Detecting Escherichia coli Contamination on Plant Leaf Surfaces Using UV-C Fluorescence Imaging and Deep Learning
Abstract
1. Introduction
- Generate a fluorescence imaging dataset of E. coli on two distinct leaf surfaces at four concentration levels, ranging from 0 to 108 CFU/mL, using the SafetySpect CSI-D+ system.
- Construct a processing pipeline that includes image preparation, data augmentation, denoising, and training of multiple DL classifiers for accurate classification of E. coli concentration levels.
- Validate the proposed workflow using independent datasets to assess its accuracy and robustness and utilize Eigen-CAM visualizations to interpret model predictions and highlight key regions influencing classification outcomes.
2. Results and Discussion
2.1. Image Denoising
2.2. Performance Evaluation of YOLO11 Models
2.3. Comparative Performance: YOLO11 vs. Others
2.4. Error Mode Analysis
2.5. Visualizing the Classified Images
3. Materials and Methods
3.1. Workflow Pipeline
3.2. E. coli Cell Preparation and Inoculation
3.3. Image Denoising
3.4. Dataset Preparation
3.5. Training Deep Learning Models
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- NCEZID. National Center for Emerging and Zoonotic Infectious Diseases (NCEZID). CDC 2025. Available online: https://www.cdc.gov/foodborne-outbreaks/outbreaks/?CDC_AAref_Val=https://www.cdc.gov/foodborne-outbreaks/active-investigations/index.html (accessed on 26 June 2025).
- Huang, Z.; Saito, Y.; Gao, T.; Al Riza, D.F.; Lu, R.; Cen, H.; Kondo, N.; Omwange, K.A. A review of fluorescence imaging system supported by excitation-emission matrix for fruit and vegetable quality estimation. Food Control 2025, 169, 111040. [Google Scholar] [CrossRef]
- Lai, L.; Guo, Q.; Zou, W.; Huang, L.; Xu, S.; Qiao, D.; Wang, L.; Zheng, P.; Pan, Q.; Zhu, W. Space-confined nanozyme with cascade reaction based on PCN-224 for synergistic bacterial infection treatment and NIR fluorescence imaging of wound bacterial infections. Chem. Eng. J. 2024, 487, 150642. [Google Scholar] [CrossRef]
- Yadav, P.K.; Burks, T.; Qin, J.; Kim, M.; Dewdney, M.M.; Vasefi, F. Detection of citrus black spot fungi Phyllosticta citricarpa & Phyllosticta capitalensis on UV-C fluorescence images using YOLOv8. Smart Agric. Technol. 2024, 9, 100615. [Google Scholar] [CrossRef]
- Labadie, M.; Marchal, F.; Merbahi, N.; Girbal-Neuhauser, E.; Fontagné-Faucher, C.; Marcato-Romain, C. Cell density and extracellular matrix composition mitigate bacterial biofilm sensitivity to UV-C LED irradiation. Appl. Microbiol. Biotechnol. 2024, 108, 286. [Google Scholar] [CrossRef] [PubMed]
- Popović, V.; Newport, M.; Rahman, A.; Koutchma, T. Measuring the performance of conventional and emerging ultraviolet-C light sources for bacterial, fungal, and mycotoxin control. Food Control 2024, 165, 110640. [Google Scholar] [CrossRef]
- Pires, S.M.; Desta, B.N.; Mughini-Gras, L.; Mmbaga, B.T.; Fayemi, O.E.; Salvador, E.M.; Gobena, T.; Majowicz, S.E.; Hald, T.; Hoejskov, P.S.; et al. Burden of foodborne diseases: Think global, act local. Curr. Opin. Food Sci. 2021, 39, 152–159. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, A.; Chen, Y. An Amplification-Free Digital Assay Based on Primer Exchange Reaction-Mediated Botryoidal-Like Fluorescent Polystyrene Dots to Detect Multiple Pathogenic Bacteria. ACS Nano 2024, 18, 31174–31187. [Google Scholar] [CrossRef]
