Optimizing Nutrient Dynamics for Crop Resilience to Abiotic Stress: An Endogenous Phytohormone Perspective
Abstract
1. Introduction
2. Nutrient Dynamics in Plants Under Abiotic Stress
2.1. Nutrient Mobilization in Soil and Response to Abiotic Stress
2.2. Nutrient Uptake by Root and Involvement of Various Transporters Under Abiotic Stress
2.3. Nutrient Transport from Root to Leaves and Its Response to Abiotic Stress
2.4. Role of the Transporter and Genes in the Accumulation and Assimilation of Nutrients in the Sink Tissue
3. Phytohormone-Mediated Regulation of Nutrient Transport and Assimilation in Plants
3.1. Importance of Phytohormone in Nutrient Uptake
3.2. Phytohormone-Mediated Transport and Assimilation of Nutrients
4. Future Perspectives and Applications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ghosh, A.; Kumar, A.; Biswas, G. Exponential Population Growth and Global Food Security: Challenges and Alternatives. In Bioremediation of Emerging Contaminants from Soils: Soil Health Conservation for Improved Ecology and Food Security; Elsevier: Amsterdam, The Netherlands, 2024; pp. 1–20. [Google Scholar] [CrossRef]
- Kabato, W.; Getnet, G.T.; Sinore, T.; Nemeth, A.; Molnár, Z. Towards Climate-Smart Agriculture: Strategies for Sustainable Agricultural Production, Food Security, and Greenhouse Gas Reduction. Agronomy 2025, 15, 565. [Google Scholar] [CrossRef]
- Yang, Q.; Ma, J.; Yang, F.; Zheng, H.; Lu, Z.; Qiao, F.; Zhang, K.; Gong, H.; Men, X.; Li, J.; et al. The Hidden Indirect Environmental Effect Undercuts the Contribution of Crop Nitrogen Fertilizer Application to the Net Ecosystem Economic Benefit. J. Clean. Prod. 2023, 426, 139204. [Google Scholar] [CrossRef]
- Lezhneva, L.; Kiba, T.; Feria-Bourrellier, A.B.; Lafouge, F.; Boutet-Mercey, S.; Zoufan, P.; Sakakibara, H.; Daniel-Vedele, F.; Krapp, A. The Arabidopsis Nitrate Transporter NRT2.5 Plays a Role in Nitrate Acquisition and Remobilization in Nitrogen-Starved Plants. Plant J. 2014, 80, 230–241. [Google Scholar] [CrossRef] [PubMed]
- Aibara, I.; Miwa, K. Strategies for Optimization of Mineral Nutrient Transport in Plants: Multilevel Regulation of Nutrient-Dependent Dynamics of Root Architecture and Transporter Activity. Plant Cell Physiol. 2014, 55, 2027–2036. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.; Gemenet, D.C.; Villordon, A. Root System Architecture and Abiotic Stress Tolerance: Current Knowledge in Root and Tuber Crops. Front. Plant Sci. 2016, 7, 1584. [Google Scholar] [CrossRef]
- Norton, R.; Davidson, E.; Roberts, T. Nitrogen Use Efficiency and Nutrient Performance Indicators. Glob. Partnersh. Nutr. Manag. 2015, 14, 3–14. [Google Scholar]
- Zayed, O.; Hewedy, O.A.; Abdelmoteleb, A.; Ali, M.; Youssef, M.S.; Roumia, A.F.; Seymour, D.; Yuan, Z.C. Nitrogen Journey in Plants: From Uptake to Metabolism, Stress Response, and Microbe Interaction. Biomolecules 2023, 13, 1443. [Google Scholar] [CrossRef]
- Sonoda, Y.; Ikeda, A.; Saiki, S.; Von Wirén, N.; Yamaya, T.; Yamaguchi, J. Distinct Expression and Function of Three Ammonium Transporter Genes (OsAMT1;1–1;3) in Rice. Plant Cell Physiol. 2003, 44, 726–734. [Google Scholar] [CrossRef]
- Cerezo, M.; Tillard, P.; Filleur, S.; Muños, S.; Daniel-Vedele, F.; Gojon, A. Major Alterations of the Regulation of Root NO3(-) Uptake Are Associated with the Mutation of Nrt2.1 and Nrt2.2 Genes in Arabidopsis. Plant Physiol. 2001, 127, 262–271. [Google Scholar] [CrossRef]
- Gamuyao, R.; Chin, J.H.; Pariasca-Tanaka, J.; Pesaresi, P.; Catausan, S.; Dalid, C.; Slamet-Loedin, I.; Tecson-Mendoza, E.M.; Wissuwa, M.; Heuer, S. The Protein Kinase Pstol1 from Traditional Rice Confers Tolerance of Phosphorus Deficiency. Nature 2012, 488, 535–539. [Google Scholar] [CrossRef]
