Development and Evaluation of a Slow-Release Occluded Fertilizer Employing Functionalized Biosolids as a Support Matrix
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents and Support Materials
2.2. Occluded Fertilizer Formulation
2.3. Nutrient Release in Soil Columns
2.4. Nutrient Release in Water
2.5. Analytical Methods and QA/QC
2.6. Statistical Analyses
3. Results and Discussion
3.1. Characterization of the Soil and Supporting Material
3.2. Characterization of the Occluded Fertilizers
3.3. Evaluation of the Release of Nutrients in the Water
- FOMI delivered a steadier nutrient supply, releasing <25% of N, P, and K during the first hour; the curves remain sublinear through 180 min, indicating diffusion/swelling control.
- FOMII released ≈50% N and >35% K in the first hour; P release was similar to FOMI early on but accelerated thereafter.
- Mineral fertilizer (F) showed the expected burst: ~50% of N and P in the first hour, and ~100% by 80–100 min (K completed by ~80 min).
3.4. Kinetic Modeling in Water
- Both FOMI and FOMII yield n > 1 (super case II), consistent with swelling/relaxation-controlled transport in hydrated matrices; k values are lowest for FOMI, indicating the slowest apparent release rate.
- F exhibits the largest k and near-unit or sub-unit n, consistent with rapid erosion/dissolution and minimal matrix control (burst effect).
- Taken together, the kinetic parameters confirm that matrix composition (cellulose vs. clay) governs the extent of swelling and diffusional resistance, explaining the rank order F > FOMII > FOMI in release rate.
3.5. Evaluation of the Release of Nutrients in Soil Columns
- According to European Committee for Standardization (CEN) SRF criteria, FOMI qualifies as SRF (≤15% release at 24 h; ≤75% at 28 d). FOMI/FOMII both released <15% N at 24–48 h (FOMI ~2.2%, FOMII ~6.6% at 48 h). By day 28, N release reached ~71.5% (FOMI) and ~85.9% (FOMII), while F exceeded 90%.
- For P and K, FOMI consistently released less than FOMII (end-point P: ~6% vs. 18%; end-point K: ~18.5% vs. 51.4%), and F exhausted both nutrients by ~22–23 days.
3.6. Statistical Analyses
- In soil (Figure 5), treatment effects were significant for all nutrients (p < 0.05); post hoc Tukey HSD showed FOMI vs. F and FOMI vs. FOMII differences at most time points.
- Where stated in the original text, ANOVA results (e.g., p = 0.015 for N in FOMI vs. F; p < 0.001 for P and K) are retained and now accompanied by effect sizes (η2) in the figure captions.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Madjar, R.M.; Vasile Scăețeanu, G.; Sandu, M.A. Nutrient Water Pollution from Unsustainable Patterns of Agricultural Systems: Effects and Measures of Integrated Farming. Water 2024, 16, 3146. [Google Scholar] [CrossRef]
- Pérez Martín, M.Á. Understanding Nutrient Loads from Catchment and Eutrophication in a Salt Lagoon: The Mar Menor Case. Water 2023, 15, 3569. [Google Scholar] [CrossRef]
- Bhardwaj, R.L.; Parashar, A.; Parewa, H.P.; Vyas, L. An Alarming Decline in the Nutritional Quality of Foods: The Biggest Challenge for Future Generations’ Health. Foods 2024, 13, 877. [Google Scholar] [CrossRef] [PubMed]
- Valenzuela, H. Optimizing the Nitrogen Use Efficiency in Vegetable Crops. Nitrogen 2024, 5, 106–143. [Google Scholar] [CrossRef]
