Effects of Explant Source and Orientation on Secondary Somatic Embryogenesis in Hevea brasiliensis
Abstract
1. Introduction
2. Results
2.1. Primary and Secondary Somatic Embryogenesis
2.2. Effects of Explant Orientation on SSEis
2.3. Morphological and Histological Changes During SSE Induction Process
2.4. Biochemical Analysis of the Explants During SSE Induction
2.4.1. Soluble Protein Levels in the Explants of High or Low Embryogenic Capacity
2.4.2. Starch Concentrations
2.4.3. The Changes of Soluble Sugar Concentration
2.4.4. Activity of Superoxide Dismutase (SOD)
3. Discussion
3.1. Effects of Explant Orientations on SSE Yield
3.2. Origin of Secondary Somatic Embryos on Explants
3.3. Changes of Biochemical Levels
4. Materials and Methods
4.1. Plant Materials
4.2. Producing Primary Somatic Embryos
4.3. Inducing Secondary Somatic Embryogenesis
4.4. Secondary Somatic Embryo Development
4.5. Study on the Effects of Explant Orientations
4.6. Histological Study on Secondary Embryogenesis
4.7. Methods for Physiological and Biochemical Analysis
4.7.1. Sample Collection According to Embryogenic Capacity
4.7.2. Analysis of Soluble Protein
4.7.3. Starch Analysis
4.7.4. Analysis of Soluble Sugar
4.7.5. Determination of Superoxide Dismutase (SOD) Activity
4.8. Data Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| SEis | Somatic embryogenesis |
| SE | Somatic embryo |
| SEs | Somatic embryos |
| PSEis | Primary somatic embryogenesis |
| PSE | Primary somatic embryo |
| PSEs | Primary somatic embryos |
| SSEis | Secondary somatic embryogenesis |
| SSE | Secondary somatic embryo |
| SSEs | Secondary somatic embryos |
| SOD | Superoxide dismutase activity |
| OD | Optical density |
References
- Martínez, M.; Corredoira, E. Recent advances in plant somatic embryogenesis: Where We Stand and Where to Go? Int. J. Mol. Sci. 2024, 25, 8912. [Google Scholar] [CrossRef] [PubMed]
- Egertsdotter, U.; Ahmad, I.; Clapham, D. Automation and scale up of somatic embryogenesis for commercial plant production, with emphasis on conifers. Front. Plant Sci. 2019, 10, 109. [Google Scholar] [CrossRef] [PubMed]
- Carron, M.P.; Enjalric, F.; Lardet, L.; Deschamps, A. Rubber (Hevea brasiliensis Müll. Arg.). In Trees II; Springer: Berlin/Heidelberg, Germany, 1989; pp. 222–245. [Google Scholar] [CrossRef]
- Paranjothy, K. Induced root and embryoid differentiation in Hevea tissue culture. In Proceedings of the 3rd International Congress Plant Tissue Cell Culture, Leicester, UK, 21–26 July 1974. [Google Scholar]
- Wang, Z.Y.; Zeng, X.S.; Chen, C.Q.; Wu, H.Y.; Li, Q.Y.; Fan, G.J.; Lu, W.J. Induction of rubber plantlets from anther of Hevea brasiliensis Muell. Arg. in vitro. Chin. J. Trop. Crops 1980, 1, 25–26. [Google Scholar]
- Carron, M.P.; Lardet, L.; Granet, F.; Leconte, A.; Dea, B.G.; Julien, J.; Teerawatanasuk, K.; Keli, J.; Montoro, P. Field trials network emphasizes the improvement of growth and yield through micropropagation in rubber tree (Hevea brasiliensis Müll. ARG.). Acta Hort. 2009, 812, 485–492. [Google Scholar] [CrossRef]