- Daras, G.; Rigas, S.; Tsitsekian, D.; Iacovides, T.A.; Hatzopoulos, P. Potassium Transporter TRH1 Subunits Assemble Regulating Root-Hair Elongation Autonomously from the Cell Fate Determination Pathway. Plant Sci. 2015, 231, 131–137. [Google Scholar] [CrossRef]
- Cai, K.; Zeng, F.; Wang, J.; Zhang, G. Identification and Characterization of HAK/KUP/KT Potassium Transporter Gene Family in Barley and Their Expression under Abiotic Stress. BMC Genom. 2021, 22, 317. [Google Scholar] [CrossRef]
- Troufflard, S.; Mullen, W.; Larson, T.R.; Graham, I.A.; Crozier, A.; Amtmann, A.; Armengaud, P. Potassium Deficiency Induces the Biosynthesis of Oxylipins and Glucosinolates in Arabidopsis Thaliana. BMC Plant Biol. 2010, 10, 172. [Google Scholar] [CrossRef]
- Sharma, M.; Singh, D.; Saksena, H.B.; Sharma, M.; Tiwari, A.; Awasthi, P.; Botta, H.K.; Shukla, B.N.; Laxmi, A. Understanding the Intricate Web of Phytohormone Signalling in Modulating Root System Architecture. Int. J. Mol. Sci. 2021, 22, 5508. [Google Scholar] [CrossRef]
- Walch-Liu, P.; Ivanov, I.I.; Filleur, S.; Gan, Y.; Remans, T.; Forde, B.G. Nitrogen Regulation of Root Branching. Ann. Bot. 2006, 97, 875–881. [Google Scholar] [CrossRef] [PubMed]
- Pellizzaro, A.; Clochard, T.; Cukier, C.; Bourdin, C.; Juchaux, M.; Montrichard, F.; Thany, S.; Raymond, V.; Planchet, E.; Limami, A.M.; et al. The Nitrate Transporter MtNPF6.8 (MtNRT1.3) Transports Abscisic Acid and Mediates Nitrate Regulation of Primary Root Growth in Medicago Truncatula. Plant Physiol. 2014, 166, 2152–2165. [Google Scholar] [CrossRef] [PubMed]
- Naulin, P.A.; Armijo, G.I.; Vega, A.S.; Tamayo, K.P.; Gras, D.E.; De La Cruz, J.; Gutiérrez, R.A. Nitrate Induction of Primary Root Growth Requires Cytokinin Signaling in Arabidopsis Thaliana. Plant Cell Physiol. 2020, 61, 342–352. [Google Scholar] [CrossRef] [PubMed]
- Maurer, F.; Müller, S.; Bauer, P. Suppression of Fe Deficiency Gene Expression by Jasmonate. Plant Physiol. Biochem. 2011, 49, 530–536. [Google Scholar] [CrossRef]
- Ivanchenko, M.G.; Muday, G.K.; Dubrovsky, J.G. Ethylene–Auxin Interactions Regulate Lateral Root Initiation and Emergence in Arabidopsis thaliana. Plant J. 2008, 55, 335–347. [Google Scholar] [CrossRef]
- Nadira, U.A.; Ahmed, I.M.; Wu, F.; Zhang, G. The Regulation of Root Growth in Response to Phosphorus Deficiency Mediated by Phytohormones in a Tibetan Wild Barley Accession. Acta Physiol. Plant 2016, 38, 105. [Google Scholar] [CrossRef]
- Zhu, Z.; Li, D.; Cong, L.; Lu, X. Identification of MicroRNAs Involved in Crosstalk between Nitrogen, Phosphorus and Potassium under Multiple Nutrient Deficiency in Sorghum. Crop J. 2021, 9, 465–475. [Google Scholar] [CrossRef]
- Erb, M.; Lu, J. Soil Abiotic Factors Influence Interactions Between Belowground Herbivores and Plant Roots. J. Exp. Bot. 2013, 64, 1295–1303. [Google Scholar] [CrossRef] [PubMed]
- Siciliano, S.D.; Goldie, H.; Germida, J.J. Enzymatic Activity in Root Exudates of Dahurian Wild Rye (Elymus dauricus) That Degrades 2-Chlorobenzoic Acid. J. Agric. Food Chem. 1998, 46, 5–7. [Google Scholar] [CrossRef] [PubMed]
- Callesen, I.; Harrison, R.; Stupak, I.; Hatten, J.; Raulund-Rasmussen, K.; Boyle, J.; Clarke, N.; Zabowski, D. Carbon Storage and Nutrient Mobilization from Soil Minerals by Deep Roots and Rhizospheres. Ecol. Manag. 2016, 359, 322–331. [Google Scholar] [CrossRef]
- Camacho-Cristóbal, J.J.; Navarro-Gochicoa, M.T.; Rexach, J.; González-Fontes, A.; Herrera-Rodríguez, M.B. Plant Response to Boron Deficiency and Boron Use Efficiency in Crop Plants. In Plant Micronutrient Use Efficiency: Molecular and Genomic Perspectives in Crop Plants; Elsevier: Amsterdam, The Netherlands, 2018; pp. 109–121. ISBN 9780128122433. [Google Scholar]
