In Vivo Assessment of the Photoprotective Potential of Underutilized Carob Fractions by Using Caenorhabditis elegans
Abstract
1. Introduction
2. Materials and Methods
2.1. Carob Fractions and Reagents
2.2. Preparation of Extracts
2.3. In Vitro Functional Analysis
2.3.1. Total Phenolic Content
2.3.2. Antioxidant Activity
2.3.3. Solar Protection Factor
2.3.4. Erythema Transmission
2.4. In Vivo Photoprotective Analysis Using C. elegans
2.4.1. C. elegans Strain and Maintenance
2.4.2. Effect of Carob Extracts on Lethality Rate of C. elegans After UV Exposure
2.5. Statistical Analysis
3. Results and Discussion
3.1. Total Phenolic Content
3.2. In Vitro Antioxidant Activity
3.3. In Vitro Photoprotective Analysis
3.3.1. Solar Protection Factor
3.3.2. Erythema Transmission
3.4. In Vivo Photoprotective Analysis Using C. elegans
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dhiman, S.; Thakur, B.; Kaur, S.; Ahuja, M.; Gantayat, S.; Sarkar, S.; Tripathi, M. Closing the loop: Technological innovations in food waste valorisation for global sustainability. Discov. Sustain. 2025, 6, 258. [Google Scholar] [CrossRef]
- Lackner, M.; Besharati, M. Agricultural waste: Challenges and solutions, a review. Waste 2025, 3, 18. [Google Scholar] [CrossRef]
- Ghosh, P.R.; Fawcett, D.; Sharma, S.B.; Poinern, G.E.J. Progress towards sustainable utilisation and management of food wastes in the global economy. Int. J. Food Sci. 2016, 2016, 3563478. [Google Scholar] [CrossRef] [PubMed]
- United Nations. 2015. Available online: https://sustainabledevelopment.un.org/content/documents/21252030%20Agenda%20for%20Sustainable%20Development%20web.pdf (accessed on 14 August 2025).
- Dong, L. Toward resilient agriculture value chains: Challenges and opportunities. Prod. Oper. Manag. 2021, 30, 666–675. [Google Scholar] [CrossRef]
- Szabo, K.; Varvara, R.A.; Ciont, C.; Macri, A.M.; Vodnar, D.C. An updated overview on the revalorization of bioactive compounds derived from tomato production and processing by-products. J. Clean. Prod. 2025, 497, 145151. [Google Scholar] [CrossRef]
- Martins-Loução, M.A.; Correia, P.J.; Romano, A. Carob: A Mediterranean resource for the future. Plants 2024, 13, 1188. [Google Scholar] [CrossRef]
- Nasrallah, K.; Khaled, S.; El Khatib, S.; Krayem, M. Nutritional, biochemical and health properties of locust beans and its applications in the food industry: A review. J. Food Sci. Technol. 2024, 61, 621–630. [Google Scholar] [CrossRef]
- Modenese, A.; Korpinen, L.; Gobba, F. Solar radiation exposure and outdoor work: An underestimated occupational risk. Int. J. Environ. Res. Public Health 2018, 15, 2063. [Google Scholar] [CrossRef]
- Panich, U.; Sittithumcharee, G.; Rathviboon, N.; Jirawatnotai, S. Ultraviolet radiation-induced skin aging: The role of DNA damage and oxidative stress in epidermal stem cell damage mediated skin aging. Stem Cells Int. 2016, 2016, 7370642. [Google Scholar] [CrossRef]
- Espinoza-Acosta, J.L.; Figueroa-Espinoza, E.G. Recent progress in the production of lignin-based sunscreens: A review. BioResour. 2022, 17, 3674–3701. [Google Scholar] [CrossRef]
- Safta, D.A.; Ielciu, I.; Șuștic, R.; Hanganu, D.; Niculae, M.; Cenariu, M.; Tomuță, I. Chemical profile and biological effects of an herbal mixture for the development of an oil-in-water cream. Plants 2023, 12, 248. [Google Scholar] [CrossRef]
