Seed Germination Ecology and Longevity of the Invasive Aquatic Plant Sagittaria platyphylla
Abstract
1. Introduction
2. Results
2.1. Seed Fill Analysis
2.2. Experiment 1—Effects of Light and Temperature on Seed Germination
2.3. Experiment 2—Effects of Burial Depth on Seedling Emergence and Viability of Retrieved Seeds
2.4. Experiment 3—Prediction of Seed Longevity Using a CAT
3. Discussion
3.1. Seed Germination Affected by Light and Temperature
3.2. Seedling Emergence Affected by Burial Depth, and Seed Viability of Retrieved Seeds
3.3. CAT to Estimate Seed Longevity of Sagittaria platyphylla
4. Materials and Methods
4.1. Seed Collection
4.2. Seed Fill Determination
4.3. Experiment 1—Effects of Light and Temperature on Seed Germination
4.4. Experiment 2—Effects of Burial Depth on Seedling Emergence and Viability of Retrieved Seeds
4.5. Experiment 3—Prediction of Seed Longevity Using a CAT
4.6. Data Collection and Analysis
- Equation (1): Germination percentage
- Equation (2): Final germination percentage adjusted by seed fill
- Equation (3): Seed longevityv = Ki − (p/σ)
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
IAAP | Invasive alien aquatic plant |
SSB | Substrate seedbank |
CAT | Controlled aging test |
RH | Relative humidity |
GLM | Generalized linear model |
CRD | Completely randomized design |
AIC | Akaike information criterion |
P50 | The time taken for germination to decline to 50% |
NSW | New South Wales |
UQ | University of Queensland |
NaOCl | Sodium hypochlorite |
CO2 | Carbon dioxide |
LED | Light-emitting diode |
LiCl | Lithium chloride |
References
- Adair, R.J.; Keener, B.R.; Kwong, R.M.; Sagliocco, J.L.; Flower, G.E. The biology of Australian weeds 60. Sagittaria platyphylla (Engelmann) J.G. Smith and Sagittaria calycina Engelmann. Plant Prot. Q. 2012, 27, 47–58. [Google Scholar]
- Clements, D.; Dugdale, T.; Kwong, R. Developing Best Practice Management Strategies for Sagittaria in Australia. Phase 1: Current Management Practices—May 2018; Agriculture Victoria: Bundoora, Australia, 2018. [Google Scholar]
- Kwong, R.M. Is delta arrowhead (Sagittaria platyphylla) a suitable target for biological control in Australia? In Proceedings of the 19th Australasian Weeds Conference, “Science, Community and Food Security: The Weed Challenge”, Hobart, Australia, 1–4 September 2014.
- Dugdale, T.M.; Kwong, R.M. National Best Practice Management Manual for Sagittaria (Sagittaria platyphylla); Department of Agriculture, Fisheries and Forestry: Canberra, Australia, 2023. [Google Scholar]
- Kwong, R.M.; Sagliocco, J.L.; Harms, N.E.; Butler, K.L.; Martin, G.D.; Green, P.T. Could enemy release explain invasion success of Sagittaria platyphylla in Australia and South Africa? Aquat. Bot. 2019, 153, 67–72. [Google Scholar] [CrossRef]