- You, L.; Ros, G.H.; Chen, Y.; Shao, Q.; Young, M.D.; Zhang, F.; de Vries, W. Global Mean Nitrogen Recovery Efficiency in Croplands Can Be Enhanced by Optimal Nutrient, Crop and Soil Management Practices. Nat. Commun. 2023, 14, 5747. [Google Scholar] [CrossRef]
- Dincă, L.C.; Grenni, P.; Onet, C.; Onet, A. Fertilization and Soil Microbial Community: A Review. Appl. Sci. 2022, 12, 1198. [Google Scholar] [CrossRef]
- Bebber, D.P.; Richards, V.R. A Metanalysis of the Effect of Organic and Mineral Fertilizers on Soil Microbial Diversity. Appl. Soil. Ecol. 2022, 175, 104450. [Google Scholar] [CrossRef]
- Shaviv, A. Advances in Controlled release Fertilizers. Adv. Agron. 2001, 71, 1–49. [Google Scholar] [CrossRef]
- Bajpai, A.K.; Giri, A. Swelling Dynamics of a Macromolecular Hydrophilic Network and Evaluation of Its Potential for Controlled Release of Agrochemicals. React. Funct. Polym. 2002, 53, 125–141. [Google Scholar] [CrossRef]
- Yao, L.; Wang, H.; Liu, H.; Wang, X.; Wu, Y.; Wang, L.; Chen, H.; Lin, C. Interaction of Straw Mulching and Nitrogen Fertilization on Ammonia Volatilization from Oilseed Rape–Maize Rotation System in Sloping Farmland in Southwestern China. Plants 2025, 14, 14. [Google Scholar] [CrossRef]
- Wan, X.; Zhao, L.; Wang, Z.; Che, L.; Xu, Y.; Zhou, Y.; Shi, C.; Li, L.; Liu, Y. Effects of Straw Return and Nitrogen Application Rates on Soil Ammonia Volatilization and Yield of Winter Wheat. Agronomy 2024, 14, 1469. [Google Scholar] [CrossRef]
- Jia, L. Soil and Water Management: Practices to Mitigate Nutrient Losses in Agricultural Watersheds. Water 2024, 16, 2269. [Google Scholar] [CrossRef]
- Kim, J.G. Reducing Ammonia Volatilization in Rice Paddy: The Importance of Lower Fertilizer Rates and Soil Incorporation. Front. Environ. Sci. 2024, 12, 1479712. [Google Scholar] [CrossRef]
- Liang, R.; Liu, M. Preparation and Properties of Coated Nitrogen Fertilizer with Slow Release and Water Retention. Ind. Eng. Chem. Res. 2006, 45, 8610–8616. [Google Scholar] [CrossRef]
- Tomaszewska, M.; Jarosiewicz, A.; Karakulski, K. Physical and Chemical Characteristics of Polymer Coatings in CRF Formulation. Desalination 2002, 146, 319–323. [Google Scholar] [CrossRef]
- Bortolin, A.; Aouada, F.A.; Mattoso, L.H.C.; Ribeiro, C. Nanocomposite PAAm/Methyl Cellulose/Montmorillonite Hydrogel: Evidence of Synergistic Effects for the Slow Release of Fertilizers. J. Agric. Food Chem. 2013, 61, 7431–7439. [Google Scholar] [CrossRef]
- Seetapan, N.; Wongsawaeng, J.; Kiatkamjornwong, S. Gel Strength and Swelling of Acrylamide–Protic Acid Superabsorbent Copolymers. Polym. Adv. Technol. 2011, 22, 1685–1695. [Google Scholar] [CrossRef]
- Wang, Q.; Hu, X.; Du, Y.; Kennedy, J.F. Alginate/Starch Blend Fibers and Their Properties for Drug Controlled Release. Carbohydr. Polym. 2010, 82, 842–847. [Google Scholar] [CrossRef]
- Masciarelli, E.; Casorri, L.; Di Luigi, M.; Beni, C.; Valentini, M.; Costantini, E.; Aielli, L.; Reale, M. Microplastics in Agricultural Crops and Their Possible Impact on Farmers’ Health: A Review. Int. J. Environ. Res. Public Health 2025, 22, 45. [Google Scholar] [CrossRef]
- European Parliamentary Research Service (EPRS). Reducing Microplastic Pollution from Plastic Pellet Losses—EU Legislation in Progress (Briefing); European Parliament: Brussels, Belgium, 2025; Available online: https://www.europarl.europa.eu/ (accessed on 14 September 2024).
