Genetic Diversity Evaluation of 70 Chewing Cane Germplasm Resources Based on Phenotypic Traits
Abstract
1. Introduction
2. Results
2.1. Analysis of Genetic Diversity of Qualitative Traits
2.2. Analysis of Genetic Diversity of Quantitative Traits
2.3. Genetic Diversity and Correlation of Chewing Cane Germplasm Resources Across Three Populatons
2.4. Cluster Analysis and PCoA of Chewing Cane Germplasm Resources
2.5. Identification of Private Alleles in Chewing Cane Germplasm Resources
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Field Testing and Trait Investigation
4.3. Data Processing and Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shanmuganathan, M.; Gayathry, G.; Maheshwari, P.; Vellaikumar, S. Identification of flavor producing compounds and multi elements from chewing cane (Saccharum officinarum L. cv. badila). Sugar Tech. 2024, 26, 87–94. [Google Scholar] [CrossRef]
- Xie, J.; Liang, Q.; Chang, H.; Liu, Z.; Zhang, C.; Wei, Z.; Wang, Q.; Wu, J. The market research and suggestion of chewing cane in Sanya City, Hainan Province. Sugarcane Canesugar 2024, 53, 75–80. [Google Scholar]
- Li, R.M.; He, Y.S. Amino acid component and nutritious elements of different chewing cane varieties. Chin. J. Trop. Crops 2017, 38, 171–174. [Google Scholar]
- Wu, S.H.; Li, H.M.; Zhang, S.H.; Li, R.M.; Lin, Y.X. Growth differences between seedcanes of pathogen-free chewing and conventional sugarcanes. Fujian J. Agric. Sci. 2012, 27, 821–825. [Google Scholar]
- Yang, T.; Shen, S.Y.; Wang, Z.N.; Yang, L.; Shang, S.X.; Cui, J.; Ying, X.M. Analysis and evaluation of nutritional quality of 100 sugarcane germplasm resources. Chin. J. Trop. Crops 2023, 44, 484–493. [Google Scholar]
- Lin, Y.X.; Wu, S.J.; Zhang, S.H.; Li, H.M.; Li, R.M.; Pan, S.M. Achievements, problems and countermeasures of cane science and technology development in China. China Agric. Inf. 2009, 16–20. [Google Scholar] [CrossRef]
- Wang, J.H.; Cao, G.; Zhang, J.L.; Wang, L.; Lü, B. The production situation and sustainable development of fruit cane in China. Sugarcane Canesugar 2013, 56–61. [Google Scholar]
- Ding, C.W.; Lyu, Y.P.; Wang, Y.T.; Mao, L.R.; Mou, H.J.; Li, H.Y.; Chen, J.P.; Chen, Z. Comparative analysis of field traits among different generations of virus-free chewing cane. Acta Agron. Sin. 2025, 2750–2758. [Google Scholar] [CrossRef]
- Yang, Y.L.; Wu, Y.L.; Zan, L.M.; Chen, Y.M.; Yang, B.P. Screening of bacteriostatic agents for sugarcane open hydroponics. J. Trop. Biol. 2025, 16, 512–518. [Google Scholar]
- Zhang, L.J.; Wu, F.; Li, J.Z.; Luo, Y.C.; Shan, B.; Lin, Y.F. Development history of industrial cane and chewing cane varieties in China. Agric. Res. Appl. 2023, 36, 79–86. [Google Scholar]
- Wang, T.; Wang, B.; Hua, X.; Tang, H.; Zhang, Z.; Gao, R.; Qi, Y.; Zhang, Q.; Wang, G.; Yu, Z.; et al. A complete gap-free diploid genome in Saccharum complex and the genomic footprints of evolution in the highly polyploid Saccharum genus. Nat. Plants 2023, 9, 554–571. [Google Scholar] [CrossRef]
- Ran, Z.; Xiao, X.; Zhou, L.; Yan, C.; Bai, X.; Ou, J.; Li, Z. Phenotypic diversity analysis in the sect. Tuberculate (camellia L.) population, an endemic taxon in china. Plants 2024, 13, 3210. [Google Scholar] [CrossRef]
- Li, R.M.; Zhang, S.H.; Li, H.M.; Pan, S.M. Diversity analysis of morphology and main agronomic traits in chewing cane. J. Trop. Subtrop. Bot. 2015, 23, 399–404. [Google Scholar]
- Xiao, Y.; Liu, J.; Zhou, Y.M.; Zhang, C.P.; De Chen, D.; Zhong, P.; Lü, D. New planting performance and genetic diversity cluster analysis in chewing cane germplasm resources. Sugarcane Canesugar 2018, 6–11. [Google Scholar] [CrossRef]
- Yu, H.X.; An, R.D.; Tao, L.A.; Lang, R.B.; Bian, X.; Zhang, Y.; Liu, X.L.; Liu, J.Y.; Zhao, L.P.; Liu, H.B.; et al. Comprehensive evaluation of the reciprocal hybrids of 57NG208 and Nanjiang chewing cane based on agronomic traits. Crops 2025. Available online: https://link.cnki.net/urlid/11.1808.S.20250313.1754.006 (accessed on 18 August 2025).