- Kwong, R.M.; Sagliocco, J.L.; Harms, N.E.; Butler, K.L.; Green, P.T.; Martin, G.D. Biogeographical comparison of the emergent macrophyte, Sagittaria platyphylla in its native and introduced ranges. Aquat. Bot. 2017, 141, 1–9. [Google Scholar] [CrossRef]
- Robledo, M.; Contreras, S.; Johanna, B.; Galli, C. First Miocene megafossil of arrowhead, alismataceous plant Sagittaria, from South America. Acta Palaeontol. Pol. 2021, 66, 111–122. [Google Scholar] [CrossRef]
- Cohen, O.; Riov, J.; Katan, J.; Gamliel, A.; Bar, P. Reducing persistent seed banks of invasive plants by soil solarization: The case of Acacia saligna. Weed Sci. 2008, 56, 860–865. [Google Scholar] [CrossRef]
- Zimdahl, R.L. Chapter 22—Weed-management systems. In Fundamentals of Weed Science, 5th ed.; Zimdahl, R.L., Ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 609–649. [Google Scholar]
- Bicalho, E.M. Soil seed banks, persistence and recruitment: Memories of a partially non-lived life? Theor. Exp. Plant Physiol. 2024, 36, 583–587. [Google Scholar] [CrossRef]
- Gioria, M.; Carta, A.; Baskin, C.C.; Dawson, W.; Essl, F.; Kreft, H.; Pergl, J.; van Kleunen, M.; Weigelt, P.; Winter, M.; et al. Persistent soil seed banks promote naturalisation and invasiveness in flowering plants. Ecol. Lett. 2021, 24, 1655–1667. [Google Scholar] [CrossRef] [PubMed]
- Biswas, P.S.; Rashid, M.M.; Khatun, H.; Yasmeen, R.; Biswas, J.K. Chapter 11—Scope and progress of rice research harnessing cold tolerance. In Advances in Rice Research for Abiotic Stress Tolerance; Hasanuzzaman, M., Fujita, M., Nahar, K., Biswas, J.K., Eds.; Woodhead Publishing: London, UK, 2019; pp. 225–264. [Google Scholar]
- Delaisse, C.; Yeoh, P.B.; Didham, R.K.; Lewandrowski, W.; Scott, J.K.; Webber, B.L. Improving weed management by targeting the seed ecology of blackberry (Rubus anglocandicans) in a biodiversity hotspot. Aust. J. Bot. 2023, 71, 28–42. [Google Scholar] [CrossRef]
- Chauhan, B.S.; Johnson, D.E. The role of seed ecology in improving weed management strategies in the tropics. In Advances in Agronomy; Academic Press: Cambridge, MA, USA, 2010; Volume 105, pp. 221–262. [Google Scholar]
- Dey, P.; Pratap, T.; Mishra, S.; Pandit, P. Weed seed bank in soil as affected by different weed management practices in spring sweet corn. Indian J. Weed Sci. 2018, 50, 269–272. [Google Scholar] [CrossRef]
- Baskin, C.C.; Baskin, J.M. Germination ecology of plants with specialized life cycles and/or habitats. In Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination, 2nd ed.; Academic Press: London, UK, 2014; pp. 869–1004. [Google Scholar]
- Crocker, W. Germination of seeds of water plants. Bot. Gaz. 1907, 44, 375–380. [Google Scholar] [CrossRef]
- USDA. Plant Factsheet: Duck Potato (Sagittaria latifolia Willd). Available online: https://plants.usda.gov/home/plantProfile?symbol=SALA (accessed on 9 August 2025).