- Montoro, P.; Carron, M.P.; Granet, F.; Lardet, L.; Leclercq, J.; Dessailly, F.; Martin, F.; Gaurel, S.; Uche, E.; Rio, M.; et al. Development of new varietal types based on rejuvenation by somatic embryogenesis and propagation by conventional budding or microcutting in Hevea brasiliensis. Acta Hortic. 2012, 10, 553–576. [Google Scholar] [CrossRef]
- Carron, M.P.; Le Roux, Y.; Tison, J.; Dea, B.G.; Caussanel, V.; Clair, J.; Keli, J. Compared root system architectures in seedlings and in vitro plantlets of Hevea brasiliensis, in the initial years of growth in the field. Plant Soil 2000, 223, 75–88. [Google Scholar] [CrossRef]
- Hua, Y.W.; Huang, T.D.; Huang, H.S. Micropropagation of self-rooting juvenile clones by secondary somatic embryogenesis in Hevea brasiliensis. Plant Breed. 2010, 129, 202–207. [Google Scholar] [CrossRef]
- Gu, X.C.; Xu, Z.W.; Cheng, J.; He, X.H.; Hua, Y.W. Effects of phytagel and sucrose on regeneration efficiency of somatic embryos and growth of regenerated plants in Hevea brasiliensis. Guihaia 2018, 38, 1164–1171. [Google Scholar] [CrossRef]
- Hua, Y.W.; Huang, G.Q.; Long, Q.Y.; Huang, H.S. Secondary somatic embryogenesis and detection of somaclonal variation of regenerated plants of Hevea. J. Trop. Crops 2009, 30, 644–650. [Google Scholar] [CrossRef]
- Wang, T.D.; Hua, Y.W.; Huang, H.S. Analysis of chromosome number and DNA content of secondary somatic Hevea brasiliensis plants. Trop. Agric. Sci. 2013, 33, 33–37. [Google Scholar] [CrossRef]
- Wang, T.D.; Huang, T.D.; Huang, H.S.; Hua, Y.W. Origin of secondary somatic embryos and genetic stability of the regenerated plants in Hevea brasiliensis. J. Rubber Res. 2017, 20, 101–116. [Google Scholar] [CrossRef]
- Gu, X.C.; Peng, S.N.; Dai, X.M.; Zhou, Q.N.; Sun, X.L.; Gui, M.C.; Hua, Y.W.; Huang, T.D.; Huang, H.S.; Zhang, Y.Y. Differential analysis of anther embryogenesis between different genotypes of Hevea brasiliensis. For. Res. 2022, 35, 143–152. [Google Scholar] [CrossRef]
- Jayasree, P.K.; Rekha, K. Somatic embryogenesis research in rubber: Achievements, challenges and future perspectives. Plant Cell Tiss. Organ. Cult. 2023, 153, 237–255. [Google Scholar] [CrossRef]
- Xiao, J.N.; Huang, X.L.; Wu, Y.J.; Li, X.J.; Zhuo, M.D.; Engelmann, F. Direct somatic embryogenesis induced from cotyledons of mango immature zygotic embryos. Vitr. Cell. Dev. Biol.-Plant 2004, 40, 196–199. [Google Scholar] [CrossRef]
- Kurczyńska, E.U.; Gaj, M.D.; Ujczak, A.; Mazur, E. Histological analysis of direct somatic embryogenesis in Arabidopsis thaliana (L.) Heynh. Planta 2007, 226, 619–628. [Google Scholar] [CrossRef]
- JoyIV, R.W.; Yeung, E.C.; Kong, L.; Thorpe, T.A. Development of white spruce somatic embryos: I. Storage product deposition. Vitr. Cell. Dev. Biol.-Plant 1991, 27, 32–41. [Google Scholar] [CrossRef]
- Zhang, H.J.; Hua, Y.W.; Huang, T.D.; Huang, H.S. Physiologic and biochemical characteristics in the development of embryogenesis of Rubber Tree. Trop. Agric. Sci. 2014, 34, 12–14. [Google Scholar] [CrossRef]