- Caballero-Gallardo, K.; Quintero-Rincón, P.; Stashenko, E.E.; Olivero-Verbel, J. Photoprotective agents obtained from aromatic plants grown in Colombia: Total phenolic content, antioxidant activity, and assessment of cytotoxic potential in cancer cell lines of Cymbopogon flexuosus L. and Tagetes lucida Cav. essential oils. Plants 2022, 11, 1693. [Google Scholar] [CrossRef]
- Jeamsrichai, T.; Sang-ngern, M. Development of Physalis peruviana L. Fruit Extract as Antioxidant and UV Absorption Agent and Its Application in Sunscreening Product. Ph.D. Thesis, Mae Fah Luang University, Chiang Rai, Thailand, 2017. [Google Scholar]
- Valverde, T.M.; Soares, B.N.G.D.S.; Nascimento, A.M.D.; Andrade, Â.L.; Sousa, L.R.D.; Vieira, P.M.D.A.; Santos, V.M.R.D. Anti-inflammatory, antimicrobial, antioxidant and photoprotective investigation of red propolis extract as sunscreen formulation in Polawax cream. Int. J. Mol. Sci. 2023, 24, 5112. [Google Scholar] [CrossRef]
- Ayad, R.; Ayad, R.; Bourekoua, H.; Lefahal, M.; Makhloufi, E.H.; Akkal, S.; Nieto, G. Process optimization of phytoantioxidant and photoprotective compounds from carob pods (Ceratonia siliqua L.) using ultrasonic assisted extraction method. Molecules 2022, 27, 8802. [Google Scholar] [CrossRef]
- Ben Ayache, S.; Behija Saafi, E.; Emhemmed, F.; Flamini, G.; Achour, L.; Muller, C.D. Biological activities of aqueous extracts from carob plant (Ceratonia siliqua L.) by antioxidant, analgesic and proapoptotic properties evaluation. Molecules 2020, 25, 3120. [Google Scholar] [CrossRef]
- Castillejo, N.; Gomez, H.; Ribes, S.; Barat, J.M.; Pérez-Esteve, É. Redefinición de los subproductos de algarroba como ingredientes funcionales para los alimentos del futuro. Rev. Esp. Nutr. Hum. Diet. 2025, 29, 2. [Google Scholar] [CrossRef]
- Rein, M.J.; Renouf, M.; Cruz-Hernandez, C.; Actis-Goretta, L.; Thakkar, S.K.; da Silva Pinto, M. Bioavailability of bioactive food compounds: A challenging journey to bioefficacy. Br. J. Clin. Pharmacol. 2013, 75, 588–602. [Google Scholar] [CrossRef]
- DeBardeleben, H.K.; Lopes, L.E.; Nessel, M.P.; Raizen, D.M. Stress-induced sleep after exposure to ultraviolet light is promoted by p53 in Caenorhabditis elegans. Genetics 2017, 207, 571–582. [Google Scholar] [CrossRef]
- Adedara, I.A.; Weis, G.C.; Monteiro, C.S.; Soares, F.A.; Rocha, J.B.; Schetinger, M.R.; Aschner, M. Versatility of Caenorhabditis elegans as a model organism for evaluating foodborne neurotoxins and food bioactive compounds in nutritional neuroscience. Mol. Neurobiol. 2025, 62, 7205–7229. [Google Scholar] [CrossRef]
- Chen, W.; Rezaizadehnajafi, L.; Wink, M. Influence of resveratrol on oxidative stress resistance and life span in Caenorhabditis elegans. J. Pharm. Pharmacol. 2013, 65, 682–688. [Google Scholar] [CrossRef]
- Wang, H.; Liu, J.; Li, T.; Liu, R.H. Blueberry extract promotes longevity and stress tolerance via DAF-16 in Caenorhabditis elegans. Food Funct. 2018, 9, 5273–5282. [Google Scholar] [CrossRef]
- Wang, R.J.; Ni, Y.J.; Liu, Y.Q. Hesperetin increases lifespan and antioxidant ability correlating with IIS, HSP, mtUPR, and JNK pathways of chronic oxidative stress in Caenorhabditis elegans. Int. J. Mol. Sci. 2024, 25, 13148. [Google Scholar] [CrossRef] [PubMed]
- Siswanto, F.M. Resveratrol protects Caenorhabditis elegans from ultraviolet B-induced photoaging via skn-1. Mol. Cell. Biomed. Sci. 2025, 9, 48–57. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, B.; Zheng, X. The effect of Tartary buckwheat extract on Caenorhabditis elegans exposed to UVB light and its sunscreen protection factor in sunscreen formulation. Rev. Bras. Farmacogn. 2022, 32, 921–930. [Google Scholar] [CrossRef]