- CBE-JU, E. / Bio-Based and Biodegradable Delivery Systems for Fertilising Products to Reduce Microplastics Pollution & Promote Soil Health (HORIZON-JU-CBE-2025-RIA-02). Available online: https://errin.eu/ (accessed on 14 September 2024).
- Kubicki, J.D.; Apitz, S.E. Models of Natural Organic Matter and Interactions with Organic Contaminants. Org. Geochem. 1999, 30, 911–927. [Google Scholar] [CrossRef]
- Sinha Ray, S.; Okamoto, M. Polymer/Layered Silicate Nanocomposites: A Review from Preparation to Processing. Prog. Polym. Sci. 2003, 28, 1539–1641. [Google Scholar] [CrossRef]
- Jin, X.; Yang, W.; Gao, X.; Li, Z. Analysis and Modeling of the Complex Dielectric Constant of Bound Water with Application in Soil Microwave Remote Sensing. Remote Sens. 2020, 12, 3544. [Google Scholar] [CrossRef]
- Aquino, A.J.A.; Tunega, D.; Schaumann, G.E.; Haberhauer, G.; Gerzabek, M.H.; Lischka, H. Stabilizing Capacity of Water Bridges in Nanopore Segments of Humic Substances: A Theoretical Investigation. J. Phys. Chem. 2009, 113, 16468–16475. [Google Scholar] [CrossRef]
- Kalinichev, A.G.; Kirkpatrick, R.J. Molecular Dynamics Simulation of Cationic Complexation with Natural Organic Matter. Eur. J. Soil. Sci. 2007, 58, 909–917. [Google Scholar] [CrossRef]
- Kumar, M.; Bauddh, K.; Sainger, M.; Sainger, P.A.; Singh, J.S.; Singh, R.P. Increase in Growth, Productivity and Nutritional Status of Rice (Oryza sativa L. Cv. Basmati) and Enrichment in Soil Fertility Applied with an Organic Matrix Entrapped Urea. J. Crop Sci. Biotechnol. 2012, 15, 137–144. [Google Scholar] [CrossRef]
- Sharma, V.K.; Singh, R.P. Organic Matrix Based Slow-Release Fertilizer Enhances Plant Growth, Nitrate Assimilation and Seed Yield of Indian Mustard (Brassica juncea L.). J. Environ. Biol. 2011, 32, 619–624. Available online: https://www.jeb.co.in/journal_issues/201109_sep11/paper_14.pdf (accessed on 14 September 2024).
- Lekberg, Y.; McLeod, M.; Bullington, L.S.; DuPre, M.E.; De La Roca, G.; Greenbaum, S.; Rousk, J.; Ramsey, P.W. Substantial and Rapid Increase in Soil Health across Crops with Conversion from Conventional to Regenerative Practices. Sustainability 2024, 16, 5509. [Google Scholar] [CrossRef]
- Wang, P.; Shen, X.; Qiu, S.; Zhang, L.; Ma, Y.; Liang, J. Claybased Materials for Heavy Metals Adsorption: Mechanisms, Advancements, and Future Prospects in Environmental Remediation. Crystals 2024, 14, 1046. [Google Scholar] [CrossRef]
- Thapa, B.; Mowrer, J. Soil carbon and aggregate stability are positively related and increased under combined soil amendment, tillage, and cover cropping practices. Soil Sci. Soc. Am. J. 2024, 88, 730–744. [Google Scholar] [CrossRef]
- Tiamwong, S.; Yukhajon, P.; Noisong, P.; Subsadsana, M.; Sansuk, S. Ecofriendly Starch Composite Supramolecular Alginate–Ca2+ Hydrogel as Controlledrelease P Fertilizer with Low Responsiveness to Multiple Environmental Stimuli. Gels 2023, 9, 204. [Google Scholar] [CrossRef]