- Sun, J.; Vellappan, S.; Akdemir, J.; Steier, L.; Feinbloom, R.; Yadavalli, S.S. Imaging of porphyrin-specific fluorescence in pathogenic bacteria in vitro using a wearable, hands-free system. J. Microbiol. Methods 2025, 237, 107225. [Google Scholar] [CrossRef]
- Lin, Y.; Wu, C.; Wang, Y.; Xiong, Y.; Wei, Z.; Wang, Y.; Xie, Y.; Chen, P. Smartphone and handheld fluorometer enable rapid point of care testing of Escherichia coli in urinary tract infections via specific proteolytic cleavage and cascade amplifications. Sens. Actuators B Chem. 2024, 406, 135414. [Google Scholar] [CrossRef]
- Yadav, P.K.; Burks, T.; Dudhe, K.; Frederick, Q.; Qin, J.; Kim, M.; Ritenour, M.A. Classification of E. coli Colony with Generative Adversarial Networks, Discrete Wavelet Transforms and VGG19. J. Radiol. Clin. Imaging 2023, 6, 146–160. [Google Scholar] [CrossRef]
- Chin, S.Y.; Dong, J.; Hasikin, K.; Ngui, R.; Lai, K.W.; Yeoh, P.S.Q.; Wu, X. Bacterial image analysis using multi-task deep learning approaches for clinical microscopy. PeerJ Comput. Sci. 2024, 10, e2180. [Google Scholar] [CrossRef] [PubMed]
- Nagro, S.A. A Systematic Literature Review of Deep Learning-Based Detection and Classification Methods for Bacterial Colonies. Int. J. Adv. Comput. Sci. Appl. 2022, 13, 185–202. [Google Scholar] [CrossRef]
- Cinar, I.; Taspinar, Y.S. Detection of Fungal Infections from Microscopic Fungal Images Using Deep Learning Techniques. In Proceedings of the International Conference on Advanced Technologies, Istanbul, Turkey, 17–19 August 2023. [Google Scholar]
- Aliee, M.; Gorji, H.T.; Vasefi, F.; Yaggie, K.; Qin, J.; Baek, I.; Kim, M.S.; Chan, D.E.; Johnson, M.; Downs, Z.; et al. GLOW-DL: Generalized Light-Optimized Workflow with Deep Learning for Contamination Detection Using Fluorescence Imaging in Variable Conditions. J. Biosyst. Eng. 2025, 50, 240–254. [Google Scholar] [CrossRef]
- Mao, J.; He, H. Deep learning in fluorescence imaging and analysis. J. Intell. Med. 2024, 1, 42–62. [Google Scholar] [CrossRef]
- Waters, J.C. Accuracy and precision in quantitative fluorescence microscopy. J. Cell Biol. 2009, 185, 1135–1148. [Google Scholar] [CrossRef]
- Laine, R.F.; Jacquemet, G.; Krull, A. Imaging in focus: An introduction to denoising bioimages in the era of deep learning. Int. J. Biochem. Cell Biol. 2021, 140, 106077. [Google Scholar] [CrossRef] [PubMed]
- Latif, I.H.; Abdulredha, S.H.; Khalid, S.; Hassan, A. Discrete Wavelet Transform-Based Image Processing: A Review. Al-Nahrain J. Sci. 2024, 27, 109–125. [Google Scholar] [CrossRef]
- Chowdhury, R.S.; Jana, J.; Tripathi, S.; Bhaumik, J. Improved DWT and IDWT architectures for image compression. Microprocess. Microsyst. 2024, 104, 104990. [Google Scholar] [CrossRef]
- Hussain, D.; Hyeon Gu, Y. Exploring the Impact of Noise and Image Quality on Deep Learning Performance in DXA Images. Diagnostics 2024, 14, 1328. [Google Scholar] [CrossRef]
- Pingping, W.; Jiahua, C. Fault diagnosis of spent fuel shearing machines based on improved residual network. Ann. Nucl. Energy 2024, 196, 110228. [Google Scholar] [CrossRef]
- Pereira Neto, A.; Barros, F.J.B. Noise reduction in brain magnetic resonance imaging using adaptive wavelet thresholding based on linear prediction factor. Front. Neurosci. 2025, 18, 1516514. [Google Scholar] [CrossRef]
- Hüpfel, M.; Yu. Kobitski, A.; Zhang, W.; Nienhaus, G.U. Wavelet-based background and noise subtraction for fluorescence microscopy images. Biomed. Opt. Express 2021, 12, 969. [Google Scholar] [CrossRef]