- Demirel, U.; Morris, W.L.; Ducreux, L.J.M.; Yavuz, C.; Asim, A.; Tindas, I.; Campbell, R.; Morris, J.A.; Verrall, S.R.; Hedley, P.E.; et al. Physiological, Biochemical, and Transcriptional Responses to Single and Combined Abiotic Stress in Stress-Tolerant and Stress-Sensitive Potato Genotypes. Front. Plant Sci. 2020, 11, 169. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Fujita, M.; Oku, H.; Nahar, K.; Hawrylak-Nowak, B. Plant Nutrients and Abiotic Stress Tolerance. In Plant Nutrients and Abiotic Stress Tolerance; Springer: Singapore, 2018; pp. 269–295. [Google Scholar]
- Ahanger, M.A.; Ahmad, P. Role of Mineral Nutrients in Abiotic Stress Tolerance: Revisiting the Associated Signaling Mechanisms. In Plant Signaling Molecules: Role and Regulation Under Stressful Environments; Elsevier: Amsterdam, The Netherlands, 2019; pp. 269–285. ISBN 9780128164518. [Google Scholar]
- Jung, J.K.H.; McCouch, S. Getting to the Roots of It: Genetic and Hormonal Control of Root Architecture. Front. Plant Sci. 2013, 4, 186. [Google Scholar] [CrossRef]
- López-Bucio, J.; Cruz-Ramírez, A.; Herrera-Estrella, L. The Role of Nutrient Availability in Regulating Root Architecture. Curr. Opin. Plant Biol. 2003, 6, 280–287. [Google Scholar] [CrossRef]
- Nibau, C.; Gibbs, D.J.; Coates, J.C. Branching out in New Directions: The Control of Root Architecture by Lateral Root Formation. New Phytol. 2008, 179, 595–614. [Google Scholar] [CrossRef]
- Anila, M.; Mahadeva Swamy, H.K.; Kale, R.R.; Bhadana, V.P.; Anantha, M.S.; Brajendra; Hajira, S.K.; Balachiranjeevi, C.H.; Ayyappa Dass, M.; Bhaskar, S.; et al. Breeding Lines of the Indian Mega-Rice Variety, MTU 1010, Possessing Protein Kinase OsPSTOL (Pup1), Show Better Root System Architecture and Higher Yield in Soils with Low Phosphorus. Mol. Breed. 2018, 38, 147. [Google Scholar] [CrossRef]
- Hernández, G.; Ramírez, M.; Valdés-López, O.; Tesfaye, M.; Graham, M.A.; Czechowski, T.; Schlereth, A.; Wandrey, M.; Erban, A.; Cheung, F.; et al. Phosphorus Stress in Common Bean: Root Transcript and Metabolic Responses. Plant Physiol. 2007, 144, 752–767. [Google Scholar] [CrossRef]
- Gill, R.A.; Ahmar, S.; Ali, B.; Saleem, M.H.; Khan, M.U.; Zhou, W.; Liu, S. The Role of Membrane Transporters in Plant Growth and Development, and Abiotic Stress Tolerance. Int. J. Mol. Sci. 2021, 22, 12792. [Google Scholar] [CrossRef]
- Hawkesford, M.; Horst, W.; Kichey, T.; Lambers, H.; Schjoerring, J.; Møller, I.S.; White, P. Functions of Macronutrients. In Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2012; pp. 135–189. [Google Scholar] [CrossRef]
- Gill, S.S.; Tuteja, N. Reactive Oxygen Species and Antioxidant Machinery in Abiotic Stress Tolerance in Crop Plants. Plant Physiol. Biochem. 2010, 48, 909–930. [Google Scholar] [CrossRef]
- Dubey, R.S.; Srivastava, R.K.; Pessarakli, M. Physiological Mechanisms of Nitrogen Absorption and Assimilation in Plants under Stressful Conditions. In Handbook of Plant and Crop Physiology; CRC Press: Boca Raton, FL, USA, 2021; pp. 579–616. [Google Scholar]
- Wang, M.Y.; Siddiqi, M.Y.; Ruth, T.J.; Glass, A.D.M. Ammonium Uptake by Rice Roots (II. Kinetics of 13NH4+ Influx across the Plasmalemma). Plant Physiol. 1993, 103, 1259–1267. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.; Sun, S.; Yang, L.; Li, M.; Ma, F.; Zou, Y. Potassium Uptake and Transport in Apple Roots Under Drought Stress. Hortic. Plant J. 2019, 5, 10–16. [Google Scholar] [CrossRef]
- Ninnemann, O.; Jauniaux, J.C.; Frommer, W.B. Identification of a High Affinity NH4+ Transporter from Plants. EMBO J. 1994, 13, 3464–3471. [Google Scholar] [CrossRef] [PubMed]
