Analysis of the Phenolic Compounds, Volatile Profile, and Evaluation of the Antioxidant Activity of 18 Different Varieties of Honey from the Italian Market
Abstract
1. Introduction
2. Results
2.1. Spectrophotometric Analysis
2.1.1. Total Phenolic Content (TPC)
2.1.2. Total Flavonoid Content (TFC)
2.1.3. Antioxidant Activity (AOA)
2.2. Colour Determination
2.3. Polyphenols Determination by HPLC-MS/MS
2.4. Volatile Compounds by GC-MS
2.5. Statistical Analysis
3. Discussion
4. Materials and Methods
4.1. Chemical and Reagents
4.2. Honey Samples
4.3. Spectrophotometric Analysis
4.3.1. Total Phenolic Content (TPC)
4.3.2. Total Flavonoid Content (TFC)
4.3.3. Antioxidant Activity (AOA)
4.4. Colour Determination
4.5. Phenolic Profile Analysis Using LC-MS/MS
4.5.1. Extraction of Phenolic Compounds
4.5.2. HPLC-MS/MS Analysis
4.6. Volatile Profile Analysis Using GC-MS
4.6.1. Extraction of Volatile Compounds
4.6.2. GC-MS Analysis
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sánchez, C.; Castignani, H.; Rabaglio, M. El Mercado Apícola Internacional; INTA: Buenos Aires, Argentina, 2018; pp. 1–23. Available online: https://inta.gob.ar/documentos/el-mercado-apicola-internacional (accessed on 14 October 2020).
- Statista Leading Producers of Natural Honey Worlwide in 2019 (in 1000 Metric Tons). Available online: https://www.statista.com/statistics/812172/global-top-producers-of-honey/ (accessed on 24 September 2021).
- EU. Council Directive 2001/110/CE concerning honey. Off. J. Eur. Commun. 2002, L10, 47–52. [Google Scholar]
- Baloš, M.M.Ž.; Popov, N.S.; Radulović, J.Z.P.; Stojanov, I.M.; Jakšić, S.M. Sugar Profile of Different Floral Origin Honeys from Serbia. J. Apic. Res. 2020, 59, 398–405. [Google Scholar] [CrossRef]
- Nguyen, H.T.L.; Kasapis, S.; Mantri, N. Physicochemical Properties and Effects of Honeys on Key Biomarkers of Oxidative Stress and Cholesterol Homeostasis in HepG2 Cells. Nutrients 2021, 13, 151. [Google Scholar] [CrossRef] [PubMed]
- Cianciosi, D.; Forbes-Hernández, T.Y.; Afrin, S.; Gasparrini, M.; Reboredo-Rodriguez, P.; Manna, P.P.; Zhang, J.; Bravo Lamas, L.; Martínez Flórez, S.; Agudo Toyos, P.; et al. Phenolic Compounds in Honey and Their Associated Health Benefits: A Review. Molecules 2018, 22, 2322. [Google Scholar] [CrossRef]
- Jasicka-Misiak, I.; Makowicz, E.; Stanek, N. Chromatographic Fingerprint, Antioxidant Activity, and Colour Characteristic of Polish Goldenrod (Solidago virgaurea L.) Honey and Flower. Eur. Food Res. Technol. 2018, 244, 1169–1184. [Google Scholar] [CrossRef]
- Schievano, E.; Morelato, E.; Facchin, C.; Mammi, S. Characterization of Markers of botanical origin and other compounds extracted from unifloral honeys. J. Agric. Food Chem. 2013, 61, 1747–1755. [Google Scholar] [CrossRef]
- Donarski, J.A.; Jones, S.A.; Harrison, M.; Driffield, M.; Charlton, A.J. Identification of botanical biomarkers found in Corsican honey. Food Chem. 2010, 118, 987–994. [Google Scholar] [CrossRef]