- Bartos, P.M.C.; Gomes, H.T.; do Amaral, L.I.V.; Teixeira, J.B.; Scherwinski-Pereira, J.E. Biochemical events during somatic embryogenesis in Coffea arabica L. 3 Biotech 2018, 8, 209. 3 Biotech 2018, 8, 209. [Google Scholar] [CrossRef]
- Choi, Y.E.; Yang, D.C.; Kim, H.S.; Choi, K.T. Distribution and changes of reserve materials in cotyledon cells of Panax ginseng related to direct somatic embryogenesis and germination. Plant Cell Rep. 1997, 16, 841–846. [Google Scholar] [CrossRef]
- Santarem, E.R.; Pelissier, B.; Finer, J.J. Effect of explant orientation, pH, solidifying agent and wound-ing on initiation of soybean somatic embryos. Vitr. Cell. Dev. Biol.-Plant 1997, 33, 13–19. [Google Scholar] [CrossRef]
- Gow, W.P.; Chen, J.T.; Chang, W.C. Effects of genotype, light regime, explant position and orientation on direct somatic embryogenesis from leaf explants of Phalaenopsis orchids. Acta Physiol. Plant 2009, 31, 363–369. [Google Scholar] [CrossRef]
- Martin, K.P.; Madassery, J. Direct and indirect somatic embryogenesis on cotyledon explants of Quassia amara L., an antileukaemic drug plant. Vitr. Cell. Dev. Biol.-Plant 2005, 41, 54–57. [Google Scholar] [CrossRef]
- Kuo, H.L.; Chen, J.T.; Chang, W.C. Efficient plant regeneration through direct somatic embryogenesis from leaf explants of Phalaenopsis ‘Little Steve’. Vitr. Cell. Dev. Biol.-Plant 2005, 41, 453–456. [Google Scholar] [CrossRef]
- Calabuig-Serna, A.; Mir, R.; Seguí-Simarro, J.M. Calcium dynamics, WUSCHEL Expression and callose deposition during Somatic Embryogenesis in Arabidopsis thaliana Immature Zygotic Embryos. Plants 2023, 12, 1021. [Google Scholar] [CrossRef]
- Quiroz-Figueroa, F.; Fuentes-Cerda, C.; Rojas-Herrera, R.; Loyola-Vargas, V. Histological studies on the developmental stages and differentiation of two different somatic embryogenesis systems of Coffea arabica. Plant Cell Rep. 2002, 20, 1141–1149. [Google Scholar] [CrossRef]
- Mikuła, A.; Pożoga, M.; Tomiczak, K.; Rybczyński, J.J. Somatic embryogenesis in ferns: A new experimental system. Plant Cell Rep. 2015, 34, 783–794. [Google Scholar] [CrossRef]
- Tang, L.P.; Zhai, L.M.; Li, J.M.; Gao, Y.; Ma, Q.L.; Li, R.; Liu, Q.F.; Zhang, W.J.; Yao, W.J.; Mu, B.B.; et al. Time-resolved reprogramming of single somatic cells into totipotent states during plant regeneration. Cell 2025, 188, 1–16. [Google Scholar] [CrossRef]
- Balzon, T.A.; Luis, Z.G.; Scherwinski-Pereira, J.E. New approaches to improve the efficiency of somatic embryogenesis in oil palm (Elaeis guineensis Jacq.) from mature zygotic embryos. Vitr. Cell. Dev. Biol.-Plant 2013, 49, 41–50. [Google Scholar] [CrossRef]
- Steinmacher, D.A.; Guerra, M.P.; Saare-Surminski, K.; Lieberei, R. A temporary immersion system improves in vitro regeneration of peach palm through secondary somatic embryogenesis. Ann. Bot. 2011, 108, 1463–1475. [Google Scholar] [CrossRef] [PubMed]
- Grzyb, M.; Mikuła, A. Explant type and stress treatment determine the uni-and multicellular origin of somatic embryos in the tree fern Cyathea delgadii Sternb. Plant Cell Tissue Organ Cult. (PCTOC) 2019, 136, 221–230. [Google Scholar] [CrossRef]