- Colin, C.; Akpo, E.; Perrin, A.; Cornu, D.; Cambedouzou, J. Encapsulation in Alginate Hydrogels and Controlled Release: An Overview. Molecules 2024, 29, 2515. [Google Scholar] [CrossRef]
- Song, Y.; Ma, L.; Duan, Q.; Xie, H.; Dong, X.; Zhang, H.; Yu, L. Development of Slow-Release Fertilizers with Function of Water Retention Using Eco-Friendly Starch Hydrogels. Molecules 2024, 29, 4835. [Google Scholar] [CrossRef]
- Paganini, E.A.L.; Silva, R.B.; Roder, L.R.; Guerrini, I.A.; Capra, G.F.; Grilli, E.; Ganga, A. A Systematic Review and Metaanalysis of the Sustainable Impact of Sewage Sludge Application on Soil Organic Matter and Nutrient Content. Sustainability 2024, 16, 9865. [Google Scholar] [CrossRef]
- Marin, E.; Rusănescu, C.O. Agricultural Use of Urban Sewage Sludge from the Wastewater Station in the Municipality of Alexandria in Romania. Water 2023, 15, 458. [Google Scholar] [CrossRef]
- Feitosa, M.C.A.; Ferreira, S.R.M.; Delgado, J.M.P.Q.; Silva, F.A.N.; Oliveira, J.T.R.; Oliveira, P.E.S.; Azevedo, A.C. Sewage Sludge Valorization for Collapsible Soil Improvement. Buildings 2023, 13, 338. [Google Scholar] [CrossRef]
- Pampana, S.; Rossi, A.; Arduini, I. Biosolids Benefit Yield and Nitrogen Uptake in Winter Cereals without Excess Risk of N Leaching. Agronomy 2021, 11, 1482. [Google Scholar] [CrossRef]
- McBride, M.B. Longterm Biosolids Application on Land: Beneficial Recycling of Nutrients or Eutrophication of Agroecosystems? Soil Syst. 2022, 6, 9. [Google Scholar] [CrossRef]
- Pereira, V.V.; Morales, M.M.; Pereira, D.H.; de Rezende, F.A.; de Souza Magalhães, C.A.; de Lima, L.B.; MarimonJunior, B.H.; Petter, F.A. Activated Biocharbased Organomineral Fertilizer Delays Nitrogen Release and Reduces N2O Emission. Sustainability 2022, 14, 12388. [Google Scholar] [CrossRef]
- NTC5167:2011; Products for the Agricultural Industry Organic Products Used as Fertilizers and Soil Amendments/Conditioners. ICONTEC: Bogotá, Colombia, 2011.
- European Union. Regulation (EU) 2019/1009; Laying Down Rules on the Making Available on the Market of EU Fertilising Products and Amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009 and Repealing Regulation (EC) No 2003/2003. ; Official Journal of the European Union: Brussels, Belgium, 2019. [Google Scholar]
- Pozzebon, E.A.; Seifert, L. Emerging Environmental Health Risks Associated with the Land Application of Sewage Sludge (Biosolids). Environ. Health 2023, 22, 89. [Google Scholar] [CrossRef]
- Agbor, V.B.; Cicek, N.; Sparling, R.; Berlin, A.; Levin, D.B. Biomass Pretreatment: Fundamentals toward Application. Biotechnol. Adv. 2011, 29, 675–685. [Google Scholar] [CrossRef]
- Vervaet, C.; Baert, B.; Remon, J.P. Extrusion-Spheronisation A Literature Review. Int. J. Pharm. 1995, 116, 131–146. [Google Scholar] [CrossRef]
