Scholar] [CrossRef]
- Liang, M.; Deng, S.; Zhang, Y.; Guo, J.; Lie, Z.; Yang, Y.; Dai, G.; Liu, X. Histone deacetylase 9 modulates the acetylation dynamics of phototropin 1 to fine-tune phototropic responses in plants. Plant Commun. 2025, 6, 101424. [Google Scholar] [CrossRef] [PubMed]
- Kadomura-Ishikawa, Y.; Miyawaki, K.; Noji, S.; Takahashi, A. Phototropin 2 is involved in blue light-induced anthocyanin accumulation in Fragaria x ananassa fruits. J. Plant Res. 2013, 126, 847–857. [Google Scholar] [CrossRef] [PubMed]
- Kilambi, H.V.; Dindu, A.; Sharma, K.; Nizampatnam, N.R.; Gupta, N.; Thazath, N.P.; Dhanya, A.J.; Tyagi, K.; Sharma, S.; Kumar, S.; et al. The new kid on the block: A dominant-negative mutation of phototropin1 enhances carotenoid content in tomato fruits. Plant J. 2021, 106, 844–861. [Google Scholar] [CrossRef] [PubMed]
- Naqvi, S.; He, Q.; Trusch, F.; Qiu, H.; Pham, J.; Sun, Q.; Christie, J.M.; Gilroy, E.M.; Birch, P.R.J. Blue-light receptor phototropin 1 suppresses immunity to promote Phytophthora infestans infection. New Phytol. 2022, 233, 2282–2293. [Google Scholar] [CrossRef]
- Seluzicki, A.; Chory, J. Genetic architecture of a light-temperature coincidence detector. Nat. Commun. 2025, 16, 7947. [Google Scholar] [CrossRef]
- Sharma, S.; Kharshiing, E.; Srinivas, A.; Zikihara, K.; Tokutomi, S.; Nagatani, A.; Fukayama, H.; Bodanapu, R.; Behera, R.K.; Sreelakshmi, Y.; et al. A dominant mutation in the light-oxygen and voltage2 domain vicinity impairs phototropin1 signaling in tomato. Plant Physiol. 2014, 164, 2030–2044. [Google Scholar] [CrossRef]
- Hu, B.; Jin, J.; Guo, A.Y.; Zhang, H.; Luo, J.; Gao, G. GSDS 2.0: An upgraded gene feature visualization server. Bioinformatics 2015, 31, 1296–1297. [Google Scholar] [CrossRef]
- Liu, F.; Yu, H.; Deng, Y.; Zheng, J.; Liu, M.; Ou, L.; Yang, B.; Dai, X.; Ma, Y.; Feng, S.; et al. PepperHub, an informatics hub for the chili pepper research community. Mol. Plant 2017, 10, 1129–1132. [Google Scholar] [CrossRef]
- Arman, M.S.; Bhuya, A.R.; Shuvo, M.R.K.; Rabbi, M.A.; Ghosh, A. Genomic identification, characterization, and stress-induced expression profiling of glyoxalase and D-lactate dehydrogenase gene families in Capsicum annuum. BMC Plant Biol. 2024, 24, 990. [Google Scholar] [CrossRef]
- Li, Y.; Wu, D.; Yu, T.; Liu, B.; Gao, X.; Han, H.; Chen, J.; Zhou, Y.; Yang, Y. A phytochrome-interacting factor gene CaPIF7a positively regulates the defense response against Phytophthora capsici infection in pepper (Capsicum annuum L.). Agronomy 2024, 14, 2035. [Google Scholar] [CrossRef]
- Sun, F.; Chen, Y.; Luo, Y.; Yang, F.; Yu, T.; Han, H.; Yang, Y.; Zhou, Y. Cryptochromes (CRYs) in pepper: Genome-wide identification, evolution and functional analysis of the negative role of CaCRY1 under Phytophthora capsici infection. Plant Sci. 2025, 355, 112460. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.M.S.; Ji, G.; Guo, H.; Zhao, L.; Zheng, B. Over-expression of a grafting-responsive gene from hickory increases abiotic stress tolerance in Arabidopsis. Plant Cell Rep. 2018, 37, 541–552. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Kagawa, T. The phototropin family as photoreceptors for blue light-induced chloroplast relocation. J. Plant Res. 2003, 116, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Aihara, Y.; Tabata, R.; Suzuki, T.; Shimazaki, K.; Nagatani, A. Molecular basis of the functional specificities of phototropin 1 and 2. Plant J. 2008, 56, 364–375. [Google Scholar] [CrossRef] [PubMed]
- Li, F.W.; Mathews, S. Evolutionary aspects of plant photoreceptors. J. Plant Res. 2016, 129, 115–122. [Google Scholar] [CrossRef]
- Sakamoto, K.; Briggs, W.R. Cellular and subcellular localization of phototropin 1. Plant Cell 2002, 14, 1723–1735. [Google Scholar] [CrossRef]
- Legris, M.; Szarzynska-Erden, B.M.; Trevisan, M.; Allenbach Petrolati, L.; Fankhauser, C. Phototropin-mediated perception of light direction in leaves regulates blade flattening. Plant Physiol. 2021, 187, 1235–1249. [Google Scholar] [CrossRef]
