Monitoring Long-Term Vegetation Dynamics in the Hulun Lake Basin of Northeastern China Through Greening and Browning Speeds from 1982 to 2015
Abstract
1. Introduction
2. Results
2.1. Variations in Vegetation Greenness
2.2. Long-Term Trends in Greening and Browning Speeds
2.3. Spatial Patterns of the Relationships Between Vegetation Dynamics and Climatic Drivers
2.4. Divergent Responses of Greenness Versus Greening and Browning Speeds to Climate
3. Discussion
3.1. Interpretation of Key Temporal Trends in Vegetation Growth Speeds
3.2. Dominant Climatic Drivers and Seasonal Shifts
3.3. Implications for Ecosystem Functioning
3.4. Complementary Insights from VNDVI vs. NDVI and Implications
4. Materials and Methods
4.1. Study Area
4.2. Datasets
4.3. Data Processing and Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Beck, P.S.A.; Atzberger, C.; Høgda, K.A.; Johansen, B.; Skidmore, A.K. Improved monitoring of vegetation dynamics at very high latitudes: A new method using MODIS NDVI. Remote Sens. Environ. 2006, 100, 321–334. [Google Scholar] [CrossRef]
- White, M.A.; de Beurs, K.M.; Didan, K.; Inouye, D.W.; Richardson, A.D.; Jensen, O.P.; O’Keefe, J.; Zhang, G.; Nemani, R.R.; van Leeuwen, W.J.D.; et al. Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982–2006. Glob. Change Biol. 2009, 15, 2335–2359. [Google Scholar] [CrossRef]
- Ye, W.; van Dijk, A.I.J.M.; Huete, A.; Yebra, M. Global trends in vegetation seasonality in the GIMMS NDVI3g and their robustness. Int. J. Appl. Earth Obs. Geoinf. 2021, 94, 102238. [Google Scholar] [CrossRef]
- Caparrós, S.J.A.; Quesada-Ruiz, L.C.; Pérez-García, M.A.; Rodríguez-Galiano, V. Vegetation phenology dynamics across ecoregions of Iberian Peninsula from MODIS NDVI time series: 2001–2017. Proc. SPIE 2020, 11528, 118–124. [Google Scholar] [CrossRef]
- Cha, E.; Bayaer, T.; Bao, Y.; Bao, Y.; Mei, Y.; Lai, Q.; Zhang, X.; Zhang, Y. Comparison of phenological parameters extracted from SIF, NDVI and NIRv data on the Mongolian Plateau. Remote Sens. 2023, 15, 187. [Google Scholar] [CrossRef]
- Guo, E.; Wang, Y.; Wang, C.; Sun, Z.; Bao, Y.; Mandula, N.; Jirigala, B.; Bao, Y.; Li, H. NDVI indicates long-term dynamics of vegetation and its driving forces from climatic and anthropogenic factors in Mongolian Plateau. Remote Sens. 2021, 13, 688. [Google Scholar] [CrossRef]
- Gu, Y.; Pang, B.; Qiao, X.; Xu, D.; Li, W.; Yan, Y.; Dou, H.; Ao, W.; Wang, W.; Zou, C.; et al. Vegetation dynamics in response to climate change and human activities in the Hulun Lake Basin from 1981 to 2019. Ecol. Indic. 2022, 136, 108700. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, X.; Shang, Y.; Kattel, G.; Miao, L. Continuously vegetation greening over Inner Mongolia for the past three decades. Remote Sens. 2021, 13, 2446. [Google Scholar] [CrossRef]
- Li, G.; Yu, L.; Liu, T.; Bao, Y.; Yu, J.; Xin, B.; Bao, L.; Li, X.; Chang, X.; Zhang, S. Spatial and temporal variations of grassland vegetation on the Mongolian Plateau and its response to climate change. Front. Ecol. Evol. 2023, 11, 1067209. [Google Scholar] [CrossRef]
- Han, J.; Sun, Y.; Yang, F. Assessing drought risk of grassland ecosystem in Hulunbuir, China. Ecol. Indic. 2025, 175, 113522. [Google Scholar] [CrossRef]
- Li, M.; Wang, X.; Chen, J. Assessment of grassland ecosystem services and driving factors: A case study in Hulunbuir grassland. Front. Ecol. Evol. 2022, 10, 841943. [Google Scholar] [CrossRef]