- Baroni, M.V.; Nores, M.L.; Díaz, M.D.P.; Chiabrando, G.A.; Fassano, J.P.; Costa, C.; Wunderlin, D.A. Determination of volatile organic compound patterns characteristic of five unifloral honey by solid-phase microextraction−gas chromatography−mass spectrometry coupled to chemometrics. J. Agric. Food Chem. 2006, 54, 7235–7241. [Google Scholar] [CrossRef]
- Combarros-Fuertes, P.; Estevinho, L.M.; Dias, L.G.; Castro, J.M.; Tomás-Barberán, F.A.; Tornadijo, M.E.; Fresno-Baro, J.M. Bioactive Components and Antioxidant and Antibacterial Activities of Different Varieties of Honey: A Screening Prior to Clinical Application. J. Agric. Food Chem. 2019, 67, 688–698. [Google Scholar] [CrossRef]
- Pyrzynska, K.; Biesaga, M. Analysis of phenolic acids and flavonoids in honey. TrAC Trends Anal. Chem. 2009, 28, 893–902. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Jiang, S.-J. Simultaneous speciation of arsenic and mercury in fish by high-performance liquid chromatography inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 2021, 36, 938–945. [Google Scholar] [CrossRef]
- Akbari, E.; Baigbabaei, A.; Shahidi, M. Determination of the floral origin of honey based on its phenolic profile and physicochemical properties coupled with chemometrics. Int. J. Food Prop. 2020, 23, 506–519. [Google Scholar] [CrossRef]
- An, C.Y.; Hossain, M.; Alam, F.; Islam, A.; Khalil, I.; Alam, N.; Gan, S.H. Efficiency of Polyphenol Extraction from Artificial Honey Using C18 Cartridges and Amberlite® XAD-2 Resin: A Comparative Study. J. Chem. 2016, 2016, 1–6. [Google Scholar] [CrossRef]
- Soares, S.; Amaral, J.S.; Oliveira, M.B.P.P.; Mafra, I. A Comprehensive review on the main honey authentication issues: Production and origin. Compr. Rev. Food Sci. Food Saf. 2017, 16, 1072–1100. [Google Scholar] [CrossRef] [PubMed]
- Castro-Vázquez, L.; Díaz-Maroto, M.; de Torres, C.; Pérez-Coello, M. Effect of geographical origin on the chemical and sensory characteristics of Castanea sativa honeys. Food Res. Int. 2010, 43, 2335–2340. [Google Scholar] [CrossRef]
- Pino, J.A. Analysis of odour-active compounds of black mangrove (Avicennia germinans L.) honey by solid-phase microextraction combined with gas chromatography–mass spectrometry and gas chromatography–olfactometry. Int. J. Food Sci. Technol. 2012, 47, 1688–1694. [Google Scholar] [CrossRef]
- Čajka, T.; Hajšlová, J.; Cochran, J.; Holadová, K.; Klimánková, E. Solid phase microextraction–comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry for the analysis of honey volatiles. J. Sep. Sci. 2007, 30, 534–546. [Google Scholar] [CrossRef]
- Oroian, M.; Sonia, S.; Amariei, A.; Leahu, A.; Gutt, G. Multi-element composition of honey as a suitable tool for its authenticity analysis. Pol. J. Food Nutr. Sci. 2015, 65, 93–100. [Google Scholar] [CrossRef]
- Acevedo, F.; Torres, P.; Oomah, B.D.; de Alencar, S.M.; Massarioli, A.P.; Martín-Venegas, R.; Albarral-Ávila, V.; Burgos-Díaz, C.; Ferrer, R.; Rubilar, M. Volatile and non-volatile/semi-volatile compounds and in vitro bioactive properties of Chilean Ulmo (Eucryphia cordifolia Cav.) honey. Food Res. Int. 2017, 94, 20–28. [Google Scholar] [CrossRef]
