The Impact of Fertilizer Gradient on High Nature Value Mountain Grassland
Abstract
1. Introduction
2. Results
2.1. The Influence of the Management Scenario on the Grassland Community
2.2. Plant Community Patterns Explored Through Principal Coordinates Analysis (PCoA)
2.3. The Comparative Analysis of Community Composition and Species Projection Along Fertilization Gradient
2.4. The Indicator Species Analysis (ISA) on Plant Communities Shaped by Management Scenarios
2.5. The Impact of Management Scenarios on Diversity Indices
3. Discussion
3.1. The Changes of Different Management Scenarios in the Assemblage of Grassland Communities
3.2. Plant Specificity to Applied Treatments
3.3. Species Structure and Diversity Under the Input Gradients
4. Materials and Methods
4.1. Soil and Climatic Conditions
4.2. Experimental Design
- •
- T1—unfertilized (control);
- •
- T 2—abandonment (unharvested or non-grazing);
- •
- T3—mulching (cut and leave the biomass on site);
- •
- T4—fertilization with 50 kg N ha−1, 50 kg P2O5 ha−1, and 50 kg K2O ha−1 applied annually;
- •
- T5—fertilization with 100 kg N ha−1, 100 kg P2O5 ha−1, and 100 kg K2O ha−1 annually;
- •
- T6—fertilization with 150 kg N ha−1, 150 kg P2O5 ha−1, and 150 kg K2O ha−1 annually;
- •
- T7—10 t ha−1 cattle manure annually;
- •
- T8—20 t ha−1 cattle manure annually;
- •
- T9—20 t ha−1 cattle manure at 2 years;
- •
- T10—30 t ha−1 cattle manure annually;
- •
- T11—30 t ha−1 cattle manure at 2 years.
4.3. Vegetation Survey
4.4. Data Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Buchmann, N.; Fuchs, K.; Feigenwinter, I.; Gilgen, A.K. Multifunctionality of Permanent Grasslands: Ecosystem Services and Resilience to Climate Change. In Grassland Science in Europe; European Grassland Federation: Zurich, Switzerland, 2019; Volume 24, pp. 19–26. [Google Scholar]
- Lomba, A.; McCracken, D.; Herzon, I. High Nature Value Farming Systems in Europe. Ecol. Soc. 2023, 28, 20. [Google Scholar] [CrossRef]
- Liu, S.; Ward, S.E.; Wilby, A.; Manning, P.; Gong, M.; Davies, J.; Killick, R.; Quinton, J.N.; Bardgett, R.D. Multiple Targeted Grassland Restoration Interventions Enhance Ecosystem Service Multifunctionality. Nat. Commun. 2025, 16, 3971. [Google Scholar] [CrossRef]
- Jakobsson, S.; Envall, I.; Bengtsson, J.; Rundlöf, M.; Svensson, M.; Åberg, C.; Lindborg, R. Effects on Biodiversity in Semi-Natural Pastures of Giving the Grazing Animals Access to Additional Nutrient Sources: A Systematic Review. Environ. Evid. 2024, 13, 18. [Google Scholar] [CrossRef]
- Sângeorzan, D.; Rotar, I.; Păcurar, F.; Vaida, I.; Suteu, A.; Deac, V. The definition of oligotrophic grasslands. Rom. J. Grassl. Forage Crops 2018, 17, 33–43. [Google Scholar]
- Vaida, I.; Păcurar, F.; Rotar, I.; Tomoş, L.; Stoian, V. Changes in Diversity Due to Long-Term Management in a High Natural Value Grassland. Plants 2021, 10, 739. [Google Scholar] [CrossRef]
- Maruşca, T.; Păcurar, F.S.; Taulescu, E.; Vaida, I.; Nicola, N.; Scrob, N.; Dragoș, M.M. Indicative species for the agrochemical properties of mountain grasslands soil from the Apuseni Natural Park (ROSci 0002). Rom. J. Grassl. Forage Crops. 2022, 31, 3971. [Google Scholar]
- Păcurar, F. Specii Indicator Pentru Evaluarea şi Elaborarea Managementului Sistemelor de Pajişti cu Înaltă Valoare Naturală (HNV); Casa Cărţii de Ştiinţă: Cluj-Napoca, Romania, 2020. [Google Scholar]
- Rușdea, E.; Reif, A.; Höchtl, F.; Păcurar, F.; Rotar, I.; Stoie, A.; Dahlström, A.; Svensson, R.; Aronsson, M. Grassland Vegetation and Management-on the Interface between Science and Education. Bull. Univ. Agr. Sci. Vet. Med. Cluj-Napoca Agric. 2011, 68, 12–20. [Google Scholar] [CrossRef]
- Balazsi, A.; Rotar, I.; Păcurar, F.; Vidican, R.; Pleșa, A.; Gliga, A.; Mălinaș, A. Mulching and mulching with organic fertilizing as an alternative way to conserve the oligotrophy grasslands’ phytodiversity and maintain their productivity in Apuseni Mountains. Rom. J. Grassl. Forage Crops. 2014, 9, 7. [Google Scholar]