- Ozaki, Y.; Shimono, Y.; Tominaga, T. Germination characteristics of Sagittaria trifolia. Weed Biol. Manag. 2018, 18, 160–166. [Google Scholar] [CrossRef]
- Gordon, C.E.; Velasquez, J. Dispersion, germination and growth of seedlings of Sagittaria lancifolia L. Folia Geobot. Phytotax. 1989, 24, 37–49. [Google Scholar] [CrossRef]
- Pitol, A.; Cechin, J.; Schreiber, F.; Santos Moisinho, I.; Andres, A.; Agostinetto, D. Ecophysiological aspects of seed germination in Sagittaria montevidensis biotypes resistant and susceptible to herbicides. Pesqui. Agropec. Bras. 2022, 57, e02387. [Google Scholar] [CrossRef]
- Ballesteros, D.; Pritchard, H.W.; Walters, C. Dry architecture: Towards the understanding of the variation of longevity in desiccation-tolerant germplasm. Seed Sci. Res. 2020, 30, 142–155. [Google Scholar] [CrossRef]
- Brock, M.A. Persistence of seed banks in Australian temporary wetlands. Freshw. Biol. 2011, 56, 1312–1327. [Google Scholar] [CrossRef]
- Nadarajan, J.; Walters, C.; Pritchard, H.W.; Ballesteros, D.; Colville, L. Seed longevity-the evolution of knowledge and a conceptual framework. Plants 2023, 12, 471. [Google Scholar] [CrossRef]
- Long, R.L.; Panetta, F.D.; Steadman, K.J.; Probert, R.; Bekker, R.M.; Brooks, S.; Adkins, S.W. Seed persistence in the field may be predicted by laboratory-controlled aging. Weed Sci. 2008, 56, 523–528. [Google Scholar] [CrossRef]
- Roberts, E.H. Storage Environment and the Control of Viability. In Viability of Seeds; Roberts, E.H., Ed.; Springer: Dordrecht, The Netherlands, 1972; pp. 14–58. [Google Scholar]
- Li, W. Environmental opportunities and constraints in the reproduction and dispersal of aquatic plants. Aquat. Bot. 2014, 118, 62–70. [Google Scholar] [CrossRef]
- Sullivan, P.R.; Wood, R. Water hyacinth (Eichhornia crassipes (Mart.) Solms) seed longevity and the implications for management. In Proceedings of the Eighteenth Australasian Weeds Conference, Melbourne, Australia, 8–11 October 2012; pp. 37–40. [Google Scholar]
- Panetta, F.D. Seed persistence of the invasive aquatic plant, Gymnocoronis spilanthoides (Asteraceae). Aust. J. Bot. 2010, 57, 670–674. [Google Scholar] [CrossRef]
- Tuckett, R.E.; Merritt, D.J.; Hay, F.R.; Hopper, S.D.; Dixon, K.W. Comparative longevity and low-temperature storage of seeds of Hydatellaceae and temporary pool species of south-west Australia. Aust. J. Bot. 2010, 58, 327–334. [Google Scholar] [CrossRef]
- Karrer, G.; Lehner, F.; Waldhaeuser, N.; Knolmajer, B.; Hall, R.M.; Poór, J.; Jócsák, I.; Kazinczi, G. Long-term seed survival of common ragweed (Ambrosia artemisiifolia L.) after burial. NeoBiota 2024, 96, 363–379. [Google Scholar] [CrossRef]
- Moravcová, L.; Carta, A.; Pyšek, P.; Skálová, H.; Gioria, M. Long-term seed burial reveals differences in the seed-banking strategies of naturalized and invasive alien herbs. Sci. Rep. 2022, 12, 8859. [Google Scholar] [CrossRef] [PubMed]
- Flower, G.E. The Biology and Ecology of Arrowhead (Sagittaria montevidensis Cham. et Schlecht), A Weed in Rice in NSW; Charles Sturt University: Wagga, Australia, 2003. [Google Scholar]
- Kettenring, K.M.; Gardner, G.; Galatowitsch, S.M. Effect of light on seed germination of eight wetland Carex species. Ann. Bot. 2006, 98, 869–874. [Google Scholar] [CrossRef]