- Aggarwal, C.; Banaś, A.K.; Kasprowicz-Maluśki, A.; Borghetti, C.; Labuz, J.; Dobrucki, J.; Gabryś, H. Blue-light-activated phototropin2 trafficking from the cytoplasm to Golgi/post-Golgi vesicles. J. Exp. Bot. 2014, 65, 3263–3276. [Google Scholar] [CrossRef] [PubMed]
- Kong, S.G.; Suetsugu, N.; Kikuchi, S.; Nakai, M.; Nagatani, A.; Wada, M. Both phototropin 1 and 2 localize on the chloroplast outer membrane with distinct localization activity. Plant Cell Physiol. 2013, 54, 80–92. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.L.; Eisinger, W.; Ehrhardt, D.; Kubitscheck, U.; Baluska, F.; Briggs, W. The subcellular localization and blue-light-induced movement of phototropin 1-GFP in etiolated seedlings of Arabidopsis thaliana. Mol. Plant 2008, 1, 103–117. [Google Scholar] [CrossRef]
- Wang, J.; Liang, Y.P.; Zhu, J.D.; Wang, Y.X.; Yang, M.Y.; Yan, H.R.; Lv, Q.Y.; Cheng, K.; Zhao, X.; Zhang, X. Phototropin 1 mediates high-intensity blue light-induced chloroplast accumulation response in a root phototropism 2-dependent manner in Arabidopsis phot2 mutant plants. Front. Plant Sci. 2021, 12, 704618. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, Y.L.; Qiao, X.R.; Wang, J.; Wang, L.D.; Xu, C.S.; Zhang, X. Phototropins function in high-intensity blue light-induced hypocotyl phototropism in Arabidopsis by altering cytosolic calcium. Plant Physiol. 2013, 162, 1539–1551. [Google Scholar] [CrossRef]
- Liu, C.; Peang, H.; Li, X.; Liu, C.; Lv, X.; Wei, X.; Zou, A.; Zhang, J.; Fan, G.; Ma, G.; et al. Genome-wide analysis of NDR1/HIN1-like genes in pepper (Capsicum annuum L.) and functional characterization of CaNHL4 under biotic and abiotic stresses. Hortic. Res. 2020, 7, 93. [Google Scholar] [CrossRef]
- Lei, G.; Zhou, K.H.; Chen, X.J.; Huang, Y.Q.; Yuan, X.J.; Li, G.G.; Xie, Y.Y.; Fang, R. Transcriptome and metabolome analyses revealed the response mechanism of pepper roots to Phytophthora capsici infection. BMC Genom. 2023, 24, 626. [Google Scholar] [CrossRef]
- Li, N.; Han, X.; Feng, D.; Yuan, D.; Huang, L.J. Signaling crosstalk between salicylic acid and ethylene/jasmonate in plant defense: Do we understand what they are whispering? Int. J. Mol. Sci. 2019, 20, 671. [Google Scholar] [CrossRef]
- Zhang, H.X.; Feng, X.H.; Jin, J.H.; Khan, A.; Guo, W.L.; Du, X.H.; Gong, Z.H. CaSBP11 participates in the defense response of pepper to Phytophthora capsici through regulating the expression of defense-related genes. Int. J. Mol. Sci. 2020, 21, 9065. [Google Scholar] [CrossRef] [PubMed]






| Gene Name | Gene ID | Genomic Position | Protein Physicochemical Characteristics | CDS (bp) | gDNA (bp) | Subcellular Localization Prediction | |||
|---|---|---|---|---|---|---|---|---|---|
| Length (aa) | MW (kDa) | pI | GRAVY | ||||||
| CaPHOT1 | Capana11g000681 | Chr11:26818545-26836839 | 1025 | 115.39 | 6.48 | −0.706 | 3078 | 18,295 | Plasma membrane |
| CaPHOT2 | Capana08g001309 | Chr08:128603069-128615643 | 960 | 107.20 | 8.09 | −0.538 | 2883 | 12,575 | Plasma membrane |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Y.; Liu, H.; Zhu, H.; Yang, F.; Tu, Y.; Yu, T.; Zhou, Y.; Yang, Y. CaPHOT1 Negatively Regulates the Pepper Resistance to Phytophthora capsici Infection. Plants 2025, 14, 3400. https://doi.org/10.3390/plants14213400
Luo Y, Liu H, Zhu H, Yang F, Tu Y, Yu T, Zhou Y, Yang Y. CaPHOT1 Negatively Regulates the Pepper Resistance to Phytophthora capsici Infection. Plants. 2025; 14(21):3400. https://doi.org/10.3390/plants14213400
Chicago/Turabian StyleLuo, Ying, Hongyan Liu, Huiling Zhu, Feng Yang, Yanli Tu, Ting Yu, Yong Zhou, and Youxin Yang. 2025. "CaPHOT1 Negatively Regulates the Pepper Resistance to Phytophthora capsici Infection" Plants 14, no. 21: 3400. https://doi.org/10.3390/plants14213400
APA StyleLuo, Y., Liu, H., Zhu, H., Yang, F., Tu, Y., Yu, T., Zhou, Y., & Yang, Y. (2025). CaPHOT1 Negatively Regulates the Pepper Resistance to Phytophthora capsici Infection. Plants, 14(21), 3400. https://doi.org/10.3390/plants14213400