- Humbert, J.Y.; Dwyer, M.J.; Andrey, A.; Arlettaz, R. Impacts of nitrogen addition on plant biodiversity in mountain grasslands depend on dose, application duration and climate: A systematic review. Glob. Change Biol. 2016, 22, 110–120. [Google Scholar] [CrossRef]
- Tilman, D. Secondary Succession and the Pattern of Plant Dominance along Experimental Nitrogen Gradients. Ecol. Monogr. 1987, 57, 189–214. [Google Scholar] [CrossRef]
- Biswas, S.R.; Mallik, A.U. Disturbance Effects on Species Diversity and Functional Diversity in Riparian and Upland Plant Com-Munities. Ecology 2010, 91, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.Y.; Jiao, F.; Li, Y.H.; Kallenbach, R.L. Anthropogenic disturbances are key to maintaining the biodiversity of grasslands. Sci. Rep. 2016, 6, 22132. [Google Scholar] [CrossRef]
- Diviaková, A.; Ollerová, H.; Stašiov, S.; Veverková, D.; Novikmec, M. Plant Functional Structure Varies across Different Management Regimes in Submontane Meadows. Nat. Conserv. 2024, 56, 181–200. [Google Scholar] [CrossRef]
- Fernández-Guisuraga, J.M.; Fernández-García, V.; Tárrega, R.; Marcos, E.; Valbuena, L.; Pinto, R.; Monte, P.; Beltrán, D.; Huerta, S.; Calvo, L. Transhumant Sheep Grazing Enhances Ecosystem Multifunctionality in Productive Mountain Grasslands: A Case Study in the Cantabrian Mountains. Front. Ecol. Evol. 2022, 10, 861611. [Google Scholar] [CrossRef]
- Gaga, I.; Rotar, I.; Păcurar, F.S.; Plesa, A.D.; Vaida, I. Study of Grassland Types from the Agricultural Research-Development Station (Ards) Turda. Rom. J. Grassl. Forage Crops 2020, 21, 19. [Google Scholar]
- Vaida, I.; Rotar, I.; Păcurar, F.; Vidican, R.; Pleşa, A.; Mălinaş, A.; Stoian, V. Impact on the Abandonment of Semi-Natural Grasslands from Apuseni Mountains. Bull. Univ. Agr. Sci. Vet. Med. Cluj-Napoca Agric. 2016, 73, 323–331. [Google Scholar] [CrossRef]
- Păcurar, F.; Rotar, I.; Pleșa, A.; Balázsi, Á.; Vidican, R. Study of the Floristic Composition of Certain Secondary Grasslands in Different Successional Stages as a Result of Abandonment. Rom. J. Grassl. Forage Crops 2015, 72, 11165. [Google Scholar] [CrossRef]
- Păcurar, F.; Balázsi, Á.; Rotar, I.; Vaida, I.; Reif, A.; Vidican, R.; Ruşdea, E.; Stoian, V.; Sângeorzan, D. Technologies Used for Maintaining Oligotrophic Grasslands and Their Biodiversity in a Mountain Landscape. Rom. Biotechnol. Lett. 2018, 23, 13614–13623. [Google Scholar] [CrossRef]
- Rotar, I.; Păcurar, F.; Vaida, I.; Nicola, N.; Pleșa, A. The Effect of Mulching on a Grasslands in the Apuseni Mountains. Rom. J. Grassl. Forage Crops 2020, 25, 1128–1135. [Google Scholar]
- Zarzycki, J.; Józefowska, A.; Kopeć, M. Can Mulching or Composting Be Applied to Maintain Semi-Natural Grassland Managed for Biodiversity? J. Nat. Conserv. 2024, 78, 126584. [Google Scholar] [CrossRef]
- Stoian, V.; Vidican, R.; Păcurar, F.; Corcoz, L.; Pop-Moldovan, V.; Vaida, I.; Vâtcă, S.-D.; Stoian, V.A.; Plesa, A. Exploration of Soil Functional Microbiomes—A Concept Proposal for Long-Term Fertilized Grasslands. Plants 2022, 11, 1253. [Google Scholar] [CrossRef] [PubMed]
- Corcoz, L.; Păcurar, F.; Pop-Moldovan, V.; Vaida, I.; Stoian, V.; Vidican, R. Mycorrhizal Patterns in the Roots of Dominant Festuca Rubra in a High-Natural-Value Grassland. Plants 2021, 11, 112. [Google Scholar] [CrossRef]
- Mălinas, A.; Rotar, I.; Vidican, R.; Iuga, V.; Păcurar, F.; Mălinas, C.; Moldovan, C. Designing a Sustainable Temporary Grassland System by Monitoring Nitrogen Use Efficiency. Agronomy 2020, 10, 149. [Google Scholar] [CrossRef]
- Sângeorzan, D.D.; Păcurar, F.; Reif, A.; Weinacker, H.; Ruşdea, E.; Vaida, I.; Rotar, I. Detection and Quantification of Arnica Montana L. Inflorescences in Grassland Ecosystems Using Convolutional Neural Networks and Drone-Based Remote Sensing. Remote Sens. 2024, 16, 2012. [Google Scholar] [CrossRef]
- Brinkmann, K.; Păcurar, F.; Rotar, I.; Rușdea, E.; Auch, E.; Reif, A. The Grasslands of the Apuseni Mountains, Romania. In Grasslands in Europe of High Nature Value; KNNV Publishing: Wageningen, The Netherlands, 2009; pp. 9–20. ISBN 9789050113168. [Google Scholar]