- Guo, Q.; Jiang, Q.M.; He, H.L.; Li, Z.Y.; Liang, Y.J.; Qin, C.X.; Tang, L.Q. Evaluation of 141 excellent Zhongzhe sugarcane germplasms based on principal component analysis and cluster analysis. Chin. J. Trop. Crops 2024, 45, 49–59. [Google Scholar]
- Wu, J.T.; Wang, Q.N.; Xie, J.; Zhou, F.; Xu, H.Y.; Liu, Z.; Qiu, Y.H.; Chen, J.L.; Chang, H.L.; Zhang, C.M.; et al. Multivariate analysis of 31 phenotypic traits among major parental lines of sugarcane breeding programs in China. J. Anim. Plant Sci. 2021, 31, 719–732. [Google Scholar] [CrossRef]
- Wu, J.T.; Xu, H.Y.; Xie, J.; Qiu, Y.S.; Zhang, C.M.; Zhou, F.; Liu, Z.; Wang, Q.N. Genetic diversity analysis of phenotypic traits in Yuetang serial sugarcane (Saccharum officinarum L.) parental resources. J. Plant Genet. Resour. 2018, 19, 755–766. [Google Scholar]
- Zan, F.G.; Wu, C.W.; Zhao, P.F.; Zhao, J.; Xia, H.M.; Yang, K.; Li, Y.; Qin, W.; Liu, J.Y. Study on phenotypic diversity in exotic sugarcane germplasm. Southwest China J. Agric. Sci. 2014, 27, 1369–1373. [Google Scholar]
- Xie, J.; Chang, H.L.; Zhang, C.M.; Wang, Z.Q.; Liang, Q.G.; Cheng, Y.J.; Wang, Q.N.; Wu, J.T. Genetic diversity analysis of phenotypic traits in Yacheng series sugarcane parents. Trop. Plant Biol. 2025, 18, 56. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, P.F.; Hu, X.; Zhao, J.; Zan, F.G.; Yao, L.; Zhao, L.P.; Yang, K.; Qin, W.; Xia, H.M.; et al. Evaluation of 317 sugarcane germplasm based on agronomic traits rating data. Sci. Agric. Sin. 2019, 52, 602–615. [Google Scholar]
- de Paula, E.; Almeida, R.N.D.; Santos, T.D.O.; Souza Neto, J.D.D.; Riva-Souza, E.M.; Posse, S.C.P.; Souza, M.N.; Madella De Oliveira, A.D.F.; Santos Júnior, A.C.; Santos, J.O.; et al. Genetic diversity of common bean (Phaseolus vulgaris L.) landraces based on morphological traits and molecular markers. Plants 2024, 13, 2584. [Google Scholar] [CrossRef]
- Shumet, T.G.; Tesema, T.H. Genetic diversity of qualitative traits of barley (Hordeum vulgare L.) landrace populations collected from Gamo Highlands of Ethiopia. Int. J. Biodivers. Conserv. 2014, 6, 663–673. [Google Scholar] [CrossRef]
- Zhou, S.; Huang, Y.X.; Duan, W.X.; Gao, Y.J.; Yang, C.F.; Zhou, Z.F.; Lu, S.Y.; Zhang, G.M.; Zhang, B.Q. Genetic diversity assessment of sugarcane native of domestic with phenotypic traits. Chin. J. Trop. Crops 2023, 44, 1123–1134. [Google Scholar]