- Wang, Q.; Li, Z.; Zhang, S.; Chi, N.; Dai, Q. A versatile Wavelet-Enhanced CNN-Transformer for improved fluorescence microscopy image restoration. Neural Netw. 2024, 170, 227–241. [Google Scholar] [CrossRef]
- Zhao, X.; Huang, P.; Shu, X. Wavelet-Attention CNN for Image Classification. Multimed. Syst. 2022, 28, 915–924. [Google Scholar] [CrossRef]
- Čapek, M.; Blažíková, M.; Novotný, I.; Chmelová, H.; Svoboda, D.; Radochová, B.; Janáček, J.; Horváth, O. The Wavelet-Based Denoising of Images in Fiji, With Example Applications in Structured Illumination Microscopy. Image Anal. Stereol. 2021, 40, 3–16. [Google Scholar] [CrossRef]
- Chang, C.W.; Mycek, M.A. Total variation versus wavelet-based methods for image denoising in fluorescence lifetime imaging microscopy. J. Biophotonics 2012, 5, 449–457. [Google Scholar] [CrossRef]
- Ali, S.; Abuhmed, T.; El-Sappagh, S.; Muhammad, K.; Alonso-Moral, J.M.; Confalonieri, R.; Guidotti, R.; Del Ser, J.; Díaz-Rodríguez, N.; Herrera, F. Explainable Artificial Intelligence (XAI): What we know and what is left to attain Trustworthy Artificial Intelligence. Inf. Fusion 2023, 99, 101805. [Google Scholar] [CrossRef]
- Bany Muhammad, M.; Yeasin, M. Eigen-CAM: Visual Explanations for Deep Convolutional Neural Networks. SN Comput. Sci. 2021, 2, 47. [Google Scholar] [CrossRef]
- Liu, G.; Zhou, W.; Tian, L.; Chung, C.-T.; Jia, J.; Ying, C. Seg-Eigen-CAM: Eigen-Value-Based Visual Explanations for Semantic Segmentation Models. Appl. Sci. 2025, 15, 7562. [Google Scholar]
- Liu, X.; Sun, L.; Zhang, X.; Ye, Y.; Zhao, B. HGNet: High-Order Spatial Awareness Hypergraph and Multi-Scale Context Attention Network for Colorectal Polyp Detection. arXiv 2025, arXiv:2507.04880. [Google Scholar]
- Almenwer, S.; El-Sayed, H.; Sarker, M.K. Classification Method in Vision Transformer with Explainability in Medical Images for Lung Neoplasm Detection. In Medical Imaging and Computer-Aided Diagnosis, Proceedings of 2024 International Conference on Medical Imaging and Computer-Aided Diagnosis (MICAD 2024), Manchester, UK, 19–21 November 2024; Lecture Notes in Electrical Engineering; Springer: Berlin/Heidelberg, Germany, 2025; Volume 1372, pp. 85–99. [Google Scholar]
- Li, X.; Deng, X.; Wu, X.; Xie, Z. RDAS-MODEL: An efficient model of road drivable area segmentation for autonomous driving. Meas. Sci. Technol. 2025, 36, 055103. [Google Scholar] [CrossRef]
- Li, D.; Wang, L.; Zhang, L. SDF-YOLO: A multi-scale dynamic feature fusion network for enhanced lightweight object detection in autonomous driving. TechRxiv 2025. [Google Scholar] [CrossRef]
- Praveen, S.; Jung, Y. CBAM-STN-TPS-YOLO: Enhancing Agricultural Object Detection through Spatially Adaptive Attention Mechanisms. arXiv 2025, arXiv:2506.07357. [Google Scholar]
- Jahin, A.; Soudeep, S.; Mridha, M.F.; Member, S.; Hossen, J.; Dey, N.; Jakir Hossen, M. Soybean Disease Detection via Interpretable Hybrid CNN-GNN: Integrating MobileNetV2 and GraphSAGE with Cross-Modal Attention. arXiv 2025, arXiv:2503.011284. [Google Scholar]
- Ruiz De La Hermosa Gonzalez-Carrato, R.; García Márquez, F.P.; Dimlaye, V.; Ruiz-Hernández, D. Pattern recognition by wavelet transforms using macro fibre composites transducers. Mech. Syst. Signal Process. 2014, 48, 339–350. [Google Scholar] [CrossRef]
- Danyluk, M.D.; Friedrich, L.M.; Dunn, L.L.; Zhang, J.; Ritenour, M.A. Reduction of Escherichia coli, as a surrogate for Salmonella spp., on the surface of grapefruit during various packingline processes. Food Microbiol. 2019, 78, 188–193. [Google Scholar] [CrossRef] [PubMed]