- Wang, M.; Zhao, J.; Zhang, H.; Zhang, Z.; Guo, X.; Zhang, T.; Wu, R. Detecting the response characteristics and thresholds of grassland spring phenology to climatic factors in the Mongolian Plateau. Ecol. Indic. 2023, 153, 110440. [Google Scholar] [CrossRef]
- Shi, S.; Wang, P.; Zhang, Y.; Yu, J. Cumulative and time-lag effects of the main climate factors on natural vegetation across Siberia. Ecol. Indic. 2021, 133, 108446. [Google Scholar] [CrossRef]
- Kong, D.; Miao, C.; Wu, J.; Zheng, H.; Wu, S. Time lag of vegetation growth on the Loess Plateau in response to climate factors: Estimation, distribution, and influence. Sci. Total Environ. 2020, 744, 140726. [Google Scholar] [CrossRef]
- Wen, Y.; Liu, X.; Yang, J.; Lin, K.; Du, G. NDVI indicated inter-seasonal non-uniform time-lag responses of terrestrial vegetation growth to daily maximum and minimum temperature. Glob. Planet. Change 2019, 177, 27–38. [Google Scholar] [CrossRef]
- Gao, X.; Zhuo, W.; Gonsamo, A. Humid, warm and treed ecosystems show longer time-lag of vegetation response to climate. Geophys. Res. Lett. 2024, 51, e2024GL111737. [Google Scholar] [CrossRef]
- Piao, S.; Wang, J.; Li, X.; Xu, H.; Zhang, Y. Spatio-temporal changes in the speed of canopy development and senescence in temperate China. Glob. Change Biol. 2022, 28, 7366–7375. [Google Scholar] [CrossRef]
- Kaleem, M.; Ahmad, A.S.; Sultan, M.; Khadim, H.; Fahad, S.; Liu, Q.; Ansari, M.J.; Alharbi, S.A.; Khan, W.R. Analyzing vegetation health dynamics across seasons and regions through NDVI and climatic variables. Sci. Rep. 2024, 14, 11775. [Google Scholar] [CrossRef]
- Elsafi, S.H.; Elkamali, Y.; Salman, A.; Zaidi, F.K. Assessing the spatiotemporal variability and trends of rainfall, temperature, and NDVI in Saudi Arabia (1980–2011) using station data and Google Earth Engine. Theor. Appl. Climatol. 2024, 156, 61. [Google Scholar] [CrossRef]
- Liu, J.; Wei, L.; Zheng, Z.; Du, J. Vegetation cover change and its response to climate extremes in the Yellow River Basin. Sci. Total Environ. 2023, 905, 167366. [Google Scholar] [CrossRef] [PubMed]
- John, R.; Chen, J.; Kim, Y.; Ouyang, Z.-T.; Xiao, J.; Park, H.; Shao, C.; Zhang, Y.; Amarjargal, A.; Batkhshig, O.; et al. Differentiating anthropogenic modification and precipitation-driven change on vegetation productivity on the Mongolian Plateau. Landsc. Ecol. 2016, 31, 547–566. [Google Scholar] [CrossRef]
- Wang, S.; Liu, X.; Wu, Y. Considering climatic factors, time lag, and cumulative effects of climate change and human activities on vegetation NDVI in Yinshanbeilu, China. Plants 2023, 12, 3312. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y.; Li, X. Changing lengths of the four seasons by global warming. Geophys. Res. Lett. 2021, 48, e2020GL091753. [Google Scholar] [CrossRef]
- Zhao, T.; Wang, H.; Liu, X. The role of temperature in controlling the growth of vegetation and its impact on ecosystem productivity. J. Clim. 2015, 28, 4261–4273. [Google Scholar]
- Li, H.; Zhang, Y.; Sun, X. Precipitation as a key factor influencing vegetation productivity in semi-arid regions. Ecol. Appl. 2017, 27, 1394–1402. [Google Scholar] [CrossRef]
- Chen, J.; Xiao, X.; Guo, L. Effects of temperature, precipitation, and solar radiation on vegetation growth in temperate and subtropical regions. Environ. Res. Lett. 2013, 8, 4. [Google Scholar] [CrossRef]
- Wan, H.; Hou, X. Spatial–temporal changes in vegetation coverage in the global coastal zone based on GIMMS NDVI3g data. Int. J. Remote Sens. 2020, 41, 1118–1138. [Google Scholar]