- Kefyalew, T.; Tefera, H.; Assefa, K.; Ayele, M. Phenotypic diversity for qualitative and phenologic characters in germplasm collections of tef (Eragrostis tef). Genet. Resour. Crop Evol. 2000, 47, 73–80. [Google Scholar] [CrossRef]
- Wu, J.T.; Wang, Q.N.; Xie, J.; Pan, Y.; Zhou, F.; Guo, Y.Q.; Chang, H.L.; Xu, H.Y.; Zhang, W.; Zhang, C.M.; et al. SSR marker-assisted management of parental germplasm in sugarcane (Saccharum spp. Hybrids) breeding programs. Agronomy 2019, 9, 449. [Google Scholar] [CrossRef]
- He, E.Q.; Pan, Y.B.; Fu, Y.H.; Lei, S.F.; Li, X.Y.; Lu, J.J.; Zhang, Z.X. Genetic diversity analysis of nine chewing cane varieties (lines) and construction of their DNA fingerprints. J. South. Agric. 2016, 47, 1815–1821. [Google Scholar]
- Pu, H.Y. Assessment of Genetic Diversity of Chewing Cane Germplasm Based on RAPD and ISSR. Master’s Thesis, Fujian Agriculture and Forestry University, Fuzhou, China, 2006. [Google Scholar]
- Wang, Y.Q. Studies on the Germplasm Resources of Chewing Cane. Master’s Thesis, Fujian Agriculture and Forestry University, Fuzhou, China, 2002. [Google Scholar]
- Xie, J.; Chang, H.L.; Liu, Z.; Zhang, C.M.; Wang, Q.N.; Wu, J.T. Effects of virus-free seedling of chewing cane on agronomic traits and quality. Mol. Plant Breed. 2024. Available online: https://link.cnki.net/urlid/46.1068.S.20240604.1032.008 (accessed on 18 August 2025).
- Chandran, K.; Nisha, M.; Gopi, R.; Mahendran, B.; Chandran, D.; Mahesh, P.; Arun Kumar, R.; Krishnapriya, V.; Gomathi, R.; Malathi, P.; et al. Sugarcane genetic resources for challenged agriculture. Sugar Tech. 2023, 25, 1285–1302. [Google Scholar] [CrossRef]
- Liu, H.J.; Liang, W.S.; He, W.Z.; Ye, Q.; Liu, L.M.; He, Y.B.; Lu, M.M.; Liu, J.X.; Li, S.; Lin, S.H. Growth characters and properties variation of different generations of chewing cane Guiguozhe 1 seedlings. J. South. Agric. 2021, 52, 288–296. [Google Scholar]
- Ma, X.X.; Zhang, C.; Qin, H.X.; Zhang, W.B.; Qiao, J.X.; He, Y.W.; Zhong, H.X.; Zhang, F.C.; Zhou, X.M.; Wu, X.Y.; et al. Identification and comprehensive evaluation of 129 grape germplasm resources. Mol. Plant Breed. 2024. Available online: https://link.cnki.net/urlid/46.1068.S.20240223.1440.008 (accessed on 18 August 2025).