- Valverde, D.; Behrends, B.; Pérez-Esteve, É.; Kuhnert, N.; Barat, J.M. Functional changes induced by extrusion during cocoa alkalization. Food Res. Int. 2020, 136, 109469. [Google Scholar] [CrossRef]
- Ribes, S.; Gómez-Llorente, H.; Córdoba, L.; Fernández-Segovia, I.; Albors, A.; Barat, J.M.; Pérez-Esteve, É. Carob (Ceratonia siliqua L.) flour as a functional ingredient in fresh wheat pasta: Effect on its technological and sensory properties, oral processing and in vitro health benefits. Food Res. Int. 2025, 221, 117475. [Google Scholar] [CrossRef]
- Mansur, J.D.S.; Breder, M.N.R.; Mansur, M.C.D.A.; Azulay, R.D. Determinação do fator de proteção solar por espectrofotometria. An. Bras. Dermatol. 1986, 61, 121–124. [Google Scholar]
- Sayre, R.M.; Agin, P.P.; LeVee, G.J.; Marlowe, E. A Comparison of In Vivo and In Vitro Testing of Sunscreening Formulas. Photochem. Photobiol. 1979, 29, 559–566. [Google Scholar] [CrossRef]
- Wu, Q.; Li, Y.; Tang, M.; Wang, D. Evaluation of Environmental Safety Concentrations of DMSA Coated Fe2O3-NPs Using Different Assay Systems in Nematode Caenorhabditis elegans. PLoS ONE 2012, 7, e43729. [Google Scholar] [CrossRef]
- Verdú, S.; Fuentes, C.; Barat, J.M.; Grau, R. Characterisation of Chemical Damage on Tissue Structures by Multispectral Imaging and Machine Learning Procedures: Alkaline Hypochlorite Effect in C. elegans. Comput. Biol. Med. 2022, 145, 105477. [Google Scholar] [CrossRef] [PubMed]
- Sandhu, A.; Badal, D.; Sheokand, R.; Tyagi, S.; Singh, V. Specific Collagens Maintain the Cuticle Permeability Barrier in Caenorhabditis elegans. Genetics 2021, 217, iyaa047. [Google Scholar] [CrossRef]
- Verdú, S.; Perez, A.J.; Carrascosa, C.; Barat, J.M.; Talens, P.; Grau, R. Caenorhabditis elegans to Model the Capacity of Ascorbic Acid to Reduce Acute Nitrite Toxicity under Different Feed Conditions: Multivariate Analytics on Behavioral Imaging. Int. J. Environ. Res. Public Health 2021, 18, 2068. [Google Scholar] [CrossRef] [PubMed]
- Stergiou, L.; Doukoumetzidis, K.; Sendoel, A.; Hengartner, M.O. The Nucleotide Excision Repair Pathway Is Required for UV-C-Induced Apoptosis in Caenorhabditis elegans. Cell Death Differ. 2007, 14, 1129–1138. [Google Scholar] [CrossRef] [PubMed]
- Verdú, S.; Furones, S.; Grau, R.; Barat, J.M.; Ferrer, A.; Prats-Montalbán, J.M. A Non-Contact Methodology Based on Imaging Analysis, Chemometrics, and Machine Learning to Predict the Lethality of Stressors on C. elegans Populations in Liquid Culture. Chemom. Intell. Lab. Syst. 2025, 264, 105450. [Google Scholar] [CrossRef]
- Sauder, D.C.; DeMars, C.E. An Updated Recommendation for Multiple Comparisons. Adv. Methods Pract. Psychol. Sci. 2019, 2, 26–44. [Google Scholar] [CrossRef]
- Bosch, R.; Philips, N.; Suárez-Pérez, J.A.; Juarranz, A.; Devmurari, A.; Chalensouk-Khaosaat, J.; González, S. Mechanisms of Photoaging and Cutaneous Photocarcinogenesis, and Photoprotective Strategies with Phytochemicals. Antioxidants 2015, 4, 248–268. [Google Scholar] [CrossRef] [PubMed]
- Dammak, A.; Chtourou, F.; Luca, S.V.; Skalicka-Wozniak, K.; Bouaziz, M. Insights into the Phytochemical Composition and Antioxidant Potential of the Tunisian Ceratonia siliqua L. Fitoterapia 2024, 175, 105919. [Google Scholar] [CrossRef]
- Rico, D.; Martín-Diana, A.B.; Martínez-Villaluenga, C.; Aguirre, L.; Silván, J.M.; Dueñas, M.; Lasa, A. In Vitro Approach for Evaluation of Carob By-Products as Source Bioactive Ingredients with Potential to Attenuate Metabolic Syndrome (MetS). Heliyon 2019, 5, e01175. [Google Scholar] [CrossRef]
- Custódio, L.; Fernandes, E.; Romano, A. Quantification of Polyphenols in Carob Tree (Ceratonia siliqua L.) Fruits and Leaves in Portuguese Cultivars. Acta Hortic. 2009, 841, 503–506. [Google Scholar] [CrossRef]
- Lattanzio, V.; Cardinali, A.; Linsalata, V. Plant Phenolics: A Biochemical and Physiological Perspective. In Recent Advances in Polyphenol Research; Cheynier, V., Sarni-Manchado, P., Quideau, S., Eds.; Wiley-Blackwell: Oxford, UK, 2012; Volume 3, pp. 1–39. [Google Scholar] [CrossRef]
- Shahidi, F.; Hossain, A. Importance of Insoluble-Bound Phenolics to the Antioxidant Potential Is Dictated by Source Material. Antioxidants 2023, 12, 203. [Google Scholar] [CrossRef]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Byrne, D.H. Comparison of ABTS, DPPH, FRAP, and ORAC Assays for Estimating Antioxidant Activity from Guava Fruit Extracts. J. Food Compos. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
- Schaich, K.M.; Tian, X.; Xie, J. Reprint of “Hurdles and Pitfalls in Measuring Antioxidant Efficacy: A Critical Evaluation of ABTS, DPPH, and ORAC Assays”. J. Funct. Foods 2015, 18, 782–796. [Google Scholar] [CrossRef]
- Soldado, D.; Bessa, R.J.B.; Jerónimo, E. Condensed Tannins as Antioxidants in Ruminants—Effectiveness and Action Mechanisms to Improve Animal Antioxidant Status and Oxidative Stability of Products. Animals 2021, 11, 3243. [Google Scholar] [CrossRef]
- Belew, A.A.; Gebre, S.H. Comparative Assessment of Phenolic and Flavonoid Contents and Antioxidant Activities in Methanol Extracts of Spices from Jigjiga Market, Ethiopia. Pharmacol. Res.–Nat. Prod. 2025, 6, 100168. [Google Scholar] [CrossRef]
- Mansur, M.C.P.R.; Leitão, S.G.; Cerqueira-Coutinho, C.; Vermelho, A.B.; Silva, R.S.; Presgrave, O.A.; Santos, E.P. In Vitro and In Vivo Evaluation of Efficacy and Safety of Photoprotective Formulations Containing Antioxidant Extracts. Rev. Bras. Farmacogn. 2016, 26, 251–258. [Google Scholar] [CrossRef]
- Saraf, S.; Kour Chhabra, S.; Deep Kaur, C.; Saraf, S. Development of Photochemoprotective Herbs Containing Cosmetic Formulations for Improving Skin Properties. J. Cosmet. Sci. 2012, 63, 119–131. [Google Scholar]
- Echavarría, A.P.; Pagán, J.; Ibarz, A. Melanoidins Formed by Maillard Reaction in Food and Their Biological Activity. Food Eng. Rev. 2012, 4, 203–223. [Google Scholar] [CrossRef]
- Rodríguez-Solana, R.; Romano, A.; Moreno-Rojas, J.M. Carob Pulp: A Nutritional and Functional By-Product Worldwide Spread in the Formulation of Different Food Products and Beverages. A Review. Processes 2021, 9, 1146. [Google Scholar] [CrossRef]
- Sami, F.J.; Soekamto, N.H.; Firdaus, F.; Latip, J. Bioactivity Profile of Three Types of Seaweed as an Antioxidant, UV-Protection as Sunscreen and Their Correlation Activity. Food Res. 2021, 5, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Ha, N.M.; Tran, S.H.; Shim, Y.H.; Kang, K. Caenorhabditis elegans as a Powerful Tool in Natural Product Bioactivity Research. Appl. Biol. Chem. 2022, 65, 18. [Google Scholar] [CrossRef]
- Stojković, M.; Marjanović, D.S.; Medić, D.; Charvet, C.L.; Trailović, S.M. Neuromuscular System of Nematodes Is a Target of Synergistic Pharmacological Effects of Carvacrol and Geraniol. Pharmaceuticals 2025, 18, 1232. [Google Scholar] [CrossRef]
- Rao, M.J.; Zheng, B. The Role of Polyphenols in Abiotic Stress Tolerance and Their Antioxidant Properties to Scavenge Reactive Oxygen Species and Free Radicals. Antioxidants 2025, 14, 74. [Google Scholar] [CrossRef]
- Guerrero-Rubio, M.A.; Hernández-García, S.; García-Carmona, F.; Gandía-Herrero, F. Flavonoids’ Effects on Caenorhabditis elegans’ Longevity, Fat Accumulation, Stress Resistance and Gene Modulation Involve mTOR, SKN-1 and DAF-16. Antioxidants 2021, 10, 438. [Google Scholar] [CrossRef]
- Martí, R.; Roselló, S.; Cebolla-Cornejo, J. Tomato as a Source of Carotenoids and Polyphenols Targeted to Cancer Prevention. Cancers 2016, 8, 58. [Google Scholar] [CrossRef]
- Stahl, W.; Heinrich, U.; Aust, O.; Tronnier, H.; Sies, H. Lycopene-Rich Products and Dietary Photoprotection. Photochem. Photobiol. Sci. 2006, 5, 238–242. [Google Scholar] [CrossRef]
- Stanescu, C.; Chiscop, I.; Mihalache, D.; Popa, F.; Tamas, C.; Stoleriu, G. Skin Aging and Carotenoids: A Systematic Review of Their Multifaceted Protective Mechanisms. Nutrients 2025, 17, 2596. [Google Scholar] [CrossRef] [PubMed]
- Sykuła, A.; Janiak-Włodarczyk, I.; Kapusta, I.T. Formulation and Evaluation of the Antioxidant Activity of an Emulsion Containing a Commercial Green Tea Extract. Molecules 2025, 30, 197. [Google Scholar] [CrossRef] [PubMed]
- Goyache, I.; Yavorov-Dayliev, D.; Milagro, F.I.; Aranaz, P. Caenorhabditis elegans as a Screening Model for Probiotics with Properties against Metabolic Syndrome. Int. J. Mol. Sci. 2024, 25, 1321. [Google Scholar] [CrossRef] [PubMed]




| Extract Concentration | ||
|---|---|---|
| Carob Fractions | 1% | 5% |
| Seed episperm | 10 ± 0.2 aB | 17 ± 0.3 aA |
| Seed germ | 7.2 ± 0.1 cB | 14 ± 0.3 cA |
| Mature whole pod | 5.7 ± 0.2 dB | 9.5 ± 0.2 dA |
| Unripe whole pod | 7.7 ± 0.1 bB | 16 ± 0.3 bA |
| Leaf | 7.2 ± 0.1 cB | 14 ± 0.1 cA |
| Extract Concentration | ||
|---|---|---|
| Carob Fractions | 1% | 5% |
| Seed episperm | 5.5 ± 0.4 dB | 2.8 ± 0.2 dA |
| Seed germ | 6.8 ± 0.5 cB | 3.6 ± 0.5 cA |
| Mature whole pod | 10.0 ± 0.4 aB | 5.8 ± 0.5 aA |
| Unripe whole pod | 7.5 ± 0.3 cB | 3.9 ± 0.5 cA |
| Leaf | 9.3 ± 0.4 bB | 4.9 ± 0.5 bA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez-Llorente, H.; Furones, S.; Castillejo, N.; Tortajada, S.; Verdú, S.; Grau, R.; Pérez-Esteve, É.; M. Barat, J. In Vivo Assessment of the Photoprotective Potential of Underutilized Carob Fractions by Using Caenorhabditis elegans. Plants 2025, 14, 3257. https://doi.org/10.3390/plants14213257
Gómez-Llorente H, Furones S, Castillejo N, Tortajada S, Verdú S, Grau R, Pérez-Esteve É, M. Barat J. In Vivo Assessment of the Photoprotective Potential of Underutilized Carob Fractions by Using Caenorhabditis elegans. Plants. 2025; 14(21):3257. https://doi.org/10.3390/plants14213257
Chicago/Turabian StyleGómez-Llorente, Héctor, Samuel Furones, Noelia Castillejo, Sara Tortajada, Samuel Verdú, Raúl Grau, Édgar Pérez-Esteve, and José M. Barat. 2025. "In Vivo Assessment of the Photoprotective Potential of Underutilized Carob Fractions by Using Caenorhabditis elegans" Plants 14, no. 21: 3257. https://doi.org/10.3390/plants14213257
APA StyleGómez-Llorente, H., Furones, S., Castillejo, N., Tortajada, S., Verdú, S., Grau, R., Pérez-Esteve, É., & M. Barat, J. (2025). In Vivo Assessment of the Photoprotective Potential of Underutilized Carob Fractions by Using Caenorhabditis elegans. Plants, 14(21), 3257. https://doi.org/10.3390/plants14213257