- Yadav, P.K.; Burks, T.; Vaddi, S.; Qin, J.; Kim, M.; Ritenour, M.A.; Vasefi, F. Detection of E. coli concentration levels using CSI-D+ handheld with UV-C fluorescence imaging and deep learning on leaf surfaces. In Proceedings of the Sensing for Agriculture and Food Quality and Safety XVI, National Harbor, MD, USA, 21–26 April 2024; Volume 13060, pp. 44–54. [Google Scholar]
- Shi, W.; Zhu, C.Q.; Tian, Y.; Nichol, J. Wavelet-based image fusion and quality assessment. Int. J. Appl. Earth Obs. Geoinf. 2005, 6, 241–251. [Google Scholar] [CrossRef]
- Serte, S.; Demirel, H. Wavelet-based deep learning for skin lesion classification. IET Image Process 2020, 14, 720–726. [Google Scholar] [CrossRef]
- Wang, X.Y.; Yang, H.Y.; Fu, Z.K. A New Wavelet-based image denoising using undecimated discrete wavelet transform and least squares support vector machine. Expert Syst. Appl. 2010, 37, 7040–7049. [Google Scholar] [CrossRef]
- Aboutalebi, M.; Torres-Rua, A.F.; McKee, M.; Kustas, W.P.; Nieto, H.; Alsina, M.M.; White, A.; Prueger, J.H.; McKee, L.; Alfieri, J.; et al. Downscaling UAV land surface temperature using a coupled wavelet-machine learning-optimization algorithm and its impact on evapotranspiration. Irrig. Sci. 2022, 40, 553–574. [Google Scholar] [CrossRef]
- Jain, S.; Rani, J. Image Enhancement Technique Using Symlet and Daubechies Wavelets. Int. J. Sci. Res. 2012, 3, 2078–2080. [Google Scholar]
- Lee, G.R.; Gommers, R.; Waselewski, F.; Wohlfahrt, K.; O’Leary, A. PyWavelets: A Python package for wavelet analysis. J. Open Source Softw. 2019, 4, 1237. [Google Scholar] [CrossRef]
- Gutiérrez-Muñoz, M.; Coto-Jiménez, M. An Experimental Study on Speech Enhancement Based on a Combination of Wavelets and Deep Learning. Computation 2022, 10, 102. [Google Scholar] [CrossRef]
- Yadav, A.K.; Roy, R.; Kumar, A.P.; Kumar, C.S.; Dhakad, S.K. De-noising of ultrasound image using discrete wavelet transform by symlet wavelet and filters. In Proceedings of the 2015 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Kochi, India, 10–13 August 2015; pp. 1204–1208. [Google Scholar]
- Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979, SMC-9, 62–66. [Google Scholar] [CrossRef]
- Jocher, G.; Qiu, J. Ultralytics YOLO11 2024. Available online: https://github.com/ultralytics/ultralytics (accessed on 9 December 2024).
- Khanam, R.; Hussain, M. YOLOv11: An Overview of the Key Architectural Enhancements. arXiv 2024, arXiv:2410.17725. [Google Scholar] [CrossRef]
- He, Z.; Wang, K.; Fang, T.; Su, L.; Chen, R.; Fei, X. Comprehensive Performance Evaluation of YOLOv11, YOLOv10, YOLOv9, YOLOv8 and YOLOv5 on Object Detection of Power Equipment. arXiv 2024, arXiv:2411.18871. [Google Scholar] [CrossRef]
- Liu, Z.; Mao, H.; Wu, C.Y.; Feichtenhofer, C.; Darrell, T.; Xie, S. A ConvNet for the 2020s. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 11966–11976. [Google Scholar]
- Tan, M.; Le, Q.V. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. In Proceedings of the 36th International Conference on Machine Learning (ICML), Long Beach, CA, USA, 9–15 June 2019; pp. 10691–10700. [Google Scholar]
- Muhammad, M.B.; Yeasin, M. Eigen-CAM: Class Activation Map using Principal Components. In Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24 July 2020. [Google Scholar]
- Shirvalkar, R. EigenCAM for YOLO v11 Interpretability. 2024. Available online: https://github.com/rigvedrs/YOLO-V11-CAM (accessed on 5 May 2025).