- Fitzpatrick, G.E. A Program for Determining Cocompost Blending Ratios. Compost. Sci. Util. 1993, 1, 30–33. [Google Scholar] [CrossRef]
- Sartain, J.B.; Hall, W.L.; Littell, R.C.; Hopwood, E.W. New Tools for the Analysis and Characterization of Slow-Release Fertilizers. In Environmental Impact of Fertilizer on Soil and Water; Hall, W.L., Robarge, W.P., Eds.; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2004; Volume 872, pp. 180–195. [Google Scholar] [CrossRef]
- Pérez García, S.; Fernández Pérez, M.; Villafranca Sánchez, M.; González Pradas, E.; Flores Céspedes, F. Controlled Release of Ammonium Nitrate from Ethyl cellulose Coated Formulations. Ind. Eng. Chem. Res. 2007, 46, 3304–3311. [Google Scholar] [CrossRef]
- ISO (International Organization for Standardization). ISO 14235:1998. Soil Quality—Determination of Organic Carbon by Sulfochromic Oxidation (Walkley–Black). ISO: Geneva, Switzerland, 1998. [Google Scholar]
- Yaganza, E.-S.; Tweddell, R.J.; Arul, J. Physicochemical Basis for the Inhibitory Effects of Organic and Inorganic Salts on the Growth of Pectobacterium carotovorum Subsp. Carotovorum and Pectobacterium atrosepticum. Appl. Environ. Microbiol. 2009, 75, 1465–1469. [Google Scholar] [CrossRef] [PubMed]
- Ebube, N.K.; Jones, A.B. Sustained Release of Acetaminophen from a Heterogeneous Mixture of Two Hydrophilic Nonionic Cellulose Ether Polymers. Int. J. Pharm. 2004, 272, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Chin, S.F.; Jong, S.J.; Yeo, Y.J. Optimization of Cellulose-Based Hydrogel Synthesis Using Response Surface Methodology. Biointerface Res. Appl. Chem. 2022, 12, 7136–7146. [Google Scholar] [CrossRef]
- Peppas, N.A.; Sahlin, J.J. A Simple Equation for the Description of Solute Release. III. Coupling of Diffusion and Relaxation. Int. J. Pharm. 1989, 57, 169–172. [Google Scholar] [CrossRef]
- Siepmann, J.; Siepmann, F. Mathematical Modeling of Drug Delivery. Int. J. Pharm. 2008, 364, 328–343. [Google Scholar] [CrossRef]
- Rizwan, M.; Gilani, S.R.; Durrani, A.I.; Naseem, S. Kinetic Model Studies of Controlled Nutrient Release and Swelling Behavior of Combo Hydrogel Using Acer Platanoides Cellulose. J. Taiwan. Inst. Chem. Eng. 2022, 131, 104137. [Google Scholar] [CrossRef]
- Ritger, P.L.; Peppas, N.A. A Simple Equation for Description of Solute Release. I. Fickian and NonFickian Release from Nonswellable Devices in the Form of Slabs, Spheres, Cylinders or Discs. J. Control. Release 1987, 5, 23–36. [Google Scholar] [CrossRef]
- Dash, S.; Murthy, P.N.; Nath, L.; Chowdhury, P. Kinetic Modeling on Drug Release from Controlled Drug Delivery Systems. Acta Pol. Pharm. Drug Res. 2010, 67, 217–223. Available online: https://www.ptfarm.pl/pub/File/Acta_Poloniae/2010/3/217.pdf (accessed on 14 September 2024).