- Abayomi, A.G.; Kalumba, A.M.; Ishola, K.A.; Orimoloye, I.R. Long-term dynamics and response to climate change of different vegetation types using GIMMS NDVI3g data over Amathole District in South Africa. Atmosphere 2022, 13, 620. [Google Scholar] [CrossRef]
- Piao, S.; Wang, X.; Park, T.; Chen, C.; Lian, X.; He, Y.; Bjerke, J.W.; Chen, A.; Ciais, P.; Tømmervik, H.; et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 2020, 1, 14–27. [Google Scholar] [CrossRef]
- Cun, Z.; Liang, C.; Zhao, L.; Jiang, S.; Niu, K.; Zhang, Y.; Cheng, L. Vegetation dynamics and its response to climate change in the Yellow River Basin, China. Front. Environ. Sci. 2022, 10, 892747. [Google Scholar] [CrossRef]
- Yan, M.; Lu, J.; Ma, Y.; Ma, C. Remote sensing evidence on the marginality, stag(na)tion and spatiotemporal heterogeneity of vegetation evolution in the Yinshan Mountains, China: Based on PKU-GIMMS NDVI (1984–2022). Ecol. Indic. 2025, 171, 113193. [Google Scholar] [CrossRef]
- Zani, D.; Crowther, T.W.; Mo, L.; Renner, S.S.; Zohner, C.M. Increased growing-season productivity drives earlier autumn leaf senescence in temperate trees. Science 2020, 370, 1066–1071. [Google Scholar] [CrossRef]
- Meng, F.; Felton, A.J.; Mao, J.; Cong, N.; Smith, W.K.; Körner, C.; Hu, Z.; Hong, S.; Knott, J.; Yan, Y.; et al. Consistent time allocation fraction to vegetation green-up versus senescence across northern ecosystems despite recent climate change. Sci. Adv. 2024, 10, eadn2487. [Google Scholar] [CrossRef] [PubMed]
- Haq, M.A.; Baral, P.; Yaragal, S.; Rahaman, G. Assessment of trends of land surface vegetation distribution, snow cover and temperature over entire Himachal Pradesh using MODIS datasets. Nat. Resour. Model. 2020, 33, e12262. [Google Scholar] [CrossRef]
- Duarte, B.; Gama, I.; Domingos, T.; Proença, V. Using satellite NDVI time-series to monitor grazing effects on vegetation productivity and phenology in heterogeneous Mediterranean forests. Remote Sens. 2022, 14, 2322. [Google Scholar] [CrossRef]
- Yan, Y.; Cheng, Y.; Xin, Z.; Zhou, J.; Zhou, M.; Wang, X. Impacts of climate change and human activities on vegetation dynamics on the Mongolian Plateau, East Asia from 2000 to 2023. J. Arid Land 2024, 16, 1062–1079. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Li, C.; Cai, Y.; Yang, Z.; Yi, Y. NDVI dynamics under changing meteorological factors in a shallow lake in future metropolitan, semiarid area in North China. Sci. Rep. 2018, 8, 15971. [Google Scholar] [CrossRef]
- Liu, M.; Zhai, H.; Zhang, X.; Dong, X.; Hu, J.; Ma, J.; Sun, W. Time-lag and accumulation responses of vegetation growth to average and extreme precipitation and temperature events in China between 2001 and 2020. Sci. Total Environ. 2024, 945, 174084. [Google Scholar] [CrossRef]
- Liu, S.; Gu, Y.; Wang, H.; Lin, J.; Zhuo, P.; Ao, T. Response of vegetation coverage to climate drivers in the Min-Jiang River Basin along the eastern margin of the Tibetan Plateau, 2000–2022. Forests 2024, 15, 1093. [Google Scholar] [CrossRef]
- Mi, J.; Wang, F.; Shi, J.; Wang, Q.; Pang, H.; Yu, J.; Chen, D.; Bai, Y. Contrasting trends in plant diversity and soil carbon mineralization under precipitation-driven vegetation and soil carbon dynamics in the Mongolian Plateau. Ecol. Evol. 2025, 15, e71806. [Google Scholar] [CrossRef]
- You, Q.; Chen, D.; Wu, F.; Pepin, N.; Cai, Z.; Ahrens, B.; Jiang, Z.; Wu, Z.; Kang, S.; AghaKouchak, A. Elevation-dependent warming over the Tibetan Plateau: Patterns, mechanisms and perspectives. Earth-Sci. Rev. 2020, 210, 103349. [Google Scholar] [CrossRef]
- Tang, G.; Bao, Y.; Sun, C.; Mei, Y.; Gantumur, B.; Boldbayar, R.; Bao, Y. Water use efficiency spatiotemporal change and its driving analysis on the Mongolian Plateau. Sensors 2025, 25, 2214. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.H.; Zhou, X.; Li, X.; Zhang, Y.; Geng, X.; Hao, F.; Zhang, X.; Hanninen, H.; Guo, Y.; De Boeck, H.J. Decreasing control of precipitation on grassland spring phenology in temperate China. Glob. Ecol. Biogeogr. 2021, 30, 490–499. [Google Scholar] [CrossRef]
- Wang, F.; Men, R.; Lai, H.; Feng, K.; Yan, S.; Gao, S.; Wang, Z.; Tian, Q.; Guo, W.; Yang, H. The response of vegetation dynamics to drought and its driving-factors identification in Inner Mongolia of China. Ecol. Indic. 2024, 164, 112125. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Z.; Lai, H.; Wang, F.; Li, Y.; Feng, K.; Qi, Q.; Di, D. Lag time and cumulative effects of climate factors on drought in North China Plain. Water 2023, 15, 3428. [Google Scholar] [CrossRef]
- Wu, W.; Sun, R.; Zhao, G.; Zheng, Z.; He, Y.; Liu, L.; Zhou, G.; Zhang, Y.; Xu, Z. Climate shifts biomass allocation by altering plant functional group in alpine vs. temperate grasslands on both Inner Mongolian and Tibetan Plateaus. Catena 2024, 238, 107887. [Google Scholar] [CrossRef]
- Zhan, Y.; Fan, J.; Meng, T.; Li, Z.; Yan, Y.; Huang, J.; Chen, D.; Sui, L. Analysis on vegetation cover changes and the driving factors in the mid-lower reaches of Hanjiang River Basin between 2001 and 2015. Open Geosci. 2021, 13, 675–689. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, P.; Hu, X.; Li, M.; Ding, Y.; Peng, T.; Zhi, Q.; Bademu, Q.; Li, W.; Guan, X.; et al. Plant diversity, productivity, and soil nutrient responses to different grassland degradation levels in Hulunbuir, China. Land 2024, 13, 2001. [Google Scholar] [CrossRef]
- Zhou, Y.K. Analyzing the velocity of vegetation phenology over the Tibetan Plateau using GIMMS NDVI3g data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 42, 2575–2578. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, Y.; Yue, X.; Chen, X.; Liu, Y. Dynamic habitat indices and climatic characteristics explain species richness patterns on the Mongolian Plateau. Remote Sens. 2023, 15, 1092. [Google Scholar] [CrossRef]
- Zhi, Q.; Hu, X.; Wang, P.; Li, M.; Ding, Y.; Wu, Y.; Peng, T.; Li, W.; Guan, X.; Shi, X.; et al. Estimation, Spatiotemporal Dynamics, and Driving Factors of Grassland Biomass Carbon Storage Based on Machine Learning Methods: A Case Study of the Hulunbuir Grassland. Remote Sens. 2024, 16, 3709. [Google Scholar] [CrossRef]
- Zhu, Z.; Fu, C.; Wu, H.; Wu, H.; Cao, Y.; Xia, Y. Decoding the hundred-year water level changes of the largest Saline Lake in China: A Joint Lake-Basin Modeling Study Based on a Revised SWAT+. J. Hydrol. Reg. Stud. 2023, 49, 101521. [Google Scholar] [CrossRef]
- Li, B.; Liu, B.; Henderson, M.; Zhou, W.; Chen, M. Expansion of Treeline in North China and Its Relationship with Altitude Sensitivity Gradient of Larix gmelinii. Forests 2023, 14, 1960. [Google Scholar] [CrossRef]
- Zhu, Y.; Shan, D.; Wang, B.; Shi, Z.; Yang, X.; Liu, Y. Floristic features and vegetation classification of the Hulun Buir Steppe in North China: Geography and climate-driven steppe diversification. Glob. Ecol. Conserv. 2019, 20, e00741. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30 m Annual Land Cover Dataset and Its Dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Brown, M.E.; Pinzon, J.E.; Tucker, C.J. New vegetation index data set available to monitor global change. Eos Trans. Am. Geophys. Union 2004, 85, 565–569. [Google Scholar] [CrossRef]
- Tucker, C.J.; Pinzon, J.E.; Brown, M.E.; Slayback, D.A.; Pak, E.W.; Mahoney, R.; Vermote, E.F.; El Saleous, N. An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int. J. Remote Sens. 2005, 26, 4485–4498. [Google Scholar] [CrossRef]
- Tian, J.; Luo, X. Conflicting Changes of Vegetation Greenness Interannual Variability on Half of the Global Vegetated Surface. Earth’s Future 2024, 12, e2023EF004119. [Google Scholar] [CrossRef]
- Li, B.; He, B.; Yu, W.; Wang, J. An analysis of vegetation change trends and their causes in Inner Mongolia, China from 1982 to 2006. Adv. Meteorol. 2011, 2011, 367854. [Google Scholar] [CrossRef]
- Yin, Z.; Zhang, Y.; Zheng, G. The application of NDVI in vegetation productivity monitoring and its relationship with biomass. Ecol. Model. 2012, 234, 13–22. [Google Scholar] [CrossRef]
- Paruelo, J.M.; Lauenroth, W.K.; Burke, I.C. Estimating net primary productivity from NDVI and temperature in the central Great Plains of the United States. Ecol. Appl. 2001, 11, 893–902. [Google Scholar]
- Piao, S.; Fang, J.; Zhou, L. Vegetation phenology and its climate control in northern China. Agric. For. Meteorol. 2022, 98, 1–10. [Google Scholar]
- Alhumaima, S.M.; Zhao, S.Y. Assessing the impact of vegetation growth on agricultural productivity using NDVI indices. Int. J. Remote Sens. 2020, 41, 804–823. [Google Scholar]









| Index | Definition | Measurement Indicator | Biological Significance |
|---|---|---|---|
| [41] | Annual total NDVI | Overall productivity and biomass | Annual vegetation productivity |
| [42] | change rate | Vegetation phenology | Vegetation change rate |
| NDVImax [43] | Maximum NDVI within the growing season of a year | Overall productivity and biomass | Annual vegetation productivity |
| NDVIratio [44] | Normalized difference in NDVI within the year | Interannual variability in productivity | Interannual biomass comparison |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shan, N.; Wang, T.; Zhang, Q.; Gong, J.; He, M.; Zhang, X.; Lu, X.; Qiu, F. Monitoring Long-Term Vegetation Dynamics in the Hulun Lake Basin of Northeastern China Through Greening and Browning Speeds from 1982 to 2015. Plants 2025, 14, 3394. https://doi.org/10.3390/plants14213394
Shan N, Wang T, Zhang Q, Gong J, He M, Zhang X, Lu X, Qiu F. Monitoring Long-Term Vegetation Dynamics in the Hulun Lake Basin of Northeastern China Through Greening and Browning Speeds from 1982 to 2015. Plants. 2025; 14(21):3394. https://doi.org/10.3390/plants14213394
Chicago/Turabian StyleShan, Nan, Tie Wang, Qian Zhang, Jinqi Gong, Mingzhu He, Xiaokang Zhang, Xuehe Lu, and Feng Qiu. 2025. "Monitoring Long-Term Vegetation Dynamics in the Hulun Lake Basin of Northeastern China Through Greening and Browning Speeds from 1982 to 2015" Plants 14, no. 21: 3394. https://doi.org/10.3390/plants14213394
APA StyleShan, N., Wang, T., Zhang, Q., Gong, J., He, M., Zhang, X., Lu, X., & Qiu, F. (2025). Monitoring Long-Term Vegetation Dynamics in the Hulun Lake Basin of Northeastern China Through Greening and Browning Speeds from 1982 to 2015. Plants, 14(21), 3394. https://doi.org/10.3390/plants14213394