- Choi, J.; Rajendran, M.; Cheol Suh, Y. Explainable Rip Current Detection and Visualization with XAI EigenCAM. In Proceedings of the 2024 26th International Conference on Advanced Communications Technology (ICACT), Pyeong Chang, Republic of Korea, 4–7 February 2024; pp. 315–320. [Google Scholar]
- Liu, G.; Liu, M.; Chao, J.; Tang, W.; Zhao, R.; Liu, Y.; Sun, H. Diagnosis of leaf chlorophyll content based on close-range multispectral fluorescence image correction. Comput. Electron. Agric. 2025, 231, 110040. [Google Scholar] [CrossRef]










| Models | Size, mb | Datasets | Validation Accuracy | Test Accuracy | ||
|---|---|---|---|---|---|---|
| Citrus | Spinach | Citrus | Spinach | |||
| YOLO11s-cls | 11.00 | 8classes | 0.907 | 0.954 | 0.910 | 0.954 |
| 8classes_4bins | 0.834 | 0.850 | 0.806 | 0.847 | ||
| 4classes | 0.912 | 0.957 | 0.862 | 0.959 | ||
| EfficientNetB7 | 254.70 | 8classes | 0.529 | 0.588 | 0.561 | 0.563 |
| 8classes_4bins | 0.629 | 0.645 | 0.655 | 0.662 | ||
| 4classes | 0.726 | 0.762 | 0.763 | 0.753 | ||
| ConvNeXtBase | 338.10 | 8classes | 0.470 | 0.707 | 0.460 | 0.688 |
| 8classes_4bins | 0.551 | 0.698 | 0.576 | 0.713 | ||
| 4classes | 0.716 | 0.813 | 0.720 | 0.840 | ||
| Datasets | Precision | Recall | F1-Score | |||
|---|---|---|---|---|---|---|
| Citrus | Spinach | Citrus | Spinach | Citrus | Spinach | |
| 8classes | 0.911 | 0.955 | 0.910 | 0.954 | 0.910 | 0.954 |
| 8classes_4bins | 0.807 | 0.848 | 0.806 | 0.847 | 0.805 | 0.847 |
| 4classes | 0.894 | 0.961 | 0.895 | 0.961 | 0.894 | 0.961 |
| Dataset | Number of Classes | Concentration of the Classes (CFU/mL) | Images/Class | |
|---|---|---|---|---|
| Citrus | Spinach | |||
| 8classes | 8 | 0, 105, 106, 106.7, 107, 107.4, 107.7, and 108 | 1500 | 1500 |
| 8classes_4bins | 4 | no_E. coli (0), low (105), medium (106, 106.7, 107), and hot (107.4, 107.7, 108) | 1500 | 1500 |
| 4classes | 4 | no_E. coli (0), low (105), medium (107), and hot (108) | 1500 | 1500 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vaddi, S.; Burks, T.F.; Iqbal, Z.; Yadav, P.K.; Frederick, Q.; Obellaneni, S.A.C.; Qin, J.; Kim, M.; Ritenour, M.A.; Zhang, J.; et al. Detecting Escherichia coli Contamination on Plant Leaf Surfaces Using UV-C Fluorescence Imaging and Deep Learning. Plants 2025, 14, 3352. https://doi.org/10.3390/plants14213352
Vaddi S, Burks TF, Iqbal Z, Yadav PK, Frederick Q, Obellaneni SAC, Qin J, Kim M, Ritenour MA, Zhang J, et al. Detecting Escherichia coli Contamination on Plant Leaf Surfaces Using UV-C Fluorescence Imaging and Deep Learning. Plants. 2025; 14(21):3352. https://doi.org/10.3390/plants14213352
Chicago/Turabian StyleVaddi, Snehit, Thomas F. Burks, Zafar Iqbal, Pappu Kumar Yadav, Quentin Frederick, Satya Aakash Chowdary Obellaneni, Jianwei Qin, Moon Kim, Mark A. Ritenour, Jiuxu Zhang, and et al. 2025. "Detecting Escherichia coli Contamination on Plant Leaf Surfaces Using UV-C Fluorescence Imaging and Deep Learning" Plants 14, no. 21: 3352. https://doi.org/10.3390/plants14213352
APA StyleVaddi, S., Burks, T. F., Iqbal, Z., Yadav, P. K., Frederick, Q., Obellaneni, S. A. C., Qin, J., Kim, M., Ritenour, M. A., Zhang, J., & Vasefi, F. (2025). Detecting Escherichia coli Contamination on Plant Leaf Surfaces Using UV-C Fluorescence Imaging and Deep Learning. Plants, 14(21), 3352. https://doi.org/10.3390/plants14213352