- Michaux-Ferrière, N.; Grout, H.; Carron, M.P. Origin and Ontogenesis of Somatic Embryos in Hevea Brasiliensis (euphorbiaceae). Am. J. Bot. 1992, 79, 174–180. [Google Scholar] [CrossRef]
- Wang, Y.L.; Li, W.G.; Wu, J.L.; Hao, B.Z.; Lin, W.F. Histological studies on in vitro somatic embryogenesis from anther culture of Hevea brasiliensis. J. Rubber Res. 2005, 8, 120–129. [Google Scholar]
- Carron, M.P.; Etienne, H.; Lardet, L.; Campagna, S.; Perrin, Y.; Leconte, A.; Chaine, C. Somatic embryogenesis in rubber (Hevea brasiliensis Müll. Arg.). In Somatic Embryogenesis in Woody Plants: Volume 2—Angiosperms; Springer: Dordrecht, The Netherlands, 1995; pp. 117–136. [Google Scholar] [CrossRef]
- Yang, X.F.; Lin, Q.F.; Udayabhanu, J.; Hua, Y.W.; Dai, X.M.; Xin, S.C.; Wang, X.Y.; Huang, H.S.; Huang, T.D. An optimized CRISPRCas9-based gene editing system for efficiently generating homozygous edited plants in rubber tree (Hevea brasiliensis). Ind. Crops Prod. 2024, 222, 119740. [Google Scholar] [CrossRef]
- Konrádová, H.; Lipavská, H.; Albrechtová, J.; Vreugdenhil, D. Sucrose metabolism during somatic and zygotic embryogenese in Norway spruce: Content of soluble saccharides and localisation of key enzyme activities. J. Plant Physiol. 2002, 159, 387–396. [Google Scholar] [CrossRef]
- Cheng, Y.N.; Lei, X.; Li, X.; Gao, Y.H. Cytological and physiological characteristics of somatic embryogenesis in Lycoris. Agric. Sci. Zhejiang For. Univ. 2024, 41, 243–251. [Google Scholar] [CrossRef]
- Ma, X.; Hu, S.; Jiang, Z.G.; Yang, J.Y.; Li, Y.Z.; Chen, F.J. Histocytological observation and physiological-biochemical differences of somatic embryogenesis in Akebia trifoliate. Mol. Plant Breed. 2021, 22, 2386–2392. [Google Scholar] [CrossRef]
- Lu, J.J.; Yan, R.; He, X.S.; Jin, H.M.; Wang, J.X.; Wang, C.X.; Sun, H.M. The embryonic callus induction and somatic embryogenesis of Hippeastrum vitta-tum ‘Red Lion’. Acta Hortic. Sin. 2016, 43, 2451–2460. [Google Scholar] [CrossRef]
- Clair, D.K.S.; Oberley, T.D.; Muse, K.E.; Clair, W.H.S. Expression of manganese superoxide dismutase promotes cellular differentiation. Free. Radic. Biol. Med. 1994, 16, 275–282. [Google Scholar] [CrossRef]
- Gu, X.C.; Dai, X.M.; Huang, T.D.; Huang, H.S.; Peng, S.N.; Cheng, J.; Xu, Z.W.; Wu, R.Z.; Yang, X.Z.; Cheng, L. An Efficient Method for Secondary Somatic Embryogenesis of Rubber Trees and Its Application. ZL Patent No. 202211140538.3, 28 March 2023. [Google Scholar]








| Group of Experiments (Explant Side Contacting Medium) | Total Explants | Total SSE | SSE/Expt | Mean ± SD | |
|---|---|---|---|---|---|
| Group 1 (Abaxial side→Adaxial side) | Exp 1-1 | 75 | 129 | 1.7 | 2.6 ± 0.9 (a) |
| Exp 1-2 | 75 | 267 | 3.6 | ||
| Exp 1-3 | 72 | 189 | 2.6 | ||
| Group 2 (Abaxial side→Abaxial side) | Exp 2-1 | 77 | 32 | 0.4 | 0.7 ± 0.2 (b) |
| Exp 2-2 | 72 | 59 | 0.8 | ||
| Exp 2-3 | 85 | 60 | 0.7 | ||
| Group 3 (Adaxial side→Adaxial side) | Exp 3-1 | 78 | 50 | 0.6 | 1.4 ± 0.7 (ab) |
| Exp 3-2 | 74 | 153 | 2.1 | ||
| Exp 3-3 | 83 | 115 | 1.4 | ||