- Li, B.-Z.; Merrick, M.; Li, S.-M.; Li, H.-Y.; Zhu, S.-W.; Shi, W.-M.; Su, Y.-H. Molecular Basis and Regulation of Ammonium Transporter in Rice. Rice Sci. 2009, 16, 314–322. [Google Scholar] [CrossRef]
- Li, S.M.; Shi, W.M. Quantitative Characterization of Nitrogen Regulation of OsAMT1;1, OsAMT1;2, and OsAMT2;2 Expression in Rice Seedlings. Russ. J. Plant Physiol. 2006, 53, 837–843. [Google Scholar] [CrossRef]
- Filiz, E.; Akbudak, M.A. Ammonium Transporter 1 (AMT1) Gene Family in Tomato (Solanum lycopersicum L.): Bioinformatics, Physiological and Expression Analyses under Drought and Salt Stresses. Genomics 2020, 112, 3773–3782. [Google Scholar] [CrossRef]
- Ferreira, L.M.; de Souza, V.M.; Tavares, O.C.H.; Zonta, E.; Santa-Catarina, C.; de Souza, S.R.; Fernandes, M.S.; Santos, L.A. OsAMT1.3 Expression Alters Rice Ammonium Uptake Kinetics and Root Morphology. Plant Biotechnol. Rep. 2015, 9, 221–229. [Google Scholar] [CrossRef]
- Wang, H.; Wan, Y.; Buchner, P.; King, R.; Ma, H.; Hawkesford, M.J. Phylogeny and Gene Expression of the Complete NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER FAMILY in Triticum Aestivum. J. Exp. Bot. 2020, 71, 4531–4546. [Google Scholar] [CrossRef]
- Li, Y.; Ouyang, J.; Wang, Y.Y.; Hu, R.; Xia, K.; Duan, J.; Wang, Y.; Tsay, Y.F.; Zhang, M. Disruption of the Rice Nitrate Transporter OsNPF2.2 Hinders Root-to-Shoot Nitrate Transport and Vascular Development. Sci. Rep. 2015, 5, 9635. [Google Scholar] [CrossRef]
- Raghothama, K.G. Phosphate Acquisition. Annu. Rev. Plant Biol. 1999, 50, 665–6933. [Google Scholar] [CrossRef]
- Zhang, F.; Sun, Y.; Pei, W.; Jain, A.; Sun, R.; Cao, Y.; Wu, X.; Jiang, T.; Zhang, L.; Fan, X.; et al. Involvement of OsPht1;4 in Phosphate Acquisition and Mobilization Facilitates Embryo Development in Rice. Plant J. 2015, 82, 556–569. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.; Zhang, H.; Wang, S.; Ye, X.; Shi, L.; Xu, F.; Ding, G. Molecular Identification of the Phosphate Transporter Family 1 (PHT1) Genes and Their Expression Profiles in Response to Phosphorus Deprivation and Other Abiotic Stresses in Brassica Napus. PLoS ONE 2019, 14, e0220374. [Google Scholar] [CrossRef]
- Gierth, M.; Mäser, P.; Schroeder, J.I. The Potassium Transporter AtHAK5 Functions in K+ Deprivation-Induced High-Affinity K+ Uptake and AKT1 K+ Channel Contribution to K+ Uptake Kinetics in Arabidopsis Roots. Plant Physiol. 2005, 137, 1105–1114. [Google Scholar] [CrossRef]
- Song, Z.Z.; Yang, Y.; Ma, R.J.; Xu, J.L.; Yu, M.L. Transcription of Potassium Transporter Genes of KT/HAK/KUP Family in Peach Seedlings and Responses to Abiotic Stresses. Biol. Plant. 2014, 59, 65–73. [Google Scholar] [CrossRef]
- Li, J.; Yu, L.; Qi, G.N.; Li, J.; Xu, Z.J.; Wu, W.H.; Yi, W. The Os-AKT1 Channel Is Critical for K+ Uptake in Rice Roots and Is Modulated by the Rice CBL1-CIPK23 Complex. Plant Cell 2014, 26, 3387–3402. [Google Scholar] [CrossRef]
- Tegeder, M.; Masclaux-Daubresse, C. Source and Sink Mechanisms of Nitrogen Transport and Use. New Phytol. 2018, 217, 35–53. [Google Scholar] [CrossRef]
- Chopin, F.; Wirth, J.; Dorbe, M.F.; Lejay, L.; Krapp, A.; Gojon, A.; Daniel-Vedele, F. The Arabidopsis Nitrate Transporter AtNRT2.1 Is Targeted to the Root Plasma Membrane. Plant Physiol. Biochem. 2007, 45, 630–635. [Google Scholar] [CrossRef]
- Yuan, L.; Loqué, D.; Kojima, S.; Rauch, S.; Ishiyama, K.; Inoue, E.; Takahashi, H.; Von Wiréna, N. The Organization of High-Affinity Ammonium Uptake in Arabidopsis Roots Depends on the Spatial Arrangement and Biochemical Properties of AMT1-Type Transporters. Plant Cell 2007, 19, 2636–2652. [Google Scholar] [CrossRef]