- Dalziell, E.L.; Funnekotter, B.; Mancera, R.L.; Merritt, D.J. Seed storage behaviour of tropical members of the aquatic basal angiosperm genus Nymphaea L. (Nymphaeaceae). Conserv. Physiol. 2019, 7, coz021. [Google Scholar] [CrossRef]
- Kadono, Y. Germination of the turion of Potamogeton crispus L. Physiol. Ecol. Jpn. 1982, 19, 1–5. [Google Scholar]
- Moore, K.A.; Orth, R.J.; Nowak, J.F. Environmental regulation of seed germination in Zostera marina L. (eelgrass) in Chesapeake Bay: Effects of light, oxygen and sediment burial. Aquat. Bot. 1993, 45, 79–91. [Google Scholar] [CrossRef]
- Ekstam, B.; Forseby, Å. Germination response of Phragmites australis and Typha latifolia to diurnal fluctuations in temperature. Seed Sci. Res. 1999, 9, 157–163. [Google Scholar] [CrossRef]
- Schütz, W. Germination responses of temperate Carex-species to diurnally fluctuating temperatures—A comparative study. Flora 1999, 194, 21–32. [Google Scholar] [CrossRef]
- Liu, K.; Baskin, J.M.; Baskin, C.C.; Bu, H.; Du, G.; Ma, M. Effect of Diurnal Fluctuating versus Constant Temperatures on Germination of 445 Species from the Eastern Tibet Plateau. PLoS ONE 2013, 8, e69364. [Google Scholar] [CrossRef] [PubMed]
- Zou, T.T.; Lyu, S.T.; Jiang, Q.L.; Shang, S.H.; Wang, X.F. Pre- and post-pollination barriers between two exotic and five native Sagittaria species: Implications for species conservation. Plant Divers. 2023, 45, 456–468. [Google Scholar] [CrossRef]
- Australian Government. Climate Classification Maps. Available online: http://www.bom.gov.au/climate/maps/averages/climate-classification/ (accessed on 25 July 2025).
- Née, G.; Xiang, Y.; Soppe, W.J.J. The release of dormancy, a wake-up call for seeds to germinate. Curr. Opin. Plant Biol. 2017, 35, 8–14. [Google Scholar] [CrossRef]
- Penfield, S.; MacGregor, D.R. Effects of environmental variation during seed production on seed dormancy and germination. J. Exp. Bot. 2016, 68, 819–825. [Google Scholar] [CrossRef]
- Kerdaffrec, E.; Nordborg, M. The maternal environment interacts with genetic variation in regulating seed dormancy in Swedish Arabidopsis thaliana. PLoS ONE 2017, 12, e0190242. [Google Scholar] [CrossRef]
- Chen, D.; Yuan, Z.; Wei, Z.; Hu, X. Effect of maternal environment on seed germination and seed yield components of Thlaspi arvense. Ind. Crops Prod. 2022, 181, 114790. [Google Scholar] [CrossRef]
- Sharma, E.; Majee, M. Seed germination variability: Why do genetically identical seeds not germinate at the same time? J. Exp. Bot. 2023, 74, 3462–3475. [Google Scholar] [CrossRef]
- Bliss, D.; Smith, H. Penetration of light into soil and its role in the control of seed germination. Plant Cell Environ. 1985, 8, 475–483. [Google Scholar] [CrossRef]
- Lythgoe, J.N. Light and vision in the aquatic environment. In Proceedings of the Sensory Biology of Aquatic Animals; Springer: New York, NY, USA, 1988; pp. 57–82. [Google Scholar]
- Xiao, C.; Xing, W.; Liu, G. Seed germination of 14 wetland species in response to duration of cold-wet stratification and outdoor burial depth. Aquat. Biol. 2010, 11, 169–177. [Google Scholar] [CrossRef]