| Group 4 (Adaxial side→Abaxial side) | Exp 4-1 | 75 | 35 | 0.5 | 0.6 ± 0.1 (b) |
| Exp 4-2 | 75 | 48 | 0.6 | ||
| Exp 4-3 | 84 | 49 | 0.6 | ||
| Group 5 (Randomly→Randomly) | Exp 5-1 | 84 | 61 | 0.7 | 1.1 ± 0.4 (b) |
| Exp 5-2 | 84 | 131 | 1.6 | ||
| Exp 5-3 | 84 | 86 | 1.0 | ||
| Days of Culture | Soluble Protein Content (mg/g FW) | |||||
|---|---|---|---|---|---|---|
| 0 | 5 | 10 | 15 | 20 | 25 | |
| Embryogenic capacity (Low) | 2.6 ± 0.3 | 4.3 ± 0.4 | 3.4 ± 0.9 | 2.2 ± 0.7 | 3.5 ± 0.6 | 1.6 ± 0.9 |
| (bcde) | (a) | (abcd) | (de) | (abc) | (ef) | |
| Embryogenic capacity (High) | 2.3 ± 0.4 | 3.9 ± 0.4 | 4.1 ± 1.3 | 1.6 ± 1.1 | 0.5 ± 0.3 | 0.6 ± 0.3 |
| (cde) | (ab) | (a) | (ef) | (f) | (f) | |
| Days of Culture | Starch Concentration (mg/g FW) | |||||
|---|---|---|---|---|---|---|
| 0 | 5 | 10 | 15 | 20 | 25 | |
| Embryogenic capacity (Low) | 273.7 ± 15 | 223.7 ± 22 | 128.2 ± 24 | 119.3 ± 15 | 60.1 ± 24 | 131.6 ± 15 |
| (a) | (bc) | (d) | (d) | (e) | (d) | |
| Embryogenic capacity (High) | 256.9 ± 31 | 262.3 ± 30 | 201.2 ± 42 | 129.3 ± 13 | 150.1 ± 39 | 127.6 ± 16 |
| (ab) | (ab) | (c) | (d) | (d) | (d) | |
| Days of Culture | Soluble Sugar Content (mg/g FW) | |||||
|---|---|---|---|---|---|---|
| 0 | 5 | 10 | 15 | 20 | 25 | |
| Embryogenic capacity (Low) | 37.4 ± 6.0 | 63.8 ± 5.7 | 60.4 ± 3.5 | 58.4 ± 8.3 | 45.3 ± 7.2 | 49.9 ± 6.3 |
| (cd) | (a) | (ab) | (abc) | (abcd) | (abcd) | |
| Embryogenic capacity (High) | 52.4 ± 29.3 | 58.3 ± 1.6 | 38.7 ± 17.8 | 31.1 ± 11.6 | 34.8 ± 10.5 | 31.4 ± 3.7 |
| (abcd) | (abc) | (bcd) | (d) | (d) | (d) | |
| Days of Culture | Superoxide Dismutase Activity (u/g FW) | |||||
|---|---|---|---|---|---|---|
| 0 | 5 | 10 | 15 | 20 | 25 | |
| Embryogenic capacity (Low) | 1044 ± 39 | 1067 ± 83 | 1052 ± 46 | 1104 ± 65 | 1101 ± 32 | 1055 ± 99 |
| (ab) | (ab) | (ab) | (a) | (a) | (ab) | |
| Embryogenic capacity (High) | 895 ± 108 | 956 ± 87 | 1052 ± 55 | 1149 ± 40 | 1130 ± 67 | 1140 ± 20 |
| (c) | (bc) | (ab) | (a) | (a) | (a) | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, X.; Ao, J.; Kong, L.; Dai, X.; Huang, H.; Du, H.; Wang, X.; Huang, T. Effects of Explant Source and Orientation on Secondary Somatic Embryogenesis in Hevea brasiliensis. Plants 2025, 14, 3274. https://doi.org/10.3390/plants14213274
Gu X, Ao J, Kong L, Dai X, Huang H, Du H, Wang X, Huang T. Effects of Explant Source and Orientation on Secondary Somatic Embryogenesis in Hevea brasiliensis. Plants. 2025; 14(21):3274. https://doi.org/10.3390/plants14213274
Chicago/Turabian StyleGu, Xiaochuan, Jingyu Ao, Lisheng Kong, Xuemei Dai, Huasun Huang, Huabo Du, Xiaoyi Wang, and Tiandai Huang. 2025. "Effects of Explant Source and Orientation on Secondary Somatic Embryogenesis in Hevea brasiliensis" Plants 14, no. 21: 3274. https://doi.org/10.3390/plants14213274
APA StyleGu, X., Ao, J., Kong, L., Dai, X., Huang, H., Du, H., Wang, X., & Huang, T. (2025). Effects of Explant Source and Orientation on Secondary Somatic Embryogenesis in Hevea brasiliensis. Plants, 14(21), 3274. https://doi.org/10.3390/plants14213274