- Liu, X.L.; Ma, L.; Cai, Q.; Ying, X.M.; Lu, X.; Su, H.S.; Mao, J.; Fan, Y.H. Genetic diversity analysis of phenotypic traits in Yunnan sugarcane varieties. J. Plant Genet. Resour. 2010, 11, 703–708. [Google Scholar]
- Sullivan, E.R.; Barker, C.; Powell, I.; Ashton, P.A. Genetic diversity and connectivity in fragmented populations of Rhinanthus minor in two regions with contrasting land-use. Biodivers. Conserv. 2019, 28, 3159–3181. [Google Scholar] [CrossRef]
- Agostini, G.; Loy, A.; Gentile, G.; Giovacchini, S.; De Sanctis, C.; Mirone, E.; Papaleo, L.; Petrella, A.; D Alessio, N.; Colangelo, P. A non-invasive genetics insight into population structure and recolonization dynamics of the Eurasian otter (Lutra lutra) at the boundary of its Italian core range. Mamm. Biol. 2025, 105, 355–369. [Google Scholar] [CrossRef]
- Cai, Q.; Fan, Y.H. Description Specification and Data Standard for Sugarcane (Saccharum officinarum L.); China Agriculture Press: Beijing, China, 2006. [Google Scholar]
- Peakall, R.; Smouse, P.E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics 2012, 28, 2537–2539. [Google Scholar] [CrossRef]
- Rohlf, F.J. NTSYS pc2.1: Numerical Taxonomy and Multivariate Analysis System Version 2.1; Applied Biostatistics Inc.: New York, NY, USA, 2000. [Google Scholar]
- Hegay, S.; Geleta, M.; Bryngelsson, T.; Asanaliev, A.; Garkava-Gustavsson, L.; Persson Hovmalm, H.; Ortiz, R. Genetic diversity analysis in Phaseolus vulgaris L. using morphological traits. Genet. Resour. Crop Evol. 2014, 61, 555–566. [Google Scholar] [CrossRef]
- Mantel, N. The detection of disease clustering and a generalized regression approach. Cancer Res. 1967, 27, 209–220. [Google Scholar] [PubMed]
Type | Trait | Distribution Frequency of Different Grades | CV (%) | I | h | |||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | |||||
Stalk-related traits | Aerial root (AR) | 0.30 | 0.34 | 0.36 | 39.59 | 0.992 | 0.597 | |||
Internode form (IF) | 0.19 | 0.54 | 0.14 | 0.04 | 0.03 | 0.06 | 53.09 | 1.184 | 0.622 | |
Internode arrangement (IA) | 0.54 | 0.46 | 34.43 | 0.674 | 0.481 | |||||
Internode color unexposed (ICU) | 0.04 | 0.40 | 0.44 | 0.11 | 28.36 | 1.014 | 0.604 | |||
Internode color exposed (ICE) | 0.26 | 0.23 | 0.31 | 0.20 | 44.20 | 1.301 | 0.711 | |||
Water crack (WC) | 0.71 | 0.29 | 35.39 | 0.618 | 0.429 | |||||
Cork patch (CP) | 0.54 | 0.46 | 34.43 | 0.649 | 0.458 | |||||
Cork cracks (CC) | 0.59 | 0.41 | 35.08 | 0.644 | 0.453 | |||||
Wax band (WB) | 0.60 | 0.40 | 35.25 | 0.664 | 0.471 | |||||
Internode wax powder (IWP) | 0.29 | 0.37 | 0.30 | 0.04 | 41.46 | 1.131 | 0.638 | |||
Pipe (Pip) | 0.73 | 0.13 | 0.14 | 51.77 | 0.674 | 0.368 | ||||
Pith (Pit) | 0.79 | 0.11 | 0.10 | 49.40 | 0.497 | 0.288 | ||||
Growth bands form (GBF) | 0.59 | 0.41 | 35.08 | 0.666 | 0.473 | |||||
Growth bands color unexposed (GBCU) | 0.81 | 0.11 | 0.07 | 46.29 | 0.516 | 0.305 | ||||