- Liu, W.; Sun, Q.; Wang, K.; Du, Q.; Li, W.X. Nitrogen Limitation Adaptation (NLA) Is Involved in Source-to-Sink Remobilization of Nitrate by Mediating the Degradation of NRT1.7 in Arabidopsis. New Phytol. 2017, 214, 734–744. [Google Scholar] [CrossRef]
- Xu, Q.; Wang, C.; Li, S.; Li, B.; Li, Q.; Chen, G.; Chen, W.; Wang, F. Cadmium Adsorption, Chelation and Compartmentalization Limit Root-to-Shoot Translocation of Cadmium in Rice (Oryza sativa L.). Environ. Sci. Pollut. Res. 2017, 24, 11319–11330. [Google Scholar] [CrossRef]
- Yokosho, K.; Yamaji, N.; Ma, J.F. OsFRDL1 Expressed in Nodes Is Required for Distribution of Iron to Grains in Rice. J. Exp. Bot. 2016, 67, 5485–5494. [Google Scholar] [CrossRef]
- Kumar, A.; Nayak, S.; Ngangkham, U.; Sah, R.P.; Lal, M.K.; Azharudheen, T.P.; Behera, S.; Swain, P.; Behera, L.; Sharma, S. A Single Nucleotide Substitution in the SPDT Transporter Gene Reduced Phytic Acid and Increased Mineral Bioavailability from Rice Grain (Oryza sativa L.). J. Food Biochem. 2021, 45, e13822. [Google Scholar] [CrossRef]
- Yamaji, N.; Ma, J.F. Node-Controlled Allocation of Mineral Elements in Poaceae. Curr. Opin. Plant Biol. 2017, 39, 18–24. [Google Scholar] [CrossRef]
- Sasaki, A.; Yamaji, N.; Yokosho, K.; Ma, J.F. Nramp5 Is a Major Transporter Responsible for Manganese and Cadmium Uptake in Rice. Plant Cell 2012, 24, 2155–2167. [Google Scholar] [CrossRef]
- Okumura, S.; Mitsukawa, N.; Shirano, Y.; Shibata, D. Phosphate Transporter Gene Family of Arabidopsis Thaliana. DNA Res. 1998, 5, 261–269. [Google Scholar] [CrossRef]
- Jia, H.; Ren, H.; Gu, M.; Zhao, J.; Sun, S.; Zhang, X.; Chen, J.; Wu, P.; Xu, G. The Phosphate Transporter Gene OsPht1;8 Is Involved in Phosphate Homeostasis in Rice. Plant Physiol. 2011, 156, 1164–1175. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, X.; Zhang, L.; Lu, W.; Li, X.; Xiao, K.; Liu, X.; Zhao, X.; Zhang, L.; Lu, W.; et al. TaPht1;4, a High-Affinity Phosphate Transporter Gene in Wheat (Triticum aestivum), Plays an Important Role in Plant Phosphate Acquisition under Phosphorus Deprivation. Funct. Plant Biol. 2013, 40, 329–341. [Google Scholar] [CrossRef]
- Vigueira, C.C.; Small, L.L.; Olsen, K.M. Long-Term Balancing Selection at the Phosphorus Starvation Tolerance 1 (PSTOL1) Locus in Wild, Domesticated and Weedy Rice (Oryza). BMC Plant Biol. 2016, 16, 101. [Google Scholar] [CrossRef]
- Liu, S.; Li, X.; Larsen, D.H.; Zhu, X.; Song, F.; Liu, F. Drought Priming at Vegetative Growth Stage Enhances Nitrogen-Use Efficiency Under Post-Anthesis Drought and Heat Stress in Wheat. J. Agron. Crop. Sci. 2017, 203, 29–40. [Google Scholar] [CrossRef]
- Rajendran, S.; Kim, C.M. OsCSLD1 Mediates NH4+-Dependent Root Hair Growth Suppression and AMT1;2 Expression in Rice (Oryza sativa L.). Plants 2022, 11, 3580. [Google Scholar] [CrossRef]
- Cai, H.; Zhou, Y.; Xiao, J.; Li, X.; Zhang, Q.; Lian, X. Overexpressed Glutamine Synthetase Gene Modifies Nitrogen Metabolism and Abiotic Stress Responses in Rice. Plant Cell Rep. 2009, 28, 527–537. [Google Scholar] [CrossRef]
- Lacombe, B.; Achard, P. Long-Distance Transport of Phytohormones through the Plant Vascular System. Curr. Opin. Plant Biol. 2016, 34, 1–8. [Google Scholar] [CrossRef]
- Kuromori, T.; Miyaji, T.; Yabuuchi, H.; Shimizu, H.; Sugimoto, E.; Kamiya, A.; Moriyama, Y.; Shinozaki, K. ABC Transporter AtABCG25 Is Involved in Abscisic Acid Transport and Responses. Proc. Natl. Acad. Sci. USA 2010, 107, 2361–2366. [Google Scholar] [CrossRef]
- Ranathunge, K.; El-Kereamy, A.; Gidda, S.; Bi, Y.M.; Rothstein, S.J. AMT1;1 Transgenic Rice Plants with Enhanced NH4+ Permeability Show Superior Growth and Higher Yield under Optimal and Suboptimal NH4+ Conditions. J. Exp. Bot. 2014, 65, 965–979. [Google Scholar] [CrossRef]