- Bruschi, M. Mathematical Models of Drug Release. In Strategies to Modify the Drug Release from Pharmaceutical Systems; Woodhead Publishing: Cambridge, UK, 2015; pp. 63–86. ISBN 9780081000922. [Google Scholar]
- Gwenzi, W.; Nyambishi, T.J.; Chaukura, N.; Mapope, N. Synthesis and Nutrient Release Patterns of a Biochar-Based N–P–K Slow-Release Fertilizer. Int. J. Environ. Sci. Technol. 2018, 15, 405–414. [Google Scholar] [CrossRef]
- Fierro, A.; Angers, D.A.; Beauchamp, C.J. Decomposition of Paper De-Inking Sludge in a Sandpit Minesoil during Its Revegetation. Soil. Biol. Biochem. 2000, 32, 143–150. [Google Scholar] [CrossRef]
Formulation | Assay in Soil Columns (2 Pellets with 1.68 g) | Assay in Water (1 Pellet with) |
---|---|---|
Mineral fertilizer (F), control | NPK (10-10-10) = 3.36 g/soil | NPK (10-10-10) = 1.68 g/500 mL |
Organic matrix (FOMI) | 50% fertilizer + 50% FOMI | % fertilizer + 50% FOMI |
Organic matrix (FOMII) | 50% fertilizer + 50% FOMII | % fertilizer + 50% FOMII |
Soil without fertilizer (blank) | 2 kg/soil column | - |
Parameter | Sandy Soil | Biosolids | Cellulose | Bentonite Clay |
---|---|---|---|---|
Total nitrogen (N)% | 0.067 | 2.46 ± 0.88 | 0.38 ± 0.50 | ND |
Total phosphorus (P2O5),% | ND | 2.10 ± 1.29 | 0.46 ± 0.98 | ND |
Total potassium (K2O),% | 0.0114 | 0.64 ± 0.65 | ND | 0.0117 ± 0.0001 |
Water retention capacity (WRC), % | 20.57 | 112.50 ± 0.03 | 264 ± 0.08 | 26 ± 0.3 |
Cation exchange (CEC), meq 100 g−1 | 13.26 | 35.27 ± 2.03 | 9.31 ± 0.04 | 24.40 ± 0.5 |
Humidity (H), % | 0.12 | 59.66 ± 0.58 | 55.60 ± 0.05 | 28.70 ± 0.07 |
pH | 6.37 | 7.01 ± 0.48 | 7.73 ± 0.03 | 6.5 ± 0.17 |
Electric conductivity (EC), dS m−1 | 0,02 | 4.76 ± 0.17 | 0.02 ± 0.12 | 0.040 ± 0.9 |
Oxidizable Organic Carbon (Cox)% | 2.01 | 14.64 ± 2.22 | 22.90 ± 1.20 | ND |
Ashes, % | 94.95 | 64.01 ± 2.88 | 42 ± 0.03 | ND |
Density, g cm−3 | 1.72 | 0.48 ± 0.08 | 0.36 ± 0.008 | 2.62 ± 0.003 |
Microbiological parameter | ||||
Mesophiles CFU g−1 | ND | 9.48 × 1010 ± 1.10 × 1010 | 1.3 × 109 | ND |
Thermophiles CFU g−1 | ND | 4.52 × 108 ± 1.29 × 109 | 8.8 × 108 | ND |
Enterobacteria CFU g−1 | ND | 1.0 × 105 ± 2.07 × 105 | 2.0 × 101 | ND |
Salmonella sp. (absent in 25g) | ND | ND | ND | ND |
Metals | ||||
Na % | 0.0082 | 0.17 ± 0.10 | ND | 0.040 ± 0.0001 |
CaO % | ND | 3.78 ± 0.317 | 9.12 ± 0.02 | 0.068 ± 0.0002 |
MgO % | 0.0073 | 0.56 ± 0.31 | 0.24 ± 0.04 | 0.120 ± 0.001 |
Zn, ppm | ND | 0.39 ± 0.27 | ND | 0.00036 ± 0.0005 |
Cr, ppm | ND | 381.57 ± 3.0 | 55.18 ± 0.35 | ND |
Cd, ppm | ND | 2.72 ± 2.51 | ND | ND |
Pb, ppm | ND | 36.98 ± 2.22 | ND | ND |
Ni, ppm | ND | 149.38 ± 2.88 | 11.71 ± 0.77 | ND |
As, ppm | ND | 0.18 ± 3.20 | 16.51 ± 0.67 | ND |
Parameter | FOMI | FOMII |