Growth bands color exposed (GBCE) | 0.04 | 0.50 | 0.46 | 23.91 | 0.812 | 0.528 | ||||
Mean | 39.84 | 1.173 | 0.610 | |||||||
Bud-related traits | Bud form (BFo) | 0.37 | 0.20 | 0.09 | 0.34 | 54.21 | 1.140 | 0.647 | ||
Bud furrow (BFu) | 0.64 | 0.23 | 0.13 | 48.27 | 0.791 | 0.476 | ||||
Bud placement (BP) | 0.16 | 0.63 | 0.21 | 29.71 | 0.435 | 0.307 | ||||
No.10 hair group (10HG) | 0.94 | 0.06 | 22.12 | 0.107 | 0.059 | |||||
Bud size (BS) | 0.03 | 0.51 | 0.27 | 0.19 | 31.43 | 1.029 | 0.579 | |||
Bud wing size (BWS) | 0.30 | 0.53 | 0.17 | 36.30 | 0.847 | 0.539 | ||||
Lateral budding (LB) | 0.93 | 0.07 | 24.21 | 0.237 | 0.138 | |||||
Mean | 35.18 | 0.655 | 0.392 | |||||||
Leaf-related traits | Leaf posture (LP) | 0.17 | 0.79 | 0.04 | 23.93 | 0.537 | 0.339 | |||
Leaf color (LC) | 0.17 | 0.81 | 0.01 | 21.93 | 0.507 | 0.299 | ||||
Leaf sheath phimosis (LSP) | 0.56 | 0.36 | 0.09 | 42.73 | 0.890 | 0.548 | ||||
Leaf sheath color (LSC) | 0.14 | 0.41 | 0.40 | 0.04 | 33.21 | 1.114 | 0.641 | |||
No.57 hair group (57HG) | 0.67 | 0.19 | 0.14 | 50.06 | 0.833 | 0.484 | ||||
Mean | 34.37 | 0.776 | 0.462 | |||||||
Mean | 37.18 | 0.756 | 0.460 |
Trait | Average Value | SD | Min. | Max. | CV (%) | I | h |
---|---|---|---|---|---|---|---|
Plant height (PH, cm) | 319.5 | 38.9 | 236.3 | 417.5 | 12.17 | 1.590 | 0.733 |
Stalk diameter (SD, cm) | 2.88 | 0.54 | 1.76 | 4.30 | 18.83 | 1.880 | 0.827 |
Weight per plant (WpP, kg) | 2.162 | 0.866 | 0.737 | 5.228 | 40.08 | 1.769 | 0.799 |
Cane yield (CY, t/hm2) | 145.931 | 58.487 | 49.759 | 352.886 | 40.08 | 1.769 | 0.799 |
Brix (Br, %) | 19.5 | 2.3 | 12.1 | 23.4 | 11.97 | 1.890 | 0.828 |
Sucrose content (SucC, %) | 13.5 | 2.5 | 5.4 | 17.6275 | 18.83 | 1.890 | 0.828 |
Sugar content (SugC, t/hm2) | 19.6 | 8.5 | 4.8 | 46.1 | 43.52 | 1.891 | 0.827 |
Stem length (SL, cm) | 12.4 | 2.7 | 7.6 | 20.0 | 21.45 | 1.786 | 0.803 |
Internode number (IN, cm) | 30 | 5 | 13 | 42 | 16.80 | 1.659 | 0.766 |
Mean | 24.86 | 1.792 | 0.801 |
Population | I | h | Fst |
---|---|---|---|
Bred variety (Bv) | 1.022 | 0.543 | |
Introduced variety (Iv) | 0.948 | 0.524 | |
Local variety (Lv) | 1.083 | 0.574 | |
Mean | 1.007 | 0.537 | 0.0072 |
Population | Bred Variety (Bv) | Introduced Variety (Iv) | Local Variety (Lv) |
---|---|---|---|
Bred variety (Bv) | — | 0.884 | 0.898 |
Introduced variety (Iv) | 0.123 | — | 0.927 |
Local variety (Lv) | 0.107 | 0.076 | — |
Chewing Cane | Population | No. of Private Allele | Private Allele |
---|---|---|---|
Black Cheribon | Introduced varieties (Iv) | 1 | 10HG-grade2 |
Datian Xuezhe | Local variety (Lv) | 1 | 10HG-grade2 |
Zhanjiang Qingpi | Local variety (Lv) | 2 | Br-grade1, SucC-grade1 |
Binxian Qingpi | Local variety (Lv) | 1 | GBCU-grade3 |
Guiguozhe No.1 | Introduced varieties (Iv) | 1 | GBCU-grade3 |
Haikou Hongpi | Local variety (Lv) | 1 | GBCU-grade3 |
Tuojianghong | Local variety (Lv) | 1 | GBCU-grade3 |