- Tran, L.S.P.; Urao, T.; Qin, F.; Maruyama, K.; Kakimoto, T.; Shinozaki, K.; Yamaguchi-Shinozaki, K. Functional Analysis of AHK1/ATHK1 and Cytokinin Receptor Histidine Kinases in Response to Abscisic Acid, Drought, and Salt Stress in Arabidopsis. Proc. Natl. Acad. Sci. USA 2007, 104, 20623–20628. [Google Scholar] [CrossRef]
- Fujita, Y.; Fujita, M.; Shinozaki, K.; Yamaguchi-Shinozaki, K. ABA-Mediated Transcriptional Regulation in Response to Osmotic Stress in Plants. J. Plant Res. 2011, 124, 509–525. [Google Scholar] [CrossRef]
- Armengaud, P.; Breitling, R.; Amtmann, A. Coronatine-Insensitive 1 (COI1) Mediates Transcriptional Responses of Arabidopsis Thaliana to External Potassium Supply. Mol. Plant 2010, 3, 390–405. [Google Scholar] [CrossRef]
- Hull, A.K.; Vij, R.; Celenza, J.L. Arabidopsis Cytochrome P450s That Catalyze the First Step of Tryptophan-Dependent Indole-3-Acetic Acid Biosynthesis. Proc. Natl. Acad. Sci. USA 2000, 97, 2379–2384. [Google Scholar] [CrossRef]
- Mikkelsen, M.D.; Hansen, C.H.; Wittstock, U.; Halkier, B.A. Cytochrome P450 CYP79B2 from Arabidopsis Catalyzes the Conversion of Tryptophan to Indole-3-Acetaldoxime, a Precursor of Indole Glucosinolates and Indole-3-Acetic Acid. J. Biol. Chem. 2000, 275, 33712–33717. [Google Scholar] [CrossRef]
- Chen, S.; Glawischnig, E.; Jørgensen, K.; Naur, P.; Jørgensen, B.; Olsen, C.E.; Hansen, C.H.; Rasmussen, H.; Pickett, J.A.; Halkier, B.A. CYP79F1 and CYP79F2 Have Distinct Functions in the Biosynthesis of Aliphatic Glucosinolates in Arabidopsis. Plant J. 2003, 33, 923–937. [Google Scholar] [CrossRef]
- Tiwari, S.; Lata, C.; Singh Chauhan, P.; Prasad, V.; Prasad, M. A functional genomic perspective on drought signalling and its crosstalk with phytohormone-mediated signalling pathways in plants. Curr. Genom. 2017, 18, 469–482. [Google Scholar] [CrossRef]
- Kohli, A.; Sreenivasulu, N.; Lakshmanan, P.; Kumar, P.P. The Phytohormone Crosstalk Paradigm Takes Center Stage in Understanding How Plants Respond to Abiotic Stresses. Plant Cell Rep. 2013, 32, 945–957. [Google Scholar] [CrossRef]
- Achard, P.; Cheng, H.; de Grauwe, L.; Decat, J.; Schoutteten, H.; Moritz, T.; van der Straeten, D.; Peng, J.; Harberd, N.P. Integration of Plant Responses to Environmentally Activated Phytohormonal Signals. Science 2006, 311, 91–94. [Google Scholar] [CrossRef]
- Krouk, G.; Ruffel, S.; Gutiérrez, R.A.; Gojon, A.; Crawford, N.M.; Coruzzi, G.M.; Lacombe, B. A Framework Integrating Plant Growth with Hormones and Nutrients. Trends Plant Sci. 2011, 16, 178–182. [Google Scholar] [CrossRef] [PubMed]
- Sakakibara, H. Cytokinin Biosynthesis and Transport for Systemic Nitrogen Signaling. Plant J. 2021, 105, 421–430. [Google Scholar] [CrossRef]
- Kiba, T.; Kudo, T.; Kojima, M.; Sakakibara, H. Hormonal Control of Nitrogen Acquisition: Roles of Auxin, Abscisic Acid, and Cytokinin. J. Exp. Bot. 2011, 62, 1399–1409. [Google Scholar] [CrossRef] [PubMed]
- Franco-Zorrilla, J.M.; González, E.; Bustos, R.; Linhares, F.; Leyva, A.; Paz-Ares, J. The Transcriptional Control of Plant Responses to Phosphate Limitation. J. Exp. Bot. 2004, 55, 285–293. [Google Scholar] [CrossRef] [PubMed]
- Maruyama-Nakashita, A.; Nakamura, Y.; Yamaya, T.; Takahashi, H. A Novel Regulatory Pathway of Sulfate Uptake in Arabidopsis Roots: Implication of CRE1/WOL/AHK4-Mediated Cytokinin-Dependent Regulation. Plant J. 2004, 38, 779–789. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, D.; Sun, W.; Wang, T. The Adaptive Mechanism of Plants to Iron Deficiency via Iron Uptake, Transport, and Homeostasis. Int. J. Mol. Sci. 2019, 20, 2424. [Google Scholar] [CrossRef] [PubMed]