---|---|---|
pH | 6.68 ± 0.09 | 6.57 ± 0.08 |
Organic carbon (OC), % | 17.43 ± 0.12 | 10.0 ± 0.01 |
Cation exchange (CEC) meq 100 g−1 | 76.8 ± 0.06 | 82.9 ± 0.05 |
Water retention capacity (WRC) | 205 ± 0.03 | 38.5 ± 0.02 |
Total nitrogen (N) (%) | 10 | 10 |
Phosphorus, P2O5 (%) | 10 | 10 |
Potassium, K2O | 10 | 10 |
Enterobacteria CFU g−1 | 9.5 × 102 | 2.2 ×102 |
Mesophiles CFU g−1 | 2.5 ×106 | 6.4 ×108 |
Thermophiles CFU g−1 | 2.4 ×1010 | 7.5 ×108 |
Kinetic Model | Parameter | FOMI | FOMII | Fertilizer | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Korsmeyer–Peppas | NH4+ | HPO42− | K+ | NH4+ | HPO42− | K+ | NH4+ | HPO42− | K+ | |
n | 1.753 | 1.753 | 1.333 | 1.055 | 1.980 | 1.373 | 0.964 | 1.315 | 1.204 | |
K | 0.014 | 0.003 | 0.115 | 0.579 | 0.004 | 0.131 | 1.226 | 0.234 | 0.568 | |
R2 | 0.994 | 0.982 | 0.992 | 0.996 | 0.985 | 0.996 | 0.988 | 0.995 | 0.568 |
Day | % N | % P | % K |
---|---|---|---|
1 | −0.0002225 ± 0.00012 | −0.0000864 ± 0.00007 | 0.0002490 ± 0.00018 |
2 | −0.0006044 ±0.00099 | 0.0067099 ± 0.00010 | 0.0002745 ± 0.00021 |
3 | −0.0004973 ± 0.00021 | 0.0018617 ± 0.00012 | 0.0000761 ± 0.00020 |
4 | −0.0001310 ± 0.00024 | 0.0030530 ± 0.00010 | 0.0001516 |
5 | −0.000515568 | 0.00543551 | - |
6 | −0.000160714 | 0.00266179 ± 0.00020 | 0.0013831 ± 0.00011 |
7 | −0.000964286 | 0.0028391 ± 0.000019 | 0.0002936 ± 0.00010 |
8 | −0.000717033 ± 0.00013 | 0.0015980 ± 0.000271 | - |
9 | −0.000465201 ± 0.00020 | 0.00181959 | - |
10 | −0.000304945 ± 0.00031 | 0.00221853 ± 0.00024 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palacios, R.R.; Restrepo-Sánchez, N.; Ramirez, R.; Restrepo, I.A.; Jaramillo, C.P. Development and Evaluation of a Slow-Release Occluded Fertilizer Employing Functionalized Biosolids as a Support Matrix. Plants 2025, 14, 3154. https://doi.org/10.3390/plants14203154
Palacios RR, Restrepo-Sánchez N, Ramirez R, Restrepo IA, Jaramillo CP. Development and Evaluation of a Slow-Release Occluded Fertilizer Employing Functionalized Biosolids as a Support Matrix. Plants. 2025; 14(20):3154. https://doi.org/10.3390/plants14203154
Chicago/Turabian StylePalacios, Rodrigo Ramírez, Nora Restrepo-Sánchez, Rosember Ramirez, Isabel Acevedo Restrepo, and Carlos Peláez Jaramillo. 2025. "Development and Evaluation of a Slow-Release Occluded Fertilizer Employing Functionalized Biosolids as a Support Matrix" Plants 14, no. 20: 3154. https://doi.org/10.3390/plants14203154
APA StylePalacios, R. R., Restrepo-Sánchez, N., Ramirez, R., Restrepo, I. A., & Jaramillo, C. P. (2025). Development and Evaluation of a Slow-Release Occluded Fertilizer Employing Functionalized Biosolids as a Support Matrix. Plants, 14(20), 3154. https://doi.org/10.3390/plants14203154