- Kaškonienė, V.; Venskutonis, P.R. Floral markers in honey of various botanical and geographic origins: A review. Compr. Rev. Food Sci. Food Saf. 2010, 9, 620–634. [Google Scholar] [CrossRef]
- De-Melo, A.A.M.; de Almeida-Muradian, L.B.; Sancho, M.T.; Pascual-Maté, A. Composition and properties of Apis mellifera honey: A review. J. Apic. Res. 2018, 57, 5–37. [Google Scholar] [CrossRef]
- Shafiee, S.; Minaei, S.; Moghaddam-Charkari, N.; Ghasemi-Varnamkhasti, M.; Barzegar, M. Potential Application of Machine Vision to Honey Characterization. Trends Food Sci. Technol. 2013, 30, 174–177. [Google Scholar] [CrossRef]
- Silici, S.; Sagdic, O.; Ekici, L. Total phenolic content, antiradical, antioxidant and antimicrobial activities of Rhododendron honeys. Food Chem. 2010, 121, 238–243. [Google Scholar] [CrossRef]
- Karabagias, I.K.; Maia, M.; Karabagias, V.K.; Gatzias, I.; Badeka, A.V. Quality and Origin Characterisation of Portuguese, Greek, Oceanian, and Asian Honey, Based on Poly-Parametric Analysis Hand in Hand with Dimension Reduction and Classification Techniques. Eur. Food Res. Technol. 2020, 246, 987–1006. [Google Scholar] [CrossRef]
- Flanjak, I.; Kenjerić, D.; Bubalo, D.; Primorac, L. Characterisation of Selected Croatian Honey Types Based on the Combination of Antioxidant Capacity, Quality Parameters, and Chemometrics. Eur. Food Res. Technol. 2016, 242, 467–475. [Google Scholar] [CrossRef]
- Marić, A.; Jovanov, P.; Sakač, M.; Novaković, A.; Hadnađev, M.; Pezo, L.; Mandić, A.; Milićević, N.; Đurović, A.; Gadžurić, S. A Comprehensive Study of Parameters Correlated with Honey Health Benefits. RSC Adv. 2021, 11, 12434–12441. [Google Scholar] [CrossRef]
- Di Marco, G.; Gismondi, A.; Panzanella, L.; Canuti, L.; Impei, S.; Leonardi, D.; Canini, A. Botanical Influence on Phenolic Profile and Antioxidant Level of Italian Honeys. J. Food Sci. Technol. 2018, 55, 4042–4050. [Google Scholar] [CrossRef]
- Moniruzzaman, M.; Sulaiman, S.A.; Azlan, S.A.M.; Gan, S.H. Two-Year Variations of Phenolics, Flavonoids and Antioxidant Contents in Robinia pseudoacacia Honey. Molecules 2013, 18, 14694–14710. [Google Scholar] [CrossRef]
- Ciappini, M.; Gatti, M.; Di Vito, M. El Color Como Indicador Del Contenido de Flavonoides En Mieles. Rev. Cienc. Tecnol. 2013, 15, 59–63. [Google Scholar]
- Delmoro, J.; Muñoz, D.; Nadal, V.; Clementz, A.; Pranzetti, V. El Color En Los Alimentos: Determinación de Color En Mieles. Invenio 2010, 13, 145–152. [Google Scholar]
- da Silva, P.M.; Gauche, C.; Gonzaga, L.V.; Costa, A.C.O.; Fett, R. Honey: Chemical composition, stability and authenticity. Food Chem. 2016, 196, 309–323. [Google Scholar] [CrossRef]
