Distance Matters: Assessing the Influence of Spatial Separation on Reproductive Success of Costus spiralis (Costaceae) in a Vereda Palm Swamp
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Area
4.2. Species Studied
4.3. Hand-Pollination Tests with Different Distances and Evaluation of Reproductive Success
4.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barrett, S.C.H. Mating strategies in flowering plants: The Outcrossing–Selfing paradigm and beyond. Phil. Trans. R. Soc. Lond. B 2003, 358, 991–1004. [Google Scholar] [CrossRef]
- Jersáková, J.; Johnson, S.D. Lack of floral nectar reduces self-pollination in a fly-pollinated orchid. Oecologia 2006, 147, 60–68. [Google Scholar] [CrossRef]
- Cardoso, J.C.F.; Viana, M.L.; Matias, R.; Furtado, M.T.; Caetano, A.P.d.S.; Consolaro, H.; Brito, V.L.G. Towards a unified terminology for angiosperm reproductive systems. Acta Bot. Bras. 2018, 32, 329–348. [Google Scholar] [CrossRef]
- Villegas, S.G.; Ospina-Garcés, S.M.; Fornoni, J.; Domínguez, C.A.; Alcalá, R.E. Effects of crossing distance on fitness components in the carnivorous plant Pinguicula moranensis (Lentibulariaceae). Plant Species Biol. 2020, 35, 175–184. [Google Scholar] [CrossRef]
- Wessinger, C.A. From pollen dispersal to plant diversification: Genetic consequences of pollination mode. New Phytol. 2021, 229, 3125–3132. [Google Scholar] [CrossRef]
- Campbell, D.R.; Waser, N.M. Variation in pollen flow within and among populations of Ipomopsis aggregata. Evolution 1989, 43, 1444–1455. [Google Scholar] [CrossRef]
- Waser, N.M.; Price, M.V. Drought, pollen and nectar availability, and pollination success. Ecology 2016, 97, 1400–1409. [Google Scholar] [CrossRef]
- Chen, K.-H.; Pannell, J.R. Pollen dispersal distance is determined by phenology and ancillary traits but not floral gender in an andromonoecious, fly-pollinated alpine herb. Alp. Bot. 2024, 134, 69–79. [Google Scholar] [CrossRef]
- Waser, N.M.; Price, M.V. Crossing-distance effects in Delphinium nelsonii: Outbreeding and inbreeding depression in progeny fitness. Evol 1994, 48, 842–852. [Google Scholar] [CrossRef]
- Price, M.V.; Waser, N.M. Pollen dispersal and optimal outcrossing in Delphinium nelsoni. Nature 1979, 277, 294–297. [Google Scholar] [CrossRef]
- Waser, N.M.; Williams, C.F. Inbreeding and outbreeding. In Evolutionary Ecology: Concepts and Case Studies; Fox, C.W., Roff, D.A., Fairbairn, D.J., Eds.; Oxford University Press: Oxford, UK, 2001; pp. 84–96. [Google Scholar]
- Waser, N.M.; Price, M.V.; Shaw, R.G. Outbreeding depression varies among cohorts of Ipomopsis aggregata planted in nature. Evolution 2000, 54, 485–491. [Google Scholar] [CrossRef]
- Souto, C.P.; Aizen, M.A.; Premoli, A.C. Effects of crossing distance and genetic relatedness on pollen performance in Alstroemeria aurea (Alstroemeriaceae). Am. J. Bot. 2002, 89, 427–432. [Google Scholar] [CrossRef]
- Collevatti, R.G.; Lima, J.S.; Soares, T.N.; Telles, M.P.D.C. Spatial genetic structure and life history traits in cerrado tree species: Inferences for conservation. Nat. Conserv. 2010, 8, 54–59. [Google Scholar] [CrossRef]
- Collevatti, R.G.; Estolano, R.; Garcia, S.F.; Hay, J.D. short-distance pollen dispersal and high self-pollination in a bat-pollinated Neotropical tree. Tree Genet. Genomes 2010, 6, 555–564. [Google Scholar] [CrossRef]
- Waser, N.M. A Comparison of distances flown by different visitors to flowers of the same species. Oecologia 1982, 55, 251–257. [Google Scholar] [CrossRef]
- Morris, W.F.; Price, M.V.; Waser, N.M.; Thomson, J.D.; Thomson, B.; Stratton, D.A. Systematic increase in pollen carryover and its consequences for geitonogamy in plant populations. Oikos 1994, 71, 431–440. [Google Scholar] [CrossRef]
- Williams, C.F.; Waser, N.M. Spatial genetic structure of Delphinium nuttallianum populations: Inferences about gene flow. Heredity 1999, 83, 541–550. [Google Scholar] [CrossRef]
- Schulke, B.; Waser, N.M. Long-distance pollinator flights and pollen dispersal between Populations of Delphinium nuttallianum. Oecologia 2001, 127, 239–245. [Google Scholar] [CrossRef]
- Castellanos, M.C.; Wilson, P.; Thomson, J.D. Pollen transfer by hummingbirds and bumblebees, and the divergence of pollination modes in Penstemon. Evolution 2003, 57, 2742–2752. [Google Scholar] [CrossRef]
- Gamba, D.; Muchhala, N. Pollinator type strongly impacts gene flow within and among plant populations for six neotropical species. Ecology 2023, 104, e3845. [Google Scholar] [CrossRef]
- Maruyama, P.K.; Justino, D.G.; Oliveira, P.E. Does intraspecific behavioural variation of pollinator species influence pollination? a quantitative study with hummingbirds and a neotropical shrub. Plant Biol. 2016, 18, 913–919. [Google Scholar] [CrossRef]
- Justino, D.G.; Maruyama, P.K.; Oliveira, P.E. Floral resource availability and hummingbird territorial behaviour on a neotropical savanna shrub. J. Ornithol. 2012, 153, 189–197. [Google Scholar] [CrossRef]
- Sonne, J.; Kyvsgaard, P.; Maruyama, P.K.; Vizentin-Bugoni, J.; Ollerton, J.; Sazima, M.; Rahbek, C.; Dalsgaard, B. Spatial effects of artificial feeders on hummingbird abundance, floral visitation and pollen deposition. J. Ornithol. 2016, 157, 573–581. [Google Scholar] [CrossRef]
- Rombaut, L.M.K.; Capp, E.J.R.; Hughes, E.C.; Varley, Z.K.; Beckerman, A.P.; Cooper, N.; Thomas, G.H. The evolution of the traplining pollinator role in hummingbirds: Specialization is not an evolutionary dead end. Proc. R Soc. B. 2022, 289, 20212484. [Google Scholar] [CrossRef]
- Hadley, A.S.; Betts, M.G. Tropical deforestation alters hummingbird movement patterns. Biol. Lett. 2009, 5, 207–210. [Google Scholar] [CrossRef]
- Torres-Vanegas, F.; Hadley, A.S.; Kormann, U.G.; Jones, F.A.; Betts, M.G.; Wagner, H.H. Tropical deforestation reduces plant mating quality by shifting the functional composition of pollinator communities. J. Ecol. 2021, 109, 1730–1746. [Google Scholar] [CrossRef]
- Ribeiro, J.F.; Walter, B.M. T: As principais fitofisionomias do bioma Cerrado. In Cerrado: Ecologia e Flora, v. 1; Sano, S.M., Almeida, S.P., Ribeiro, J.F., Eds.; Embrapa: Brasília, Brazil, 2008; pp. 151–212. [Google Scholar]
- Oliveira, G.C.; Araújo, G.M.; Barbosa, A.A.A. Floristic and zonation of plant species in palm marshes in the Triângulo Mineiro region, Brazil. Rodriguésia 2009, 60, 1077–1085. [Google Scholar] [CrossRef]
- Nunes, Y.R.F.; Bahia, T.d.O.; Ávila, M.A.; Veloso, M.d.D.M.; Santos, R.M. Florística e fitossociologia das comunidades arbóreas de veredas: Um estudo de caso no Norte de Minas Gerais, Brasil. In Fitossociologia do Brasil: Métodos e Estudos de Casos; Eisenlohr, P.V., Felfili, J.M., Melo, M.M.R.F., Andrade, L.A., Meira-Neto, J.A.A., Eds.; UFV: Viçosa, Brasil, 2015; pp. 264–287. [Google Scholar]
- Gonçalves, R.V.S.; Cardoso, J.C.F.; Oliveira, P.E.; Raymundo, D.; De Oliveira, D.C. The role of topography, climate, soil and the surrounding matrix in the distribution of veredas wetlands in central Brazil. Wetl. Ecol. Manag. 2022, 30, 1261–1279. [Google Scholar] [CrossRef]
- Guimarães, A.J.M.; Araújo, G.M.d.; Corrêa, G.F. Estrutura fitossociológica em área natural e antropizada de uma vereda em Uberlândia, MG. Acta Bot. Bras. 2002, 16, 317–329. [Google Scholar] [CrossRef]
- Kurtz, B.C.; Gomes, J.C.; Scarano, F.R. Structure and Phytogeographic Relationships of Swamp Forests of Southeast Brazil. Acta bot. Bras. 2013, 27, 647–660. [Google Scholar] [CrossRef]
- Nogueira, E.V.; Bijos, N.R.; Trindade, V.L.; Heusi, G.P.; Togni, P.H.B.; Munhoz, C.B.R. Differences in Soil Properties Influence Floristic Changes in the Veredas of the Brazilian Cerrado. Braz. J. Bot 2022, 45, 763–774. [Google Scholar] [CrossRef]
- Carvalho, P.d.S. As Veredas e Sua Importância No Domínio Dos Cerrados. Inf. Agropecuário 1991, 168, 54–56. [Google Scholar]
- Maruyama, P.K.; Melo, C.; Pascoal, C.; Vicente, E.; Cardoso, J.C.F.; Brito, V.L.G.; Oliveira, P.E. What Is on the Menu for Frugivorous Birds in the Cerrado? Fruiting Phenology and Nutritional Traits Highlight the Importance of Habitat Complementarity. Acta Bot. Bras. 2019, 33, 572–583. [Google Scholar] [CrossRef]
- Oliveira, P.T.S.; Nearing, M.A.; Moran, M.S.; Goodrich, D.C.; Wendland, E.; Gupta, H.V. Trends in Water Balance Components across the Brazilian Cerrado. Water Resour. Res. 2014, 50, 7100–7114. [Google Scholar] [CrossRef]
- Oliveira, P.T.S.; Leite, M.B.; Mattos, T.; Nearing, M.A.; Scott, R.L.; De Oliveira Xavier, R.; Da Silva Matos, D.M.; Wendland, E. Groundwater Recharge Decrease with Increased Vegetation Density in the Brazilian Cerrado. Ecohydrology 2017, 10, 1759. [Google Scholar] [CrossRef]
- Ávila, M.A.; Souza, S.R.; Veloso, M.D.D.M.; Santos, R.M.; Fernandes, L.A.; Nunes, Y.R.F. Structure of natural regeneration in relation to soil properties and disturbance in two swamp forests. Cerne 2016, 22, 1–10. [Google Scholar] [CrossRef]
- Sebbenn, A.M.; Carvalho, A.C.M.; Freitas, M.L.M.; Moraes, S.M.B.; Gaino, A.P.S.C.; Da Silva, J.M.; Jolivet, C.; Moraes, M.L.T. Low levels of realized seed and pollen gene flow and strong spatial genetic structure in a small, isolated and fragmented population of the tropical tree Copaifera langsdorffii Desf. Heredity 2011, 106, 134–145. [Google Scholar] [CrossRef]
- Araujo, A.C.; Martín González, A.M.; Sandel, B.; Maruyama, P.K.; Fischer, E.; Vizentin-Bugoni, J.; De Araújo, F.P.; Coelho, A.G.; Faria, R.R.; Kohler, G.; et al. Spatial distance and climate determine modularity in a cross-biomes plant–hummingbird interaction network in Brazil. J. Biogeo. 2018, 45, 1846–1858. [Google Scholar] [CrossRef]
- Araújo, F.P.D.; Oliveira, P.E. Biologia floral de Costus spiralis (Jacq.) Roscoe (Costaceae) e mecanismos para evitar a autopolinização. Rev. Bras. Bot. 2007, 30, 61–70. [Google Scholar] [CrossRef]
- Franceschinelli, E.V.; Bawa, K.S. The effect of ecological factors on the mating system of a South American shrub species (Helicteres brevispira). Heredity 2000, 84, 116–123. [Google Scholar] [CrossRef]
- Diaz-Martin, Z.; Browne, L.; Cabrera, D.; Olivo, J.; Karubian, J. Impacts of flowering density on pollen dispersal and gametic diversity are scale dependent. Am. Nat. 2023, 201, 52–64. [Google Scholar] [CrossRef]
- Wolowski, M.; Saad, C.F.; Ashman, T.-L.; Freitas, L. Predominance of self-compatibility in hummingbird-pollinated plants in the Neotropics. Sci. Nat. 2013, 100, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Franceschinelli, E.V.; Kesseli, R. Population structure and gene flow of the Brazilian shrub Helicteres brevispira. Heredity 1999, 82, 355–363. [Google Scholar] [CrossRef] [PubMed]
- Bosch, M.; Waser, N.M. Effects of local density on pollination and reproduction in Delphinium nuttallianum and Aconitum columbianum (Ranunculaceae). Am. J. Bot. 1999, 86, 871–879. [Google Scholar] [CrossRef] [PubMed]
- Butcher, C.L.; Rubin, B.Y.; Anderson, S.L.; Lewis, J.D. Pollen Dispersal Patterns Differ among Sites for a Wind-pollinated Species and an Insect-pollinated Species. Am. J. Bot. 2020, 107, 1504–1517. [Google Scholar] [CrossRef]
- Crnokrak, P.; Roff, D.A. Inbreeding depression in the wild. Heredity 1999, 83, 260–270. [Google Scholar] [CrossRef]
- Hedrick, P.W.; Kalinowski, S.T. Inbreeding depression in conservation biology. Annu. Rev. Ecol. Evol. Syst. 2000, 31, 139–162. [Google Scholar] [CrossRef]
- Charlesworth, D.; Willis, J.H. The genetics of inbreeding depression. Nat. Rev. Genet. 2009, 10, 783–796. [Google Scholar] [CrossRef]
- Surget-Groba, Y.; Kay, K.M. Restricted gene flow within and between rapidly diverging Neotropical plant species. Mol. Ecol. 2013, 22, 4931–4942. [Google Scholar] [CrossRef]
- Kern, B.R.; Carley, L.N.; Moeller, D.A. Direct tracking of pollen with quantum dots reveals surprising uniformity in dispersal distance across eleven populations of an annual plant. Am. J. Bot. 2023, 110, e16201. [Google Scholar] [CrossRef]
- Kay, K.M.; Schemske, D.W. Pollinator assemblages and visitation rates for 11 species of Neotropical Costus (Costaceae). Biotropica 2003, 35, 198–207. [Google Scholar] [CrossRef]
- Torresani, M.; Kleijn, D.; de Vries, J.P.R.; Bartholomeus, H.; Chieffallo, L.; Gatti, R.C.; Rocchini, D. A novel approach for surveying flowers as a proxy for bee pollinators using drone images. Ecol. Indic. 2023, 149, 110123. [Google Scholar] [CrossRef]
- Anderson, B.; Sabino-Oliveira, A.C.; Matallana-Puerto, C.A.; Arvelos, C.A.; Novaes, C.S.; de Cario Calaça, D.C.; Brito, V.L.G. Pollen wars: Explosive pollination removes pollen deposited from previously visited flowers. Am. Nat. 2024, 204, 616–625. [Google Scholar] [CrossRef]
- Maruyama, P.K.; Borges, M.R.; Silva, P.A.; Burns, K.C.; Melo, C. Avian Frugivory in Miconia (Melastomataceae): Contrasting Fruiting Times Promote Habitat Complementarity between Savanna and Palm Swamp. J. Trop. Ecol. 2013, 29, 99–109. [Google Scholar] [CrossRef]
- Koeppen, W. Climatologia con un Estudio de los Climas de la Tierra; Fondo de Cultura Econômica: Mexico City, Mexico, 1948. [Google Scholar]
- Angiosperm Phylogeny Website. Available online: https://www.mobot.org/MOBOT/Research/APweb/welcome.html (accessed on 23 October 2025).
- Brooks, M.E.; Kristensen, K.; van Benthem, K.J.; Magnusson, A.; Berg, C.W.; Nielsen, A.; Skaug, H.J.; Machler, M.; Bolker, B.M. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modelling. R J. 2017, 9, 378–400. [Google Scholar] [CrossRef]
- Hartig, F.; Lohse, L. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models (R Package Version 0.4.5), CRAN [Software]. 2002. Available online: https://CRAN.R-project.org/package=DHARMa (accessed on 23 October 2025).
- Lüdecke, D. ggeffects: Tidy data frames of marginal effects from regression models. J. Open Source Softw. 2018, 3, 772. [Google Scholar] [CrossRef]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; ISBN 978-3-319-24277-4. [Google Scholar]
- R Core Team: A Language and Environment for Statistical Computing. Foundation for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. 2016. Available online: http://www.R-project.org/ (accessed on 6 January 2024).




Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, J.S.; Marinho, R.C.; Mendes-Rodrigues, C.; Altomare, M.; Oliveira, P.E. Distance Matters: Assessing the Influence of Spatial Separation on Reproductive Success of Costus spiralis (Costaceae) in a Vereda Palm Swamp. Plants 2025, 14, 3266. https://doi.org/10.3390/plants14213266
Santos JS, Marinho RC, Mendes-Rodrigues C, Altomare M, Oliveira PE. Distance Matters: Assessing the Influence of Spatial Separation on Reproductive Success of Costus spiralis (Costaceae) in a Vereda Palm Swamp. Plants. 2025; 14(21):3266. https://doi.org/10.3390/plants14213266
Chicago/Turabian StyleSantos, Jessyca Santana, Rafaela Cabral Marinho, Clesnan Mendes-Rodrigues, Monize Altomare, and Paulo Eugênio Oliveira. 2025. "Distance Matters: Assessing the Influence of Spatial Separation on Reproductive Success of Costus spiralis (Costaceae) in a Vereda Palm Swamp" Plants 14, no. 21: 3266. https://doi.org/10.3390/plants14213266
APA StyleSantos, J. S., Marinho, R. C., Mendes-Rodrigues, C., Altomare, M., & Oliveira, P. E. (2025). Distance Matters: Assessing the Influence of Spatial Separation on Reproductive Success of Costus spiralis (Costaceae) in a Vereda Palm Swamp. Plants, 14(21), 3266. https://doi.org/10.3390/plants14213266