Hekou lvpi | Local variety (Lv) | 2 | GBCU-grade3, 10HG-grade2 |
Xiangnan 74-9 | Bred variety (Bv) | 1 | IF-grade5 |
Fuguo No.1 | Introduced variety (Iv) | 2 | IF-grade5, Pit-grade2 |
Kaiyuan Hongpi 1 | Local variety (Lv) | 1 | IN-grade2 |
Kacai | Introduced variety (Iv) | 1 | IN-grade3 |
Neijiang 15-2 | Bred variety (Bv) | 1 | IN-grade4 |
Waigandan No.1 | Local variety (Lv) | 1 | IN-grade4 |
Yuanhong 33 | Bred variety (Bv) | 1 | IN-grade4 |
Badila | Introduced variety (Iv) | 1 | PH-grade1 |
Hainan 17-102 | Bred variety (Bv) | 1 | PH-grade1 |
Aohong | Introduced variety (Iv) | 3 | PH-grade1, IN-grade1, LC-grade3 |
Gengmazhe | Local variety (Lv) | 1 | PH-grade6 |
Xiantao Guozhe | Local variety (Lv) | 1 | PH-grade6 |
Wenshanzhe | Local variety (Lv) | 3 | PH-grade6, Br-grade2, SucC-grade2 |
Qiantuo | Local variety (Lv) | 3 | PH-grade6, IN-grade4, Pit-grade2 |
Lipu | Local variety (Lv) | 2 | PH-grade6, Pit-grade2 |
Binchuang Xiaozhe | Local variety (Lv) | 1 | Pit-grade2 |
Huangshan Guozhe | Local variety (Lv) | 1 | Pit-grade2 |
Oi Dang | Local variety (Lv) | 1 | Pit-grade2 |
Taining Guozhe | Local variety (Lv) | 1 | Pit-grade2 |
Taoshan Guozhe | Local variety (Lv) | 1 | Pit-grade2 |
Jianyang Guozhe | Local variety (Lv) | 3 | SD-grade10, WpP-grade10, CY-grade10 |
Shangrao Qingpi | Local variety (Lv) | 1 | SL-grade1 |
Shengxian Guozhe | Local variety (Lv) | 1 | SL-grade1 |
Caoba Hongpi | Local variety (Lv) | 1 | SL-grade10 |
Pingyang Guozhe | Local variety (Lv) | 2 | SL-grade10, IN-grade4 |
Jiangyong Guozhe | Local variety (Lv) | 1 | SL-grade2 |
Nonglin No.8 | Bred variety (Bv) | 1 | SL-grade9 |
Taitang 97-5569 | Bred variety (Bv) | 3 | WpP-grade8, CY-grade8, IN-grade4 |
Mao 2 | Introduced variety (Iv) | 2 | WpP-grade9, CY-grade9 |
Yiwu No.25 | Bred variety (Bv) | 1 | 10HG-grade2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, J.; Liu, Z.; Chang, H.; Zhang, C.; Liang, Q.; Wang, Z.; Cheng, Y.; Wang, Q.; Wu, J. Genetic Diversity Evaluation of 70 Chewing Cane Germplasm Resources Based on Phenotypic Traits. Plants 2025, 14, 3111. https://doi.org/10.3390/plants14193111
Xie J, Liu Z, Chang H, Zhang C, Liang Q, Wang Z, Cheng Y, Wang Q, Wu J. Genetic Diversity Evaluation of 70 Chewing Cane Germplasm Resources Based on Phenotypic Traits. Plants. 2025; 14(19):3111. https://doi.org/10.3390/plants14193111
Chicago/Turabian StyleXie, Jing, Zhuang Liu, Hailong Chang, Chuiming Zhang, Qinggan Liang, Zhuqing Wang, Yinjie Cheng, Qinnan Wang, and Jiantao Wu. 2025. "Genetic Diversity Evaluation of 70 Chewing Cane Germplasm Resources Based on Phenotypic Traits" Plants 14, no. 19: 3111. https://doi.org/10.3390/plants14193111
APA StyleXie, J., Liu, Z., Chang, H., Zhang, C., Liang, Q., Wang, Z., Cheng, Y., Wang, Q., & Wu, J. (2025). Genetic Diversity Evaluation of 70 Chewing Cane Germplasm Resources Based on Phenotypic Traits. Plants, 14(19), 3111. https://doi.org/10.3390/plants14193111