- Ke, X.; Li, W. Germination requirement of Vallisneria natans seeds: Implications for restoration in Chinese lakes. Hydrobiologia 2006, 559, 357–362. [Google Scholar] [CrossRef]
- Spencer, D.F.; Ksander, G.G. Sedimentation disrupts natural regeneration of Zannichellia palustris in Fall River, California. Aquat. Bot. 2002, 73, 137–147. [Google Scholar] [CrossRef]
- Chahtane, H.; Kim, W.; Lopez-Molina, L. Primary seed dormancy: A temporally multilayered riddle waiting to be unlocked. J. Exp. Bot. 2016, 68, 857–869. [Google Scholar] [CrossRef] [PubMed]
- Schütz, W. Dormancy characteristics and germination timing in two alpine Carex species. Basic Appl. Ecol. 2002, 3, 125–134. [Google Scholar] [CrossRef]
- Finch-Savage, W.E.; Leubner-Metzger, G. Seed dormancy and the control of germination. New Phytol. 2006, 171, 501–523. [Google Scholar] [CrossRef]
- Finch-Savage, W.E.; Footitt, S. Seed dormancy cycling and the regulation of dormancy mechanisms to time germination in variable field environments. J. Exp. Bot. 2017, 68, 843–856. [Google Scholar] [CrossRef]
- Lamont, B.B.; Pausas, J.G. Seed dormancy revisited: Dormancy-release pathways and environmental interactions. Funct. Ecol. 2023, 37, 1106–1125. [Google Scholar] [CrossRef]
- Conn, J.S.; Beattie, K.L.; Blanchard, A. Seed viability and dormancy of 17 weed species after 19.7 years of burial in Alaska. Weed Sci. 2006, 54, 464–470. [Google Scholar] [CrossRef]
- Victoria Government. Regional Irrigated Land and Water Use Mapping Program. Available online: https://www.water.vic.gov.au/our-programs/regional-irrigated-land-and-water-use-mapping-program (accessed on 6 May 2025).
- Thiemer, K.; Schneider, S.C.; Demars, B.O.L. Mechanical removal of macrophytes in freshwater ecosystems: Implications for ecosystem structure and function. Sci. Total Environ. 2021, 782, 146671. [Google Scholar] [CrossRef] [PubMed]
- Kadereit, G.; Newton, R.J.; Vandelook, F. Evolutionary ecology of fast seed germination: A case study in Amaranthaceae/Chenopodiaceae. Perspect. Plant Ecol. Evol. Syst. 2017, 29, 1–11. [Google Scholar] [CrossRef]
- Rejmanek, M.; Richardson, D.M. What Attributes Make Some Plant Species More Invasive? Ecology 1996, 77, 1655–1661. [Google Scholar] [CrossRef]
- Moles, A.T.; Warton, D.I.; Westoby, M. Seed size and survival in the soil in arid Australia. Austral Ecol. 2003, 28, 575–585. [Google Scholar] [CrossRef]
- Bekker, R.M.; Bakker, J.P.; Grandin, U.; Kalamees, R.; Milberg, P.; Poschlod, P.; Thompson, K.; Willems, J.H. Seed size, shape and vertical distribution in the soil: Indicators of seed longevity. Funct. Ecol. 1998, 12, 834–842. [Google Scholar] [CrossRef]
- Ghersa, C.M.; Martínez-Ghersa, M.A. Ecological correlates of weed seed size and persistence in the soil under different tilling systems: Implications for weed management. Field Crops Res. 2000, 67, 141–148. [Google Scholar] [CrossRef]
- Rieks, D.K.; Lloyd, F. Wet heat as a mechanism for dormancy release and germination of seeds with physical dormancy. Weed Sci. 2005, 53, 663–669. [Google Scholar] [CrossRef]
- Menalled, F.; Schonbeck, M. Manage the Weed Seed Bank—Minimize “Deposits” and Maximize “Withdrawals”. Available online: https://eorganic.org/node/2806 (accessed on 9 May 2025).