- Nikolic, M.; Pavlovic, J. Plant Responses to Iron Deficiency and Toxicity and Iron Use Efficiency in Plants. In Plant Micronutrient Use Efficiency: Molecular and Genomic Perspectives in Crop Plants; Academic Press: Cambridge, MA, USA, 2018; pp. 55–69. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Bhuyan, M.H.M.B.; Mahmud, J.A.; Nahar, K.; Mohsin, S.M.; Parvin, K.; Fujita, M. Interaction of Sulfur with Phytohormones and Signaling Molecules in Conferring Abiotic Stress Tolerance to Plants. Plant Signal. Behav. 2018, 13, e1477905. [Google Scholar] [CrossRef]
- Lucena, C.; Romera, F.J.; García, M.J.; Alcántara, E.; Pérez-Vicente, R. Ethylene Participates in the Regulation of Fe Deficiency Responses in Strategy I Plants and in Rice. Front. Plant Sci. 2015, 6, 1056. [Google Scholar] [CrossRef] [PubMed]
- Koramutla, M.K.; Negi, M.; Ayele, B.T. Roles of Glutathione in Mediating Abscisic Acid Signaling and Its Regulation of Seed Dormancy and Drought Tolerance. Genes 2021, 12, 1620. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Wang, C.; Zheng, L.; Wang, L.; Chen, Y.; Whelan, J.; Shou, H. Ethylene Is Involved in the Regulation of Iron Homeostasis by Regulating the Expression of Iron-Acquisition-Related Genes in Oryza sativa. J. Exp. Bot. 2010, 62, 667. [Google Scholar] [CrossRef]
- Chen, J.; Liu, X.; Liu, S.; Fan, X.; Zhao, L.; Song, M.; Fan, X.; Xu, G. Co-Overexpression of OsNAR2.1 and OsNRT2.3a Increased Agronomic Nitrogen Use Efficiency in Transgenic Rice Plants. Front. Plant Sci. 2020, 11, 1245. [Google Scholar] [CrossRef]


| Gene Name | Hormone Regulating/Involved | Abiotic Stress Condition(s) | Physiological Function/Role | Reference | 
|---|---|---|---|---|
| AtABCG25 (At1g71960) | Abscisic acid (ABA) | Environmental stresses, Abiotic stress responses | ATP-binding cassette (ABC) transporter that functions as an ABA exporter and involved in the intercellular ABA signaling pathway. | [71] | 
| AMT1AtAMT1;1, AtAMT1;2, AtAMT1;3, AtAMT2;1 | None explicitly (regulated by root glutamine levels/N demand) | Nitrogen (N) deficiency | Ammonium transporters mediating root ammonium fluxes in response to cellular or whole-plant demand for nitrogen. | [56,72] | 
| AtHAK5 | Jasmonic acid (JA) (JA-linked response observed in plate-grown plants on low-K agar) | Potassium (K+) starvation/deprivation | Potassium transporter (KUP/HAK/KT family) that takes part in K+ deprivation-induced high-affinity K+ uptake in roots. | [51] | 
| AHK1, AHK2, AHK3, CRE1 (AHK4) | Cytokinin (CK), ABA | Drought, salt stress, ABA responses | Stress-responsive non-ethylene histidine kinases (HKs) that function as cytokinin receptors and play roles in the regulation of plant responses to abiotic stresses. CRE1 mutation impairs cytokinin-induced repression of phosphate starvation responses. | [73] | 
| ABI5, AREB/ABFs | ABA | Dehydration response, osmotic stress | bZIP transcription factors (TFs) mediating ABA-regulated gene expression during dehydration response in vegetative tissues and seed maturation. | [74] | 
| COI1 (Coronatine-Insensitive 1) | Jasmonic acid (JA) | K deficiency (low K) | F-box protein acting as a JA receptor. Targets transcriptional repressors for degradation. Mediates transcriptional responses of Arabidopsis thaliana to external potassium supply. | [14] | 
| LOX2 (At3g45140) | JA | K deficiency | Encodes a 13 (S)-lipoxygenase (LOX), which catalyzes the initial step of JA production/biosynthesis. | [14] | 
| AOS, AOC1, OPR3 | JA (oxylipin biosynthetic pathway) | K deficiency | Biosynthetic enzymes involved in the oxylipin production pathway downstream of LOX2. | [14] | 
| VSP2 (At5g24770) | JA | K deficiency | Vegetative storage protein, well-known target of JA-signaling. It is an important nitrogen (N) store and plays a role in plant defense against pests. | [14,75] | 