- Janišová, M.; Škodová, I.; Magnes, M.; Iuga, A.; Biro, A.-S.; Ivașcu, C.M.; Ďuricová, V.; Buzhdygan, O.Y. Role of Livestock and Traditional Management Practices in Maintaining High Nature Value Grasslands. Biol. Conserv. 2025, 309, 111301. [Google Scholar] [CrossRef]
- Reif, A.; Auch, E.; Bühler, J.; Brinkmann, K.; Goia, A.I.; Pacurar, F.; Rusdea, E. Landschaft Und Landnutzung Im Apusenigebirge Rumäniens. Carinthia II 2005, 195, 161–201. [Google Scholar]
- Marușca, T.; Păcurar, F.S.; Scrob, N.; Vaida, I.; Nicola, N.; Taulescu, E.; Dragoș, M.; Lukács, Z. Contributions to the Assessment of Grasslands Productivity of the Apuseni Natural Park (ROSci 0002). Rom. J. Grassl. Forage Crops 2021, 24, 23. [Google Scholar]
- Michler, B.; Rotar, I.; Păcurar, F. Biodiversity and Conservation of Medicinal Plants: A Case Study in the Apuseni Mountains in Romania. Bull. USAMV-CN 2006, 62, 86–87. [Google Scholar]
- Hagemann, N.; Gerling, C.; Hölting, L.; Kernecker, M.; Markova-Nenova, N.N.; Wätzold, F.; Wendler, J.; Cord, A.F. Improving Re-Sult-Based Schemes for Nature Conservation in Agricultural Landscapes—Challenges and Best Practices from Selected European Countries. Reg. Environ. Change 2025, 25, 12. [Google Scholar] [CrossRef]
- Păcurar, F.; Reif, A.; Rusḑea, E. Conservation of Oligotrophic Grassland of High Nature Value (HNV) through Sustainable Use of Arnica Montana in the Apuseni Mountains, Romania. In Medicinal Agroecology; CRC Press Boca Raton: London, New York, 2023; pp. 177–201. [Google Scholar]
- Elliott, J.; Tindale, S.; Outhwaite, S.; Nicholson, F.; Newell-Price, P.; Sari, N.H.; Hunter, E.; Sánchez-Zamora, P.; Jin, S.; Gallardo-Cobos, R.; et al. European Permanent Grasslands: A Systematic Review of Economic Drivers of Change, Including a Detailed Analysis of the Czech Republic. Sustainability 2024, 13, 116. [Google Scholar] [CrossRef]
- Sattler, C.; Schrader, J.; Hüttner, M.L.; Henle, K. Effects of Management, Habitat and Landscape Characteristics on Biodiversity of Orchard Meadows in Central Europe: A Brief Review. Nat. Conserv. 2024, 55, 103–134. [Google Scholar] [CrossRef]
- Pleșa, A.; Rotar, I.; Păcurar, F.; Vidican, R.; Balaszi, A. About Arnica Montana Grasslands and Their Context. Bull. USAMV Agr. 2014, 71, 282–285. [Google Scholar] [CrossRef]
- Reif, A.; Ruşdea, E.; Păcurar, F.; Rotar, I.; Brinkmann, K. A Traditional Cultural Landscape in Transformation. Mt. Res. Dev. 2008, 28, 18–22. [Google Scholar] [CrossRef]
- Vaida, I.; Rotar, I.; Păcurar, F. The Cumulative Effect of Manure on a Festuca Rubra Grasslands for 15 Years. Bull. Univ. Agr. Sci. Vet. Med. Cluj-Napoca Agric. 2017, 74, 126. [Google Scholar] [CrossRef]
- Pleșa, A.; Rotar, I.; Păcurar, F.; Vidican, R.; Balázsi, A.; Stoian, V. Organic Fertilization on Mountain Grassland. In Grassland and Forages in High Output Dairy Farming Systems; Hopkins, A., Collins, R.P., Fraser, M.D., King, V.R., Lloyd, D.C., Moorby, J.M., Robson, P.R.H., Eds.; Grassland Science in Europe; Wageningen Academic Publishers: Wageningen, The Netherlands, 2015; Volume 20, p. 289. [Google Scholar]
- Rotar, I.; Vaida, I.; Păcurar, F. Species with Indicative Values for the Management of the Mountain Grasslands. Rom. Agric. Res. 2020, 37, 189–196. [Google Scholar] [CrossRef]
- De Schrijver, A.; De Frenne, P.; Ampoorter, E.; Van Nevel, L.; Demey, A.; Wuyts, K.; Verheyen, K. Cumulative nitrogen input drives species loss in terrestrial ecosystems. Glob. Ecol. Biogeogr. 2011, 20, 803–816. [Google Scholar] [CrossRef]
- Soons, M.B.; Hefting, M.M.; Dorland, E.; Lamers, L.P.M.; Versteeg, C.; Bobbink, R. Nitrogen effects on plant species richness in herbaceous communities are more widespread and stronger than those of phosphorus. Biol. Conserv. 2017, 212, 390–397. [Google Scholar] [CrossRef]
- Vîntu, V.; Samuil, C.; Sirbu, C.; Popovici, C.I.; Stavarache, M. Sustainable Management of Nardus stricta L. Grasslands in Romania’s Carpathians. Not. Bot. Horti Agrobot. Cluj-Napoca 2011, 39, 142–145. [Google Scholar] [CrossRef]