- Delesalle, V.A.; Blum, S. Variation in germination and survival among families of Sagittaria latifolia in response to salinity and temperature. Int. J. Plant Sci. 1994, 155, 187–195. [Google Scholar] [CrossRef]
- Davies, R.; Di Sacco, A.; Newton, R. Germination Testing: Procedures and Evaluation; Royal Botanic Gardens, Kew: London, UK, 2015. [Google Scholar]
- Smart, M.R.; Barko, J.W. Laboratory culture of submersed freshwater macrophytes on natural sediments. Aquat. Bot. 1985, 21, 251–263. [Google Scholar] [CrossRef]
- Royal Botanic Gardens Kew. MSBP Technical Information Sheet 01—Comparative Longevity; Royal Botanic Gardens Kew: London, UK, 2022. [Google Scholar]
- Posit Team. RStudio: Integrated Development Environment for R (Version 2023.09.1+494) [Computer Software]; Posit Software, PBC: Boston, MA, USA, 2023. [Google Scholar]
- RStudio Team. RStudio: Integrated Development for R (Version 4.2.2) [Computer Software]; RStudio, PBC: Boston, MA, USA, 2023. [Google Scholar]
- Merritt, D.; Rokich, D. Seed biology and ecology. In Australian Seeds: A Guide to Their Collection, Identification and Biology; Sweedman, L., David, M., Eds.; CSIRO Publishing: Clayton, Australia, 2006; pp. 19–24. [Google Scholar]
- Carvalho, F.J.; Santana, D.G.; Araújo, L.B. Why analyze germination experiments using Generalized Linear Models? J. Seed Sci. 2018, 40, 281–287. [Google Scholar] [CrossRef]
- Gianinetti, A. Basic features of the analysis of germination data with generalized linear mixed models. Data 2020, 5, 6. [Google Scholar] [CrossRef]
- Fox, J.; Weisberg, S. An R Companion to Applied Regression. Available online: https://www.john-fox.ca/Companion/ (accessed on 25 August 2025).
- Hothorn, T.; Bretz, F.; Westfall, P. Simultaneous inference in general parametric models. Biometr. J. 2008, 50, 346–363. [Google Scholar] [CrossRef]
- Mondoni, A.; Orsenigo, S.; Donà, M.; Balestrazzi, A.; Probert, R.; Hay, F.; Petraglia, A.; Abeli, T. Environmentally induced transgenerational changes in seed longevity: Maternal and genetic influence. Ann. Bot. 2014, 113, 1257–1263. [Google Scholar] [CrossRef]
- Ellis, R.H.; Roberts, E.H. Improved equations for the prediction of seed longevity. Ann. Bot. 1980, 45, 13–30. [Google Scholar] [CrossRef]
Term | Likelihood Ratio Chi-Square | Df | p-Value |
---|---|---|---|
Light conditions (light vs. dark) | 289.95 | 1 | <2.2 × 10−16 |
Temperature (10 levels) | 641.58 | 9 | <2.2 × 10−16 |
Light condition x temperature | 82.39 | 9 | 5.40 × 10−14 |
Residuals | - | 40 | - |
AIC (Akaike Information Criterion) | - | - | 311.86 |
P50 Value (Days) | P50 Category | Lifespan Predicted In Situ (Years) |
---|---|---|
<20 | Transient | <1 |
20 < P50 < 50 | Short-lived | 1 to 3 |
>50 | Long-lived | >3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, N.; Bickel, T.; Kalaipandian, S.; Adkins, S. Seed Germination Ecology and Longevity of the Invasive Aquatic Plant Sagittaria platyphylla. Plants 2025, 14, 3138. https://doi.org/10.3390/plants14203138
Nguyen N, Bickel T, Kalaipandian S, Adkins S. Seed Germination Ecology and Longevity of the Invasive Aquatic Plant Sagittaria platyphylla. Plants. 2025; 14(20):3138. https://doi.org/10.3390/plants14203138
Chicago/Turabian StyleNguyen, Nguyen, Tobias Bickel, Sundaravelpandian Kalaipandian, and Steve Adkins. 2025. "Seed Germination Ecology and Longevity of the Invasive Aquatic Plant Sagittaria platyphylla" Plants 14, no. 20: 3138. https://doi.org/10.3390/plants14203138
APA StyleNguyen, N., Bickel, T., Kalaipandian, S., & Adkins, S. (2025). Seed Germination Ecology and Longevity of the Invasive Aquatic Plant Sagittaria platyphylla. Plants, 14(20), 3138. https://doi.org/10.3390/plants14203138