| CYP79B2, CYP79B3 | JA (induction requires intact COI1 signaling) | K starvation (K deficiency) | Catalyze the first step in the biosynthesis of tryptophan-derived indole glucosinolates (GLS). | [76,77] | 
| CYP79F1, CYP79F2 | None explicitly | K deficiency | Encode enzymes that catalyze the synthesis of methionine-derived aliphatic GLS. | [78] | 
| BnaPHT1s (Phosphate Transporter Family 1 members in B. napus) | Auxin (IAA), cytokinin (CTK) | Phosphorus (P) shortage/deprivation, nitrogen (N), potassium (K), sulphur (S), iron (Fe) nutritional stressors, salt, drought | Phosphate transporters involved in Pi acquisition and homeostasis. Involved in crosstalk for sensing external nutrient status and environmental stresses. | [50] | 
| OsPT8 (OsPht1;8) | Auxin | Phosphate (Pi) deficiency/starvation | Pi transporter involved in Pi uptake, translocation from root to shoot, and Pi homeostasis in rice. Its expression is induced by auxin and P starvation. | [64] | 
| PpeKUP genes (KT/HAK/KUP family in peach) | None explicitly | K+ deficiency, K+ excess, PEG (drought stress), Pb (heavy metal), Cd (heavy metal), Al | Potassium transporters facilitating K+ uptake and transport and maintaining K+ homeostasis in peach seedlings. | [52] | 
| HvHAKs (HAK/KUP/KT family in barley) | Abscisic acid (ABA), methyl jasmonate (MeJA) | Salt stress, hyperosmotic stress (drought/PEG8000), potassium (K) deficiency | K+ uptake and transporters involved in maintaining K+ Na+ homeostasis and salt tolerance and enhancing intracellular osmotic adjustment/drought tolerance. | [13,21] | 
| TIR1, ARF19 | Auxin | Low phosphorus (LP) | Auxin signaling components involved in the LP response. | [21] | 
| ACCO | Ethylene (biosynthesis pathway) | Low phosphorus (LP) | Involved in ethylene biosynthesis pathway. | [21] | 
| MtNPF6.8 (MtNRT1.3) | IAA (Auxin), ABA | Nitrate (N) regulation/N-free medium (N starvation) | Nitrate transporter, also able to transport ABA or facilitate ABA transport in a heterologous system. Proposed role in mediating nitrate regulatory effect on lateral root (LR) development. | [17] | 
| SlAMT1-1, SlAMT1-2, SlAMT1-3 (ammonium transporters in tomato) | ABA | Drought, salt stresses | Plasma membrane proteins that function in ammonium transmembrane transport. Also involved in lateral root formation/branching and response to ABA. | [44,69] | 
| OsGS1;1, OsGS1;2 (glutamine synthetase) | - | Salt, drought, and cold stress | Key enzyme in nitrogen metabolism. Catalyzes the incorporation of inorganic ammonium into glutamine. Overexpression modifies N metabolism and abiotic stress responses. | [69] | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bamatov, I.; Sobralieva, E.; Bekmurzaeva, R.; Alimurzaev, S. Optimizing Nutrient Dynamics for Crop Resilience to Abiotic Stress: An Endogenous Phytohormone Perspective. Plants 2025, 14, 3303. https://doi.org/10.3390/plants14213303
Bamatov I, Sobralieva E, Bekmurzaeva R, Alimurzaev S. Optimizing Nutrient Dynamics for Crop Resilience to Abiotic Stress: An Endogenous Phytohormone Perspective. Plants. 2025; 14(21):3303. https://doi.org/10.3390/plants14213303
Chicago/Turabian StyleBamatov, Ibragim, Eliza Sobralieva, Rashiya Bekmurzaeva, and Shamil Alimurzaev. 2025. "Optimizing Nutrient Dynamics for Crop Resilience to Abiotic Stress: An Endogenous Phytohormone Perspective" Plants 14, no. 21: 3303. https://doi.org/10.3390/plants14213303
APA StyleBamatov, I., Sobralieva, E., Bekmurzaeva, R., & Alimurzaev, S. (2025). Optimizing Nutrient Dynamics for Crop Resilience to Abiotic Stress: An Endogenous Phytohormone Perspective. Plants, 14(21), 3303. https://doi.org/10.3390/plants14213303
 
        


 
                         
       