Response of Phytoplankton Communities to Hydrological Pulses and Nutrient Changes Induced by Heavy Summer Rainfall in a Shallow Eutrophic Lake
Abstract
1. Introduction
2. Results
2.1. Dynamics of Environmental Variables
2.2. Phytoplankton Community Dynamics
2.3. Relationships Between Phytoplankton and Environmental Variables
3. Discussion
4. Materials and Methods
4.1. Study Sites and Sampling
4.2. Sample Analysis
4.3. Data Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Armstrong, M.; Zhan, Q.; Munthali, E.; Jin, H.; Teurlincx, S.; Peters, P.; Lürling, M.; De Senerpont Domis, L.N. Stressors in a bottle: A microcosm study on phytoplankton assemblage response to extreme precipitation events under climate warming. Freshw. Biol. 2023, 68, 14109. [Google Scholar] [CrossRef]
- Climate Change Centre. Blue Book on Climate Change in China (2022); Science Press: Beijing, China, 2022. [Google Scholar]
- Lyche Solheim, A.; Gundersen, H.; Mischke, U.; Skjelbred, B.; Nejstgaard, J.C.; Guislain, A.L.; Sperfeld, E.; Giling, D.P.; Haande, S.; Ballot, A.; et al. Lake browning counteracts cyanobacteria responses to nutrients: Evidence from phytoplankton dynamics in large enclosure experiments and comprehensive observational data. Glob. Change Biol. 2024, 30, e17013. [Google Scholar] [CrossRef]
- Higgins, S.N.; Havens, S.M.; Paterson, M.J.; Rennie, M.; Bulloch, P. Darkening waters: Climate-induced shifts in precipitation and DOM reduced phytoplankton but not zooplankton in dimictic boreal lakes. Can. J. Fish. Aquat. Sci. 2025, 82, 1–14. [Google Scholar] [CrossRef]
- Song, T.; Zhang, H.; Xu, Y.; Dai, X.; Fan, F.; Wang, Y.; Liu, G. Cyanobacterial blooms in Lake Taihu: Temporal trends and potential drivers. Sci. Total Environ. 2024, 942, 173684. [Google Scholar] [CrossRef]
- Rodal-Morales, N.D.; Beutel, M.; Fuhrmann, B.; Defeo, S.; Hansen, A.M.; Harmon, T.; Brower, S.; Pasek, J. Hydrology and oxygen addition drive nutrients, metals, and methylmercury cycling in a hypereutrophic water supply reservoir. Front. Water 2024, 6, 1356994. [Google Scholar] [CrossRef]
- Reynolds, C.S. The Ecology of Phytoplankton; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Liu, F.; Zhang, H.; Wang, Y.; Yu, J.; He, Y.; Wang, D. Hysteresis analysis reveals how phytoplankton assemblage shifts with the nutrient dynamics during and between precipitation patterns. Water Res. 2024, 251, 121099. [Google Scholar] [CrossRef] [PubMed]
- de Senerpont Domis, L.N.; Elser, J.J.; Gsell, A.S.; Huszar, V.L.; Ibelings, B.W.; Jeppesen, E.; Kosten, S.; Mooij, W.M.; Roland, F.; Sommer, U.; et al. Plankton dynamics under different climatic conditions in space and time. Freshw. Biol. 2013, 58, 463–482. [Google Scholar] [CrossRef]
- Yang, J.R.; Yu, X.; Chen, H.; Kuo, Y.; Yang, J. Structural and functional variations of phytoplankton communities in the face of multiple disturbances. J. Environ. Sci. 2021, 100, 287–297. [Google Scholar] [CrossRef]
- Creed, I.F.; Bergström, A.K.; Trick, C.G.; Grimm, N.B.; Hessen, D.O.; Karlsson, J.; Kidd, K.A.; Kritzberg, E.; McKnight, D.M.; Freeman, E.C.; et al. Global change-driven effects on dissolved organic matter composition: Implications for food webs of northern lakes. Glob. Change Biol. 2018, 24, 3692–3714. [Google Scholar] [CrossRef]
- Yan, G.; Yin, X.; Wang, E.; Zhang, T.; Kong, S.; Huang, M.; Wang, X. Climate change-induced hydroannual dynamics: Unveiling the complex control factor in phytoplankton functional groups succession in river-connected lakes. J. Hydrol. 2025, 661, 133811. [Google Scholar] [CrossRef]
- Torres-Martínez, L.; McCarten, N.; Emery, N.C. The adaptive potential of plant populations in response to extreme climate events. Ecol. Lett. 2019, 22, 866–874. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, T.; Zhang, Y.; Zhang, L.; Yang, J.R.; Zhu, J.; Liu, Z. Variation characteristics of extreme precipitation events and their relationship with temperature in the Changhu Lake Basin during 1961–2020. Chin. J. Agr. Resour. Reg. Plan. 2023, 44, 163–171. [Google Scholar]
- Zhang, Y.; Li, T.; Zhang, L.; Hu, Q.; Liu, Z.; Zhu, J.; Chai, Y.; Yang, J.R. Effects of extreme rainfall events on phytoplankton community in a subtropical eutrophic lake: A mesocosm experiment. Isr. J. Aquacult.-Bamid. 2024, 76, 92652. [Google Scholar] [CrossRef]
- Li, T.; Zhang, Y.; Zhang, L.; Liu, Z.; Zhu, J.; Zhou, Y.; Yang, J.R. Succession of phytoplankton functional groups in a subtropical lake associated with rainfall patterns. Sci. Rep. 2025, 15, 16865. [Google Scholar] [CrossRef]
- Shi, P.; Zhu, M.; You, R.; Li, H.; Zou, W.; Xu, H.; Xiao, M.; Zhu, G. Rainstorm events trigger algal blooms in a large oligotrophic reservoir. J. Hydrol. 2023, 622, 129711. [Google Scholar] [CrossRef]
- Li, W.; Jiang, M.; Xu, L.; Hu, S.; You, L.; Zhou, Q.; Chen, Z.; Zhang, L. Spatiotemporal variation of phytoplankton and its response to extreme flood-drought events in Lake Poyang. J. Lake Sci. 2024, 36, 1001–1013. [Google Scholar]
- Harris, T.D.; Reinl, K.L.; Azarderakhsh, M.; Berger, S.A.; Berman, M.C.; Bizic, M.; Bhattacharya, R.; Burnet, S.H.; Cianci-Gaskill, J.A.; De Senerpont Domis, L.N.; et al. What makes a cyanobacterial bloom disappear? A review of the abiotic and biotic cyanobacterial bloom loss factors. Harmful Algae 2025, 133, 102599. [Google Scholar] [CrossRef]
- Beardall, J.; Young, E.; Roberts, S. Approaches for determining phytoplankton nutrient limitation. Aquat. Sci. 2001, 63, 44–69. [Google Scholar] [CrossRef]
- Wang, S.; Xiao, J.; Wan, L.; Zhou, Z.; Wang, Z.; Song, C.; Zhou, Y.; Cao, X. Mutual dependence of nitrogen and phosphorus as key nutrient elements: One facilitates Dolichospermum flos-aquae to overcome the limitations of the other. Environ. Sci. Technol. 2018, 52, 4992. [Google Scholar] [CrossRef] [PubMed]
- Kramer, B.J.; Jankowiak, J.G.; Nanjappa, D.; Harke, M.J.; Gobler, C.J. Nitrogen and phosphorus significantly alter growth, nitrogen fixation, anatoxin-a content, and the transcriptome of the bloom-forming cyanobacterium. Dolichospermum. Front. Microbiol. 2022, 13, 5032. [Google Scholar] [CrossRef]
- Celikkol, S.; Fortin, N.; Tromas, N.; Andriananjamanantsoa, H.; Greer, C.W. Bioavailable nutrients (N and P) and precipitation patterns drive cyanobacterial blooms in Missisquoi Bay, Lake Champlain. Microorganisms 2021, 9, 2097. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, Y.; Yang, L.; Yuan, L.; Peng, D. Relationship between phytoplankton and environmental factors in landscape water supplemented with reclaimed water. Ecol. Indic. 2015, 58, 113–121. [Google Scholar] [CrossRef]
- Yang, J.R.; Wang, H.; Chai, Y. Impacts of ecological restoration on spatiotemporal variations of water quality in Changhu Lake. China Rural Water Hydropower 2020, 7, 77–81+84. [Google Scholar]
- Han, H.; Xiao, R.; Gao, G.; Yin, B.; Liang, S. Influence of a heavy rainfall event on nutrients and phytoplankton dynamics in a well-mixed semi-enclosed bay. J. Hydrol. 2023, 617, 128932. [Google Scholar] [CrossRef]
- Reichwaldt, E.S.; Ghadouani, A. Effects of rainfall patterns on toxic cyanobacterial blooms in a changing climate: Between simplistic scenarios and complex dynamics. Water Res. 2012, 46, 1372–1393. [Google Scholar] [CrossRef]
- Saleem, A.; Anwar, S.; Saud, S.; Kamal, T.; Fahad, S.; Nawaz, T. Cyanobacteria diversity and ecological roles: Insights into cyanobacterial adaptations and environmental implications. J. Umm Al-Qura Univ. Appl. Sci. 2025. [Google Scholar] [CrossRef]
- Yang, T.; Pan, J.; Wu, H.; Tian, C.; Wang, C.; Xiao, B.; Pan, M.; Wu, X. Rapid flotation of Microcystis wesenbergii mediated by high light exposure: Implications for surface scum formation and cyanobacterial species succession. Front. Plant Sci. 2024, 15, 136768. [Google Scholar] [CrossRef]
- Feng, W.; Liu, S.; Yang, L.; Zhou, X.; Ren, Y.; Zhou, X.; Sun, W. Assessment and analysis of current water quality status in the Changhu Lake watershed of Jingzhou. Wetl. Sci. Manag. 2022, 18, 37–40. [Google Scholar]
- Wei, F.S. Water and Wastewater Monitoring and Analysis Methods; Science Press: Beijing, China, 2022. [Google Scholar]
- Zhang, L.; Wang, Q.; Xu, X. Discussion on the determination of phytoplankton chlorophyll-a content by ethanol method. China Environ. Monit. 2008, 24, 9–10. [Google Scholar]
- Edler, L.; Elbrächter, M. The Utermöhl method for quantitative phytoplankton analysis. In Microscopic and Molecular Methods for Quantitative Phytoplankton Analysis; Karlson, B., Cusack, C., Bresnan, E., Eds.; UNESCO: Paris, France, 2010; pp. 13–20. [Google Scholar]
- Zhang, Z.; Huang, X. Methods for Study of Freshwater Plankton; Science Press: Beijing, China, 1995. [Google Scholar]
- Hu, H.; Wei, Y. The Freshwater Algae of China: Systematic, Taxonomy and Ecology; Science Press: Beijing, China, 2006. [Google Scholar]
- Hillebrand, H.; Dürselen, C.D.; Kirschtel, D.; Pollingher, U.; Zohary, T. Biovolume calculation for pelagic and benthic microalgae. J. Phycol. 1999, 35, 403–424. [Google Scholar] [CrossRef]
- Huang, M.; Xu, F.; Xia, J.; Yang, X.; Zhang, F.; Liu, S.; Zhang, T. Evaluation of the current status and risks of aquatic ecology in the Jialing River Basin based on the characteristics and succession trends of phytoplankton communities. Ecol. Indic. 2025, 170, 113121. [Google Scholar] [CrossRef]
- McNaughton, S.J. Relationships among functional properties of Californian grassland. Nature 1967, 216, 168–169. [Google Scholar] [CrossRef]









| Species | Code | 2020 | 2021 | 2022 | |
|---|---|---|---|---|---|
| Chlorophyta | Chlorella sp. | Chl | 0.02 | 0.02 | |
| Cyanobacteria | Chroococcus sp. | Chr | 0.11 | ||
| Dolichospermum flos-aquae | Dol | 0.02 | 0.02 | 0.04 | |
| Pseudanabaena limnetica | Pse | 0.14 | 0.04 | 0.04 | |
| Oscillatoria princeps | Osc | 0.27 | 0.19 | 0.20 | |
| Microcystis wesenbergii | Mic | 0.04 | 0.20 | 0.10 | |
| Merismopedia minima | Mer | 0.03 | 0.12 | 0.07 | |
| Aphanocapsa sp. | Aph | 0.06 | |||
| Bacillariophyta | Aulacoseira granulata E. | Aul | 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Tang, S.; Nie, Z.; Zhu, J.; Liu, Z.; Yang, J.R. Response of Phytoplankton Communities to Hydrological Pulses and Nutrient Changes Induced by Heavy Summer Rainfall in a Shallow Eutrophic Lake. Plants 2025, 14, 3395. https://doi.org/10.3390/plants14213395
Li Y, Tang S, Nie Z, Zhu J, Liu Z, Yang JR. Response of Phytoplankton Communities to Hydrological Pulses and Nutrient Changes Induced by Heavy Summer Rainfall in a Shallow Eutrophic Lake. Plants. 2025; 14(21):3395. https://doi.org/10.3390/plants14213395
Chicago/Turabian StyleLi, Yiqi, Shihao Tang, Zilong Nie, Jianqiang Zhu, Zhangyong Liu, and Jun R. Yang. 2025. "Response of Phytoplankton Communities to Hydrological Pulses and Nutrient Changes Induced by Heavy Summer Rainfall in a Shallow Eutrophic Lake" Plants 14, no. 21: 3395. https://doi.org/10.3390/plants14213395
APA StyleLi, Y., Tang, S., Nie, Z., Zhu, J., Liu, Z., & Yang, J. R. (2025). Response of Phytoplankton Communities to Hydrological Pulses and Nutrient Changes Induced by Heavy Summer Rainfall in a Shallow Eutrophic Lake. Plants, 14(21), 3395. https://doi.org/10.3390/plants14213395