- Kavanagh, S.; Gunnoo, J.; Passos, T.M.; Stout, J.C.; White, B. Physicochemical Properties and Phenolic Content of Honey from Different Floral Origins and from Rural Versus Urban Landscapes. Food Chem. 2019, 272, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Bueno-Costa, F.M.; Zambiazi, R.C.; Bohmer, B.W.; Chaves, F.C.; da Silva, W.P.; Zanusso, J.T.; Dutra, I. Antibacterial and Antioxidant Activity of Honeys from the State of Rio Grande do Sul, Brazil. LWT-Food Sci. Technol. 2016, 65, 333–340. [Google Scholar] [CrossRef]
- Al-Farsi, M.; Al-Amri, A.; Al-Hadhrami, A.; Al-Belushi, S. Color, Flavonoids, Phenolics and Antioxidants of Omani Honey. Heliyon 2018, 4, e00874. [Google Scholar] [CrossRef] [PubMed]
- Balcázar-Cruz, L.; Valadez-Villarreal, A.; López-Naranjo, J.I.; Ochoa-Flores, A.A.; Rodríguez-Blanco, L.; López-Hernández, E. Relación Del Contenido de Flavonoides y Color En Miel de Abeja (Apis Mellifera) Originaria Del Estado de Tabasco, México. Investig. Desarro. Cienc. Tecnol. Aliment. Balcázar-Cruz 2019, 4, 818–825. [Google Scholar]
- Becerril-Sánchez, A.L.; Quintero-Salazar, B.; Dublán-García, O.; Escalona-Buendía, H.B. Phenolic compounds in honey and their relationship with antioxidant activity, botanical origin, and color. Antioxidants 2021, 10, 1700. [Google Scholar] [CrossRef]
- Jibril, F.I.; Hilmi, A.B.M.; Manivannan, L. Isolation and characterization of polyphenols in natural honey for the treatment of human diseases. Bull. Natl. Res. Cent. 2019, 43, 4. [Google Scholar] [CrossRef]
- Do Nascimento, K.S.; Sattler, J.A.G.; Macedo, L.F.L.; González, C.V.S.; de Melo, I.L.P.; da Silva Araújo, E.; Granato, D.; Sattler, A.; de Almeida-Muradian, L.B. Phenolic compounds, antioxidant capacity and physicochemical properties of Brazilian Apis mellifera honeys. LWT 2018, 91, 85–94. [Google Scholar] [CrossRef]
- Catalkaya, G.; Venema, K.; Lucini, L.; Rocchetti, G.; Delmas, D.; Daglia, M.; De Filippis, A.; Xiao, H.; Quiles, J.L.; Xiao, J.; et al. Interaction of Dietary Polyphenols and Gut Microbiota: Microbial Metabolism of Polyphenols, Influence on the Gut Microbiota, and Implications on Host Health. Food Front. 2020, 1, 109–133. [Google Scholar] [CrossRef]
- Radovic, B.; Careri, M.; Mangia, A.; Musci, M.; Gerboles, M.; Anklam, E. Contribution of dynamic headspace GC–MS analysis of aroma compounds to authenticity testing of honey. Food Chem. 2001, 72, 511–520. [Google Scholar] [CrossRef]
- Verzera, A.; Campisi, S.; Zappalà, M.; Bonaccorsi, I. SPME-GC-MS analysis of honey volatile com-ponents for the characterization of different floral origin. Am. Lab. 2001, 33, 18–21. [Google Scholar]
- Machado, A.M.; Miguel, M.G.; Vilas-Boas, M.; Figueiredo, A.C. Honey volatiles as a fingerprint for botanical origin—A review on their occurrence on monofloral honeys. Molecules 2020, 25, 374. [Google Scholar] [CrossRef] [PubMed]
- Siegmund, B.; Urdl, K.; Jurek, A.; Leitner, E. “More than honey”: Investigation on volatiles from monovarietal honeys using new analytical and sensory approaches. J. Agric. Food Chem. 2018, 66, 2432–2442. [Google Scholar] [CrossRef] [PubMed]
- Guyot, C.; Bouseta, A.; Scheirman, V.; Collin, S. Floral Origin Markers of Castanea sativa and Lime Tree Honeys. J. Agric. Food Chem. 