Effects of Long-Term Nutrient Input on Progeny Seed Nutrient Contents, Germination and Early Growth Characteristics of Typical Coastal Wetland Plants
Abstract
1. Introduction
2. Results
2.1. Effects of Long-Term Nutrient Input on Progeny Seed N and P Contents
2.2. Effects of Long-Term Nutrient Input on Progeny Seed Germination Under Different Salinity
2.3. Effects of Long-Term Nutrient Input on the Early Seedling Growth of Progeny Under Different Salinity
2.4. Relationships Between Seed Nutrient Contents and Germination and Growth Traits Under Different Treatments
3. Discussion
4. Materials and Methods
4.1. Study Materials
4.2. Measurements of Seed N and P Contents
4.3. Seed Germination Experiments
4.4. Measurement Indexes and Methods
4.5. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yu, J.M.; Wang, X.T.; Yang, S.X.; Guo, Y.Y.; Liu, M.Y.; Xi, M. Divergent response of blue carbon components to wetland types and hydrological effects in typical estuarine wetlands of Jiaozhou Bay, China. J. Environ. Manag. 2023, 347, 119223. [Google Scholar] [CrossRef]
- Zhang, J.C.; Si, H.T.; Wang, Y.Q.; Li, R.H.; Li, S.; Zhou, L.J.; Wang, Y.J.; Wang, L.T.; Yin, L.; Zhang, H.S. Mixed cropping enhances the nitrogen and phosphorus purification efficiency of sewage in wetland ecosystems. J. Water Process Eng. 2023, 57, 104557. [Google Scholar] [CrossRef]
- Peñuelas, J.; Poulter, B.; Sardans, J.; Ciais, P.; van der Velde, M.; Bopp, L.; Boucher, O.; Godderis, Y.; Hinsinger, P.; Llusia, J.; et al. Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe. Nat. Commun. 2013, 4, 2934. [Google Scholar] [CrossRef]
- Andersen, H.E.; Kronvang, B.; Larsen, S.E.; Hoffmann, C.C.; Jensen, T.S.; Rasmussen, E.K. Climate-change impacts on hydrology and nutrients in a Danish lowland river basin. Sci. Total Environ. 2006, 365, 23–237. [Google Scholar] [CrossRef]
- Sun, J.; Xia, J.B.; Zhao, X.M.; Gao, F.L.; Zhao, W.L.; Xing, X.S.; Dong, M.M.; Chu, J.M. Enrichment of soil nutrients and salt ions with different salinities under Tamarix chinensis shrubs in the Yellow River Delta. Catena 2023, 232, 107433. [Google Scholar] [CrossRef]
- O’Brien, A.M.; Lins, T.F.; Yang, Y.M.; Frederickson, M.E.; Sinton, D.; Rochman, C.M. Microplastics shift impacts of climate change on a plant-microbe mutualism: Temperature, CO2, and tire wear particles. Environ. Res. 2021, 203, 111727. [Google Scholar] [CrossRef] [PubMed]
- Audet, J.; Zak, D.; Bidstrup, J.; Hoffmann, C.C. Nitrogen and phosphorus retention in Danish restored wetlands. Ambio 2019, 49, 324–336. [Google Scholar] [CrossRef]
- Yang, H.L.; Chen, X.C.; Zhang, C.S.; Zhao, M.M.; Zhao, X.M.; Danielle, C.P.; Tang, J.W. Nitrogen removal by eutrophic coastal wetlands accomplished with CH4 emission reduction. J. Clean. Prod. 2021, 332, 130082. [Google Scholar] [CrossRef]
- Chen, Y.; Wen, Y.; Zhou, Q.; Vymazal, J. Effects of plant biomass on denitrifying genes in subsurface-flow constructed wetlands. Bioresour. Technol. 2014, 157, 341–345. [Google Scholar] [CrossRef]
- González-Paleo, L.; Pastor-Pastor, A.; Rajnoch, G.; Ravetta, D.A. Mechanisms of nitrogen conservation at the leaf-level in annual and perennial desert forbs: Implications for perennial crops domestication. Flora 2019, 252, 62–68. [Google Scholar] [CrossRef]
- Wang, Z.Q.; Fan, Z.X.; Zhao, Q.; Wang, M.C.; Ran, J.Z.; Huang, H.; Karl, J.N. Global data analysis shows that so-il nutrient levels dominate foliar nutrient resorption efficiency in herbaceous species. Front. Plant Sci. 2018, 9, 1431. [Google Scholar] [CrossRef] [PubMed]
- Nelson, R.A.; Lauren, L.S.; Erika, I.H.; Eric, W.S.; Elizabeth, T.B.; Pedro, M.T.; Peter, B.A.; Lori, B.; Miguel, N.B.; Maria, C.C.; et al. Forb diversity globally is harmed by nutrient enrichment but can be rescued by large mammalian herbivory. Commun. Biol. 2025, 8, 444. [Google Scholar] [CrossRef]
- Song, J.C.; Yang, H.; Yu, X.J.; Chen, Y.Z.; Yang, C.Y.; He, Y.L.; Wang, H.B. Effects of combined application of nitrogen, phosphorus, and potassium fertilizers on seed yield, seed quality and economic returns of Elymus nutans in alpine region. BMC Plant Biol. 2025, 25, 130. [Google Scholar] [CrossRef]
- Cheng, H.Y.; Wu, B.D.; Wang, S.; Wei, M.; Wang, C.Y. Nitrogen application and osmotic stress antagonistically affect wheat seed germination and seedling growth. Int. J. Phytoremediat. 2021, 23, 1289–1300. [Google Scholar] [CrossRef]
- Huang, Z.C.; Han, X.; He, K.R.; Ye, J.W.; Yu, C.L.; Xu, T.T.; Zhang, J.P.; Du, J.C.; Fu, Q.T.; Hu, Y.R. Nitrate attenuates abscisic acid signaling via NIN-LIKE PROTEIN8 in Arabidopsis seed germination. Plant Cell 2025, 37, koaf046. [Google Scholar] [CrossRef]
- Chen, Y.F.; Liu, Y.; Zhang, L.; Zhang, L.W.; Wu, N.; Liu, H.L. Effect of salt stress and nitrogen supply on seed germination and early seedling growth of three coastal halophytes. PeerJ 2022, 10, e14164. [Google Scholar] [CrossRef]
- Wen, D.X.; Xu, H.C.; Xie, L.Y.; He, M.R.; Hou, H.C.; Wu, C.L.; Li, Y.; Zhang, C.Q. Effects of nitrogen level during seed production on wheat seed vigor and seedling establishment at the transcriptome level. Int. J. Mol. Sci. 2018, 19, 3417. [Google Scholar] [CrossRef]
- Zhu, Y.Q.; Wang, M.Y.; Yan, H.F.; Mao, C.L.; Mao, P.S. Influence of nitrogen and phosphorus fertilization on quality and germination potential of smooth bromegrass seed. Int. J. Agric. Biol. 2018, 17, 1560–8530. [Google Scholar] [CrossRef]
- Lewsey, M.G.; George, W.B.; James, W. Dynamic and spatial control of cellular activity during seed germination. Curr. Opin. Plant Biol. 2025, 86, 102754. [Google Scholar] [CrossRef]
- Hadjadj, S.; Sekerifa, B.B.; Khellafi, H.; Krama, K.; Rahmani, S.; Hadj-Khelil, A.O.E. Salinity and type of salt effects on seed germination characteristics of medicinal plant Zygophyllum album L. (Zygophyllaceae) native to the Algerian Sahara. J. Appl. Res. Med. Aromat. Plants 2022, 31, 100412. [Google Scholar] [CrossRef]
- Fukuda, M.; Toshiyuki, I.; Akira, K. Seed germination responses to temperature and water availability in weedy rice. Pest Manag. Sci. 2022, 79, 870–880. [Google Scholar] [CrossRef]
- Zhang, D.; He, T.; Wang, X.M.; Zhou, C.C.; Chen, Y.P.; Wang, X.; Wang, S.X.; He, S.C.; Guo, Y.; Liu, Z.J.; et al. Transcription factor divaricata1 positively modulates seed germination in response to salinity stress. Plant Physiol. 2024, 195, 2997–3009. [Google Scholar] [CrossRef]
- Qi, W.W.; Ma, H.Y.; Li, S.Y.; Wu, H.T.; Zhao, D.D. Seed germination and seedling growth in Suaeda salsa (Linn.) Pall. (Amaranthaceae) demonstrate varying salinity tolerance among different provenances. Biology 2023, 12, 1343. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.B.; Wang, X.H.; Ning, K.; Li, Y.Z.; Wu, H.F.; Fu, Y.Q.; Zhou, D.; Guan, B.; Lin, Q.X. Effects of salinity and water depth on germination of Phragmites australis in coastal wetland of the Yellow River Delta. Clean (Weinh) 2012, 40, 1154–1158. [Google Scholar] [CrossRef]
- Lu, P.; Hao, T.X.; Li, X.; Wang, H.; Zhai, X.F.; Tian, Q.Y.; Bai, W.M.; Stevens, C.; Zhang, W.H. Ambient nitrogen deposition drives plant-diversity decline by nitrogen accumulation in a closed grassland ecosystem. J. Appl. Ecol. 2021, 58, 1888–1898. [Google Scholar] [CrossRef]
- Varma, V.; Iyengar, S.B.; Sankaran, M. Effects of nutrient addition and soil drainage on germination of N-fixing and non-N-fixing tropical dry forest tree species. Plant Ecol. 2016, 217, 1043–1054. [Google Scholar] [CrossRef]
- Li, H.Y.; Wang, Y.L.; Feng, J.; Guo, J.; Yang, Y.F.; Chu, L.S.; Liu, L.L.; Liu, Z.K. Unequal carbon and nitrogen translocation between ramets affects sexual reproductive performance of the clonal grass Leymus chinensis under nitrogen addition. Sci. Total Environ. 2023, 912, 169326. [Google Scholar] [CrossRef]
- Guan, B.; Yu, J.B.; Wu, M.D.; Liu, X.L.; Wang, X.H.; Yang, J.S.; Zhou, D.; Zhang, X.L. Clonal integration promotes the growth of Phragmites australis populations in saline wetlands of the Yellow River Delta. Front. Plant Sci. 2023, 14, 1162923. [Google Scholar] [CrossRef] [PubMed]
- Ning, Y.; Feike, A.D.; Liang, X.S.; Zhang, X.J.; Yang, G.J.; Jiang, L.C.; Han, X.G.; Lü, X.T. Stronger response of plant N:P to nitrogen enrichment when considering roots. Glob. Change Biol. 2025, 31, e70091. [Google Scholar] [CrossRef]
- Chen, Y.H.; Han, W.X.; Tang, L.Y.; Tang, Z.Y.; Fang, J.Y. Leaf nitrogen and phosphorus concentrations of woody plants differ in responses to climate, soil and plant growth form. Ecography 2011, 36, 178–184. [Google Scholar] [CrossRef]
- Xue, X.F.; Du, S.Y.; Jiao, F.C.; Xi, M.H.; Wang, A.G.; Xu, H.C.; Jiao, Q.Q.; Zhang, X.; Jiang, H.; Chen, J.T.; et al. The regulatory network behind maize seed germination: Effects of temperature, water, phytohormones, and nutrients. Crop J. 2021, 9, 718–724. [Google Scholar] [CrossRef]
- Hrdličková, J.; Hejcman, M.; Křišťálová, V.; Pavlů, V. Production, size, and germination of broad-leaved dock seeds collected from mother plants grown under different nitrogen, phosphorus, and potassium supplies. Weed Biol. Manag. 2011, 11, 190–201. [Google Scholar] [CrossRef]
- Xu, L.L.; Cui, M.Q.; Xu, C.; Zhang, M.J.; Li, G.X.; Xu, J.M.; Wu, X.D.; Mao, C.Z.; Ding, W.N.; Benhamed, M.; et al. A clade of receptor-like cytoplasmic kinases and 14-3-3 proteins coordinate inositol hexaphosphate accumulation. Nat. Commun. 2024, 15, 5107. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Sun, X.D.; Zheng, F.R.; Zhang, Z.H.; Wang, Z.L.; Qu, L.Y.; Hong, X.G. Salt–alkali–resistant phosphate–solubilizing bacterium: Kushneria sp. YCWA18 improves soil available phosphorus and promotes the growth of Suaeda salsa. J. Plant Growth Regul. 2023, 43, 272–282. [Google Scholar] [CrossRef]
- Minden, V.; Koen, J.F.V.; Harry, O.V. Parental environment nitrogen and phosphorus availability affects offspring traits of eight annual plant species. Oikos 2024, 2025, e10993. [Google Scholar] [CrossRef]
- Du, L.; Tang, L.S.; Zheng, X.J.; Li, Y. A global analysis of plant nutrient limitation affected by atmospheric nitrogen and phosphorous deposition. Front. Plant Sci. 2024, 15, 1473493. [Google Scholar] [CrossRef]
- Pérez-Fernández, M.A.; Calvo-Magro, E.; Montanero-Fernández, J.; Oyola-Velasco, J.A. Seed germination in response to chemicals: Effect of nitrogen and pH in the media. J. Environ. Biol. 2006, 27, 13–20. [Google Scholar] [PubMed]
- Davis, A.S. Nitrogen fertilizer and crop residue effects on seed mortality and germination of eight annual weed species. Weed Sci. 2007, 55, 123–128. [Google Scholar] [CrossRef]
- Song, Y.W.; Xiang, F.Y.; Zhang, G.Z.; Miao, Y.C.; Miao, C.; Song, C.-P. Abscisic acid as an internal integrator of multiple physiological processes modulates leaf senescence onset in Arabidopsis thaliana. Front. Plant Sci. 2016, 7, 181. [Google Scholar] [CrossRef]
- Yan, D.W.; Easwaran, V.; Chau, V.; Okamoto, M.; Ierullo, M.; Kimura, M.; Endo, A.; Yano, R.; Pasha, A.; Gong, Y.C.; et al. NIN-like protein 8 is a master regulator of nitrate-promoted seed germination in Arabidopsis. Nat. Commun. 2016, 7, 13179. [Google Scholar] [CrossRef]
- Duan, H.M.; Liu, L.L.; Wang, W.H.; Li, S.D.; Shi, Z.H.; Liang, G.L.; Liu, W.H. Stay-green trait enhances grain yield, nutritional quality, and seed germination ability in Oat (Avena sativa L.) on the Qinghai–Tibet Plateau. Plants 2025, 14, 2500. [Google Scholar] [CrossRef]
- Naidoo, G. Salt tolerance of the African haplotype of Phragmites australis (Poaceae). Afr. J. Ecol. 2021, 59, 724–734. [Google Scholar] [CrossRef]
- Li, R.; Shi, F.; Fukuda, K. Interactive effects of salt and alkali stresses on seed germination, germination recovery, and seedling growth of a halophyte Spartina alterniflora (Poaceae). S. Afr. J. Bot. 2010, 76, 380–387. [Google Scholar] [CrossRef]
- Almansouri, M.; Kinet, J.M.; Lutts, S. Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.). Plant Soil 2001, 231, 243–254. [Google Scholar] [CrossRef]
- Song, J.Q.; Wang, H.F.; Chu, R.W.; Zhao, L.T.; Li, X.X.; An, S.; Qiang, M.K.; Du, W.Y.; Li, Q.L. Differences in physiological characteristics, seed germination, and seedling establishment in response to salt stress between dimorphic seeds in the Halophyte Suaeda liaotungensis. Plants 2023, 12, 1408. [Google Scholar] [CrossRef] [PubMed]
- Venterink, H.O.; Güsewell, S. Competitive interactions between two meadow grasses under nitrogen and phosphorus limitation. Funct. Ecol. 2010, 24, 877–886. [Google Scholar] [CrossRef]
- Güsewell, S.; Ursula, B. Composition of plant species mixtures grown at various N:P ratios and levels of nutrient supply. Basic Appl. Ecol. 2003, 4, 453–466. [Google Scholar] [CrossRef]
- Yu, J.B.; Ning, K.; Li, Y.Z.; Du, S.Y.; Han, G.X.; Xing, Q.H.; Wu, H.F.; Wang, G.M.; Gao, Y.J. Wet and dry atmospheric depositions of inorganic nitrogen during plant growing season in the coastal zone of Yellow River Delta. Sci. World J. 2014, 2014, 949213. [Google Scholar] [CrossRef]
- Liu, X.L.; Wang, G.M.; Ran, Y.N.; Qi, D.H.; Han, G.X.; Guan, B.; Hao, C.Y. Overall supply level, not the relative supply of nitrogen and phosphorus, affects the plant community composition of a supratidal wetland in the Yellow River Delta. Sci. Total Environ. 2019, 695, 133866. [Google Scholar] [CrossRef]
- Bu, H.Y.; Jia, P.; Qi, W.; Liu, K.; Xu, D.H.; Ge, W.J.; Wang, X.J. The effects of phylogeny, life-history traits and altitude on the carbon, nitrogen, and phosphorus contents of seeds across 203 species from an alpine Meadow. Plant Ecol. 2018, 219, 737–748. [Google Scholar] [CrossRef]
- Yu, J.B.; Li, Y.Z.; Han, G.X.; Zhou, D.; Fu, Y.Q.; Guan, B.; Wang, G.M.; Ning, K.; Wu, H.F.; Wang, J.H. The spatial distribution characteristics of soil salinity in coastal zone of the Yellow River Delta. Environ. Earth Sci. 2014, 72, 589–599. [Google Scholar] [CrossRef]
- Cui, B.S.; He, Q.; Zhao, X.S. Ecological thresholds of Suaeda salsa to the environmental gradients of water table depth and soil salinity. Acta Ecol. Sin. 2008, 28, 1408–1418. [Google Scholar] [CrossRef]
- Khan, M.A.; Ungar, I.A. The effect of salinity and temperature on the germination of polymorphic seeds and growth of Atriplex triangularis Willd. Am. J. Bot. 1984, 71, 481–489. [Google Scholar] [CrossRef]
- Zhang, H.X.; Xiang, Y.; Louis, J.I.; Li, Q.; Zhou, D.W. Nitrogen addition can improve seedling establishment of N-senssitive species in degraded saline soils. Land Degrad. Dev. 2018, 30, 119–127. [Google Scholar] [CrossRef]





| Supply Ratio | Supply Level | Treatment | N Input Amount (g/m2·Year) | P Input Amount (g/m2·Year) |
|---|---|---|---|---|
| 5:1 | Low | 5L | 2.89 | 0.58 |
| Medium | 5M | 8.67 | 1.73 | |
| High | 5H | 26.01 | 4.19 | |
| 15:1 | Low | 15L | 5.00 | 0.33 |
| Medium | 15M | 15.00 | 1.00 | |
| High | 15H | 45.00 | 3.00 | |
| 45:1 | Low | 45L | 8.67 | 0.19 |
| Medium | 45M | 26.01 | 0.58 | |
| High | 45H | 78.03 | 1.73 |
| Index | SL | SR | SC | SL × SR | SL × SC | SR × SC | SL × SR × SC |
|---|---|---|---|---|---|---|---|
| Suaeda salsa | |||||||
| Germination percentage | 8.737 *** | 1.223 | 38.007 *** | 6.021 *** | 1.238 | 0.511 | 1.309 |
| Germination rate | 5.636 ** | 5.431 ** | 59.473 *** | 6.785 *** | 1.642 | 0.329 | 1.157 |
| Germination index | 3.347 * | 25.172 *** | 168.484 *** | 11.361 *** | 0.623 | 1.123 | 1.873 * |
| Early seedling length | 42.15 *** | 10.182 *** | 99.256 *** | 21.327 *** | 0.964 | 5.838 *** | 2.942 ** |
| Early seedling biomass | 5.758 ** | 27.523 *** | 78.334 *** | 6.539 *** | 1.359 | 6.002 *** | 3.045 ** |
| Phragmites australis | |||||||
| Germination percentage | 10.69 *** | 4.599 * | 186.227* ** | 3.683 ** | 2.745 ** | 1.887 | 2.699 ** |
| Germination rate | 13.561 *** | 43.661 *** | 586.966 *** | 10.48 *** | 1.653 | 5.363 *** | 1.323 |
| Germination index | 15.299 *** | 43.056 *** | 542.12 *** | 12.542 *** | 3.445 ** | 2.714 ** | 1.871 * |
| Early seedling length | 27.834 *** | 38.626 *** | 724.398 *** | 29.478 *** | 7.568 *** | 12.874 *** | 3.542 *** |
| Early seedling biomass | 24.787 *** | 43.851 *** | 246.267 *** | 39.3 *** | 2.105 * | 8.491 *** | 5.874 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, R.; Peng, S.; Guan, B.; Zhang, H.; Qu, F.; Wang, X.; Wang, Z.; Yang, J.; Huang, F.; Wang, G.; et al. Effects of Long-Term Nutrient Input on Progeny Seed Nutrient Contents, Germination and Early Growth Characteristics of Typical Coastal Wetland Plants. Plants 2025, 14, 3393. https://doi.org/10.3390/plants14213393
Hu R, Peng S, Guan B, Zhang H, Qu F, Wang X, Wang Z, Yang J, Huang F, Wang G, et al. Effects of Long-Term Nutrient Input on Progeny Seed Nutrient Contents, Germination and Early Growth Characteristics of Typical Coastal Wetland Plants. Plants. 2025; 14(21):3393. https://doi.org/10.3390/plants14213393
Chicago/Turabian StyleHu, Rong, Sifan Peng, Bo Guan, Hongxiang Zhang, Fanzhu Qu, Xuehong Wang, Zhikang Wang, Jisong Yang, Feilong Huang, Guangmei Wang, and et al. 2025. "Effects of Long-Term Nutrient Input on Progeny Seed Nutrient Contents, Germination and Early Growth Characteristics of Typical Coastal Wetland Plants" Plants 14, no. 21: 3393. https://doi.org/10.3390/plants14213393
APA StyleHu, R., Peng, S., Guan, B., Zhang, H., Qu, F., Wang, X., Wang, Z., Yang, J., Huang, F., Wang, G., & Han, G. (2025). Effects of Long-Term Nutrient Input on Progeny Seed Nutrient Contents, Germination and Early Growth Characteristics of Typical Coastal Wetland Plants. Plants, 14(21), 3393. https://doi.org/10.3390/plants14213393