- Corcoz, L.; Păcurar, F.; Pop-Moldovan, V.; Vaida, I.; Pleșa, A.; Stoian, V.; Vidican, R. Long-Term Fertilization Alters Mycorrhizal Colonization Strategy in the Roots of Agrostis capillaris. Agriculture 2022, 12, 847. [Google Scholar] [CrossRef]
- Balazsi, A.; Păcurar, F.; Mihu-Pintilie, A.; Konold, W. How Do Public Institutions on Nature Conservation and Agriculture Contribute to the Conservation of Species-Rich Hay Meadows? Int. J. Conserv. Sci. 2018, 9, 549–564. [Google Scholar]
- Gaga, I.; Păcurar, F.; Vaida, I.; Plesa, A.; Rotar, I. Responses of Diversity and Productivity to Organo-Mineral Fertilizer Inputs in a High-Natural-Value Grassland, Transylvanian Plain, Romania. Plants 2022, 11, 1975. [Google Scholar] [CrossRef]
- Shi, T.S.; Collins, S.L.; Yu, K.; Peñuelas, J.; Sardans, J.; Li, H.; Ye, J.S. A Global Meta-Analysis on the Effects of Organic and Inorganic Fertilization on Grasslands and Croplands. Nat. Commun. 2024, 15, 3411. [Google Scholar] [CrossRef]
- Titěra, J.; Pavlů, V.V.; Pavlů, L.; Hejcman, M.; Gaisler, J.; Schellberg, J. Response of Grassland Vegetation Composition to Different Fertilizer Treatments Recorded over Ten Years Following 64 Years of Fertilizer Applications in the Rengen Grassland Experiment. Appl. Veg. Sci. 2020, 23, 417–427. [Google Scholar] [CrossRef]
- Melts, I.; Lanno, K.; Sammul, M.; Uchida, K.; Heinsoo, K.; Kull, T.; Laanisto, L. Fertilising Semi-Natural Grasslands May Cause Long-Term Negative Effects on Both Biodiversity and Ecosystem Stability. J. Appl. Ecol. 2018, 55, 1851–1864. [Google Scholar] [CrossRef]
- Schaub, S.; Finger, R.; Leiber, F.; Probst, S.; Kreuzer, M.; Weigelt, A.; Buchmann, N.; Scherer-Lorenzen, M. Plant Diversity Effects on Forage Quality, Yield and Revenues of Semi-Natural Grasslands. Nat. Commun. 2020, 11, 768. [Google Scholar] [CrossRef] [PubMed]
- Hautier, Y.; Zhang, P.; Loreau, M.; Wilcox, K.R.; Seabloom, E.W.; Borer, E.T.; Byrnes, J.E.; Koerner, S.E.; Komatsu, K.J.; Lefcheck, J.S.; et al. General Destabilizing Effects of Eutrophication on Grassland Productivity at Multiple Spatial Scales. Nat. Commun. 2020, 11, 5375. [Google Scholar] [CrossRef] [PubMed]
- Gârda, N.T.; Păcurar, F.; Rotar, I.; Bogdan, A. The floristic and stational characterisation of the grassland subtype Agrostis capillaris+ Trisetum flavescens from Apuseni Mountains, Romania. Res. J. Agric. Sci. 2010, 42, 454–457. [Google Scholar]
- Dale, L.M.; Thewis, A.; Rotar, I.; Boudry, C.; Păcurar, F.S.; Lecler, B.; Agneessens, R.; Dardenne, P.; Baeten, V. Fertilization Effects on the Chemical Composition and in Vitro Organic Matter Digestibility of Semi-Natural Meadows as Predicted by NIR Spectrometry. Not. Bot. Horti Agrobot. Cluj-Napoca 2013, 41, 58–64. [Google Scholar] [CrossRef]
- Isselstein, J.; Jeangros, B.; Pavlu, V. Agronomic Aspects of Biodiversity Targeted Management of Temperate Grasslands in Europe—A Review. Agron. Res. 2005, 3, 139–151. [Google Scholar]
- Weigelt, A.; Weisser, W.W.; Buchmann, N.; Scherer-Lorenzen, M. Biodiversity for multifunctional grasslands: Equal productivity in high-diversity low-input and low-diversity high-input systems. Biogeosciences 2009, 6, 1695–1706. [Google Scholar]
- Rotar, I.; Păcurar, F.; Vidican, R.; Bogdan, A. Impact of grassland management on occurrence of Arnica montana L. Grassland—A European Resource? Grassl. Sci. Eur. 2012, 17, 701–806. [Google Scholar]
- Wan, L.; Liu, G.; Su, X. Organic Fertilization Balances Biodiversity Maintenance, Grass Production, Soil Storage, Nutrient Cycling and Greenhouse Gas Emissions for Sustainable Grassland Development in China: A Meta-Analysis. Agric. Ecosyst. Environ. 2025, 381, 109473. [Google Scholar] [CrossRef]
- Rotar, I.; Păcurar, F.; Pleșa, A.; Balázsi, Á. Low mineral fertilization on grassland after 6 years. Lucr. Ştiinţifice Ser. Agron. 2015, 58, 51–54. [Google Scholar]
- Peppler-Lisbach, C.; Kratochwil, A.; Mazalla, L.; Rosenthal, G.; Schwabe, A.; Schwane, J.; Stanik, N. Synopsis of Nardus Grassland Resurveys Across Germany: Is Eutrophication Driven by a Recovery of Soil pH After Acidification? J. Veg. Sci. 2025, 36, 70040. [Google Scholar] [CrossRef]
- Sherstiuk, M.; Skliar, V.; Kašpar, J.; Mohammadi, Z. Size and Vitality Characteristics of Bilberry (Vaccinium myrtillus L.) Popula-Tions in the Central Bohemian Region of the Czech Republic: A Case Study of Non-Timber Forest Products. Glob. Ecol. Conserv. 2024, 56, 03295. [Google Scholar]
- Hegland, S.J.; Gillespie, M.A. Vaccinium Dwarf Shrubs Responses to Experimental Warming and Herbivory Resistance Treatment Are Species-and Context Dependent. Front. Ecol. Evol. 2024, 12, 1347837. [Google Scholar] [CrossRef]
- Dalle Fratte, M.; Cerabolini, B.E. Extending the Interpretation of Natura 2000 Habitat Types beyond Their Definition Can Bias Their Conservation Status Assessment: An Example with Species-Rich Nardus Grasslands (6230). Ecol. Indic. 2023, 156, 111113. [Google Scholar] [CrossRef]
- Borawska-Jarmułowicz, B.; Mastalerczuk, G.; Janicka, M.; Wróbel, B. Effect of Silicon-Containing Fertilizers on the Nutritional Value of Grass–Legume Mixtures on Temporary Grasslands. Agriculture 2022, 12, 145. [Google Scholar] [CrossRef]
- Călina, J.; Călina, A.; Iancu, T.; Miluț, M.; Croitoru, A.C. Research on the Influence of Fertilization System on the Production and Sustainability of Temporary Grasslands from Romania. Agronomy 2022, 12, 2979. [Google Scholar] [CrossRef]
- Bobbink, R. Review and Revision of Empirical Critical Loads and Dose-Response Relationships. In UNECE Workshop on the Review and Revision of Empirical Critical Loads and Dose-Response Relationships; RIVM: Bilthoven, The Netherlands, 2011. [Google Scholar]
- Nazare, A.I.; Stavarache, M.; Samuil, C.; Vîntu, V. The Improvement of Nardus Stricta L. Permanent Meadow from the Dorna Depression through Mineral and Organic Fertilization. Sci. Pap. Ser. A. Agron. 2024, 67, 294–301. [Google Scholar]
- Zornić, V.; Petrović, M.; Babić, S.; Lazarević, Đ.; Đurović, V.; Sokolović, D.; Tomić, D. NPK fertilizer addition effect on “Nardus stricta“ type grassland in Kopaonik Mountine. In Proceedings of the 1st International Symposium on Biotechnology (XXVIII Savetovanje o Biotehnologiji sa Međunarodnim Učešćem), Kopaonik Mountain, Serbia, 17–18 March 2023. [Google Scholar]
- Păcurar, F.; Rotar, I.; Reif, A.; Vidican, R.; Stoian, V.; Gärtner, S.M.; Allen, R.B. Impact of Climate on Vegetation Change in a Mountain Grassland—Succession and Fluctuation. Not. Bot. Horti Agrobot. Cluj-Napoca 2014, 42, 347–356. [Google Scholar] [CrossRef]
- Zhu, K.; Song, Y.; Lesage, J.C.; Luong, J.C.; Bartolome, J.W.; Chiariello, N.R.; Dudney, J.; Field, C.B.; Hallett, L.M.; Hammond, M.; et al. Rapid Shifts in Grassland Communities Driven by Climate Change. Nat. Ecol. Evol. 2024, 8, 2252–2264. [Google Scholar] [CrossRef]
- Movedi, E.; Bocchi, S.; Paleari, L.; Vesely, F.M.; Vagge, I.; Confalonieri, R. Impacts of Climate Change on Semi-Natural Alpine Pastures Productivity and Floristic Composition. Reg. Environ. Change 2023, 23, 159. [Google Scholar] [CrossRef]
- Straffelini, E.; Luo, J.; Tarolli, P. Climate Change Is Threatening Mountain Grasslands and Their Cultural Ecosystem Services. Catena 2024, 237, 107802. [Google Scholar] [CrossRef]
- Poláková, J.; Maroušková, A.; Holec, J.; Kolářová, M.; Janků, J. Changes in grassland area in lowlands and marginal uplands: Medium-term differences and potential for carbon farming. Soil Water Res. 2023, 18, 245. [Google Scholar] [CrossRef]
- Hünig, C.; Benzler, A. The Monitoring of Agricultural Land with High Natural Value in Germany; BfN-Skripten 196; Bundesamt für Naturschutz: Bonn, Germany, 2017. [Google Scholar]
- Butz, R.J.; Dennis, A.; Millar, C.I.; Westfall, R.D. Global Observation Research Initiative in Alpine Environments (GLORIA): Results from Four Target Regions in California. In AGU Fall Meeting Abstracts; Abstract B21-0705; American Geophysical Union: San Francisco, CA, USA, 2008; Volume 2008. [Google Scholar]
- Socher, S.A.; Prati, D.; Boch, S.; Müller, J.; Baumbach, H.; Gockel, S.; Hemp, A.; Schöning, I.; Wells, K.; Buscot, F.; et al. Interacting Effects of Fertilization, Mowing and Grazing on Plant Species Diversity of 1500 Grasslands in Germany Differ between Regions. Basic Appl. Ecol. 2013, 14, 126–136. [Google Scholar] [CrossRef]
- Dale, L.M.; Thewis, A.; Boudry, C.; Rotar, I.; Păcurar, F.S.; Abbas, O.; Dardenne, P.; Baeten, V.; Pfister, J.; Fernández Pierna, J.A. Discrimination of Grassland Species and Their Classification in Botanical Families by Laboratory Scale NIR Hyperspectral Imaging: Preliminary Results. Talanta 2013, 116, 149–154. [Google Scholar] [CrossRef]
- Kagan, K.; Jonak, K.; Wolińska, A. The Impact of Reduced N Fertilization Rates According to the “Farm to Fork” Strategy on the Environment and Human Health. Appl. Sci. 2024, 14, 10726. [Google Scholar] [CrossRef]
- Villa-Galaviz, E.; Smart, S.M.; Ward, S.E.; Fraser, M.D.; Memmott, J. Fertilization Using Manure Minimizes the Trade-Offs between Biodiversity and Forage Production in Agri-Environment Scheme Grasslands. PLoS ONE 2023, 18, e0290843. [Google Scholar] [CrossRef]
- Păcurar, F.; Rotar, I.; Morea, A.; Stoie, A.; Vaida, I. Management of High Nature Value Grasslands in the Apuseni Mountains. Rom. Biotechnol. Lett. 2012, 17, 7164–7174. [Google Scholar]
- Stănilă, A.L.; Dumitru, M. Soils Zones in Romania and Pedogenetic Processes. Agric. Agric. Sci. Procedia 2016, 10, 135–139. [Google Scholar] [CrossRef]
- Păcurar, F.; Rotar, I. Metode de Studiu și Interpretare a Vegetaţiei Pajiştilor; Risoprint: Cluj-Napoca, Romania, 2014; ISBN 978-973-53-1271-8. [Google Scholar]
- Fartyal, A.; Chaturvedi, R.K.; Bargali, S.S.; Bargali, K. The Relationship between Phenological Characteristics and Life Forms within Temperate Semi-Natural Grassland Ecosystems in the Central Himalaya Region of India. Plants 2025, 14, 835. [Google Scholar] [CrossRef] [PubMed]
- Andreatta, D.; Bachofen, C.; Dalponte, M.; Klaus, V.H.; Buchmann, N. Extracting Flowering Phenology from Grassland Species Mixtures Using Time-Lapse Cameras. Remote Sens. Environ. 2023, 298, 113835. [Google Scholar] [CrossRef]
- Li, X.; Pearson, D.E.; Ortega, Y.K.; Jiang, L.; Wang, S.; Gao, Q.; Wang, D.; Hautier, Y.; Zhong, Z. Nitrogen Inputs Suppress Plant Diversity by Overriding Consumer Control. Nat. Commun. 2025, 16, 5855. [Google Scholar] [CrossRef] [PubMed]
- Caldararu, S.; Rolo, V.; Stocker, B.D.; Gimeno, T.E.; Nair, R. Ideas and Perspectives: Beyond Model Evaluation–Combining Experi-Ments and Models to Advance Terrestrial Ecosystem Science. Biogeosciences 2023, 20, 3637–3649. [Google Scholar] [CrossRef]
- McCune, B.; Grace, J.B. Analysis of Ecological Communities; MjM Software Design: Gleneden Beach, OR, USA, 2002. [Google Scholar]
- McCune, B.; Mefford, M. PC-ORD: Multivariate Analysis of Ecological Data, version 6; MjM Software: Gleneden Beach, OR, USA, 2011. [Google Scholar]
- Hao, Z.; Zhang, J.; Song, B. Assessing Biological Dissimilarities between Five Forest Plots in China Using Species Abun-Dance and Phylogenetic Information. For. Ecosyst. 2019, 6, 47. [Google Scholar] [CrossRef]
- Campos, R.; Fontana, V.; Losapio, G.; Moretti, M. How Cities Impact Diversity and Ecological Networks: A Functional and Phylogenetic Perspective. Urban Ecosyst. 2024, 27, 1359–1373. [Google Scholar] [CrossRef]
- Rocha-Filho, L.C.; Santos, J.L.; Pereira, B.A. The Initial Impact of a Hydroelectric Reservoir on Tree Community Structure. Forests 2025, 16, 1236. [Google Scholar] [CrossRef]
- Sun, Y.; Tao, C.; Deng, X.; Liu, H.; Shen, Z.; Liu, Y.; Li, R.; Shen, Q.; Geisen, S. Organic Fertilization Enhances the Resistance and Resilience of Soil Microbial Communities under Extreme Drought. J. Adv. Res. 2023, 47, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Jaunatre, R.; Buisson, E.; Leborgne, E.; Dutoit, T. Soil Fertility and Landscape Surrounding Former Arable Fields Drive the Ecological Resilience of Mediterranean Dry Grassland Plant Communities. Front. Ecol. Evol. 2023, 11, 1210591. [Google Scholar] [CrossRef]
- Manu, M.; Băncilă, R.I.; Onete, M. Soil Fauna-Indicators of Ungrazed Versus Grazed Grassland Ecosystems in Romania. Diversity 2025, 17, 323. [Google Scholar] [CrossRef]
- Peck, J. Multivariate Analysis for Community Ecologists: Step by Step Using PC-ORD; MjM Software Design: Gleneden Beach, OR, USA, 2010; ISBN 978-0972129018. [Google Scholar]
- Dufrêne, M.; Legendre, P. Species Assemblages and Indicator Species: The Need for a Flexible Asymmetrical Approach. Ecol. Monogr 1997, 67, 345–366. [Google Scholar] [CrossRef]
- Yan, H.; Li, F.; Liu, G. Diminishing Influence of Negative Relationship between Species Richness and Evenness on the Modeling of Grassland α-Diversity Metrics. Front. Ecol. Evol. 2023, 11, 1108739. [Google Scholar] [CrossRef]
- Sang, Y.; Gu, H.; Meng, Q.; Men, X.; Sheng, J.; Li, N.; Wang, Z. An Evaluation of the Performance of Remote Sensing Indices as an Indication of Spatial Variability and Vegetation Diversity in Alpine Grassland. Remote Sens. 2024, 16, 4726. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Y.; Oduor, A.M.; Kleunen, M.; Liu, Y. Diversity and Productivity of a Natural Grassland Decline with the Number of Global Change Factors. J. Plant Ecol. 2025, 17, 112–124. [Google Scholar] [CrossRef]
- Magurran, A.E. Measuring Biological Diversity; Blackwell Publishing: Oxford, UK, 2004; ISBN 978-0-632-05633-0. [Google Scholar]




| Experimental Factors | Axis 1 (r) | Sig. | Axis 2 (r) | Sig. |
|---|---|---|---|---|
| No fertilization (T1–T3) | −0.825 | *** | 0.224 | ns |
| Fertilization—low (T4, T7) | 0.352 | * | −0.315 | ns |
| Fertilization—medium (T5, T8, T9, T11) | 0.586 | ** | 0.174 | ns |
| Fertilization—high (T6, T10) | 0.512 | ** | −0.241 | ns |
| Organic inputs (all levels) | 0.468 | ** | 0.112 | ns |
| Mineral inputs (all levels) | 0.455 | ** | −0.098 | ns |
| Axis importance | 87.5% | 11.1% | ns |
| Groups Compared | T Statistic | A (Within-Group Agreement) | p-Value |
|---|---|---|---|
| Group 1 vs. Group 2 | −15.43 | 0.513 | <0.001 |
| Group 1 vs. Group 3 | −15.75 | 0.689 | <0.001 |
| Group 1 vs. Group 4 | −12.95 | 0.723 | <0.001 |
| Group 2 vs. Group 3 | −15.69 | 0.535 | <0.001 |
| Group 2 vs. Group 4 | −12.95 | 0.623 | <0.001 |
| Group 3 vs. Group 4 | −12.87 | 0.519 | <0.001 |
| Species | Axis 1 (r) | Axis 1 (r-sq) | Axis 1 (tau) | Signif. | Axis 2 (r) | Axis 2 (r-sq) | Axis 2 (tau) | Signif. |
|---|---|---|---|---|---|---|---|---|
| Agrostis capillaris | 0.735 | 0.540 | 0.788 | *** | 0.635 | 0.403 | −0.006 | ns |
| Anthoxanthum odoratum | 0.163 | 0.026 | 0.171 | ns | −0.368 | 0.136 | −0.270 | * |
| Briza media | −0.423 | 0.179 | −0.410 | * | −0.488 | 0.238 | −0.319 | ** |
| Cynosurus cristatus | 0.761 | 0.579 | 0.699 | *** | 0.227 | 0.052 | −0.127 | ns |
| Dactylis glomerata | 0.859 | 0.737 | 0.646 | *** | 0.186 | 0.035 | 0.053 | ns |
| Festuca pratensis | 0.819 | 0.670 | 0.732 | *** | 0.301 | 0.090 | 0.043 | ns |
| Festuca rubra | 0.768 | 0.591 | 0.567 | *** | −0.494 | 0.244 | −0.309 | * |
| Nardus stricta | −0.987 | 0.974 | −0.906 | *** | 0.083 | 0.007 | 0.107 | ns |
| Phleum pratense | 0.845 | 0.714 | 0.754 | *** | 0.262 | 0.069 | −0.050 | ns |
| Trifolium pratense | 0.544 | 0.296 | 0.356 | ** | −0.762 | 0.581 | −0.565 | *** |
| Trifolium repens | 0.144 | 0.021 | 0.095 | ns | −0.719 | 0.517 | −0.522 | *** |
| Luzula multiflora | −0.525 | 0.275 | −0.451 | ** | −0.426 | 0.181 | −0.287 | * |
| Potentilla erecta | −0.634 | 0.402 | −0.506 | *** | −0.328 | 0.108 | −0.176 | ns |
| Veronica chamaedrys | 0.137 | 0.019 | 0.093 | ns | −0.465 | 0.216 | −0.433 | * |
| Vaccinium myrtillus | −0.848 | 0.719 | −0.654 | *** | 0.037 | 0.001 | 0.170 | ns |
| Carex pallescens | −0.452 | 0.204 | −0.387 | * | −0.312 | 0.097 | −0.243 | ns |
| Ranunculus acris | 0.236 | 0.056 | 0.139 | ns | −0.268 | 0.072 | −0.201 | ns |
| Rumex acetosella | 0.718 | 0.515 | −0.535 | *** | 0.059 | 0.003 | 0.010 | ns |
| Stellaria graminea | −0.023 | 0.001 | 0.025 | ns | −0.240 | 0.057 | 0.205 | ns |
| Taraxacum officinale | 0.702 | 0.493 | −0.554 | *** | −0.258 | 0.066 | 0.194 | ns |
| Species | Group | IndVal | Signif. |
|---|---|---|---|
| Agrostis capillaris | 4 | 66.7 | p < 0.001 |
| Anthoxanthum odoratum | 2 | 50.2 | p < 0.001 |
| Briza media | 2 | 45.2 | p < 0.001 |
| Cynosurus cristatus | 4 | 46.6 | p < 0.001 |
| Dactylis glomerata | 4 | 42.4 | p < 0.001 |
| Deschampsia caespitosa | 3 | 27.8 | ns |
| Festuca pratensis | 4 | 46.7 | p < 0.001 |
| Festuca rubra | 3 | 52.3 | p < 0.001 |
| Holcus lanatus | 3 | 54.9 | p < 0.001 |
| Nardus stricta | 1 | 50.4 | p < 0.001 |
| Phleum pratense | 4 | 48.1 | p < 0.001 |
| Lotus corniculatus | 2 | 36.2 | p < 0.05 |
| Trifolium ochroleucon | 2 | 60.0 | p < 0.001 |
| Trifolium pratense | 3 | 46.8 | p < 0.001 |
| Trifolium repens | 2 | 46.7 | p < 0.001 |
| Achillea stricta | 2 | 55.1 | p < 0.001 |
| Alchemilla vulgaris | 3 | 38.2 | p < 0.05 |
| Leucanthemum vulgare | 2 | 38.8 | p < 0.01 |
| Carex pubescens | 2 | 52.2 | p < 0.001 |
| Campanula serata | 2 | 35.3 | p < 0.05 |
| Campanula abietina | 1 | 41.7 | p < 0.001 |
| Cerastium sylvaticum | 1 | 35.9 | p < 0.001 |
| Cruciata glabra | 1 | 42.9 | p < 0.001 |
| Luzula multiflora | 2 | 48.3 | p < 0.001 |
| Hyeracium pilosela | 2 | 43.5 | p < 0.01 |
| Hypericum maculatum | 2 | 51.7 | p < 0.001 |
| Prunela vulgaris | 2 | 45.2 | p < 0.01 |
| Polygala vulgaris | 1 | 52.4 | p < 0.001 |
| Plantago lanceolata | 2 | 35.4 | ns |
| Potentila erecta | 2 | 62.9 | p < 0.001 |
| Ranunculas acris | 3 | 27.9 | ns |
| Stellaria gramineae | 3 | 42.0 | p < 0.05 |
| Taraxacum officinale | 4 | 34.8 | ns |
| Thymus pullegioides | 2 | 56.3 | p < 0.001 |
| Viola declinata | 1 | 53.8 | p < 0.001 |
| Veronica officinalis | 1 | 52.0 | p < 0.001 |
| Veronica chamaedrys | 2 | 37.0 | ns |
| Vaccinium myrtillus | 1 | 61.9 | p < 0.001 |
| Treatment | Species Richness (S) | Shannon Index (H’) | Evenness (E) | Simpson (D) |
|---|---|---|---|---|
| T1 | 35.50 ± 0.50 a | 1.54 ± 0.02 e | 0.43 ± 0.01 d | 0.51 ± 0.01 d |
| T2 | 31.25 ± 0.48 b | 1.30 ± 0.04 f | 0.38 ± 0.01 d | 0.42 ± 0.02 d |
| T3 | 35.00 ± 0.00 a | 1.79 ± 0.05 d | 0.50 ± 0.02 c | 0.58 ± 0.02 c |
| T4 | 37.00 ± 0.00 a | 2.59 ± 0.04 a | 0.72 ± 0.01 a | 0.84 ± 0.01 a |
| T5 | 27.50 ± 1.55 c | 2.37 ± 0.04 b | 0.72 ± 0.01 a | 0.84 ± 0.01 a |
| T6 | 22.50 ± 0.65 d | 2.15 ± 0.01 c | 0.69 ± 0.01 ab | 0.80 ± 0.00 b |
| T7 | 38.00 ± 0.00 a | 2.54 ± 0.05 a | 0.70 ± 0.01 ab | 0.83 ± 0.01 a |
| T8 | 28.25 ± 1.11 c | 2.49 ± 0.04 a | 0.75 ± 0.01 a | 0.86 ± 0.01 a |
| T9 | 37.00 ± 0.00 a | 2.62 ± 0.01 a | 0.73 ± 0.00 a | 0.85 ± 0.00 a |
| T10 | 22.75 ± 0.48 d | 2.24 ± 0.02 bc | 0.72 ± 0.00 a | 0.83 ± 0.00 a |
| T11 | 28.00 ± 1.47 c | 2.5 ± 0.05 a | 0.75 ± 0.016 a | 0.86 ± 0.01 a |
| F test | 51.72 (df = 10.33) | 156.03 (df = 10.33) | 160.32 (df = 10.33) | 267.54 (df = 10.33) |
| p-value | <0.001 | <0.001 | <0.001 | <0.001 |
| Class | Coverage Interval (%) | Class Central Value (%) | Sub-Note | Sub-Interval (%) | Central-Adjusted Value of Sub-Interval (%) |
|---|---|---|---|---|---|
| 5 | 75–100 | 87.5 | 5c | 92–100 | 96 |
| 5b | 83–92 | 87.5 | |||
| 5a | 75–83 | 79 | |||
| 4 | 50–75 | 62.5 | 4c | 67–75 | 71 |
| 4b | 58–67 | 62.5 | |||
| 4a | 50–58 | 54 | |||
| 3 | 25–50 | 37.5 | 3c | 42–50 | 46 |
| 3b | 33–42 | 37.5 | |||
| 3a | 25–33 | 29 | |||
| 2 | 10–25 | 17.5 | 2c | 20–25 | 22.25 |
| 2b | 15–20 | 17.5 | |||
| 2a | 10–15 | 12.5 | |||
| 1 | 1–10 | 5 | 1c | 6–10 | 8 |
| 1b | 4–6 | 5 | |||
| 1a | 1–4 | 2.5 | |||
| + | 0.1–1 | 0.5 | - | - | 0.5 |
| r | 0.01–0.1 | 0.05 | - | - | 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samuil, C.; Nazare, A.I.; Sîrbu, C.; Grigoraş, B.; Vîntu, V. The Impact of Fertilizer Gradient on High Nature Value Mountain Grassland. Plants 2025, 14, 3397. https://doi.org/10.3390/plants14213397
Samuil C, Nazare AI, Sîrbu C, Grigoraş B, Vîntu V. The Impact of Fertilizer Gradient on High Nature Value Mountain Grassland. Plants. 2025; 14(21):3397. https://doi.org/10.3390/plants14213397
Chicago/Turabian StyleSamuil, Costel, Adrian Ilie Nazare, Culiță Sîrbu, Bogdan Grigoraş, and Vasile Vîntu. 2025. "The Impact of Fertilizer Gradient on High Nature Value Mountain Grassland" Plants 14, no. 21: 3397. https://doi.org/10.3390/plants14213397
APA StyleSamuil, C., Nazare, A. I., Sîrbu, C., Grigoraş, B., & Vîntu, V. (2025). The Impact of Fertilizer Gradient on High Nature Value Mountain Grassland. Plants, 14(21), 3397. https://doi.org/10.3390/plants14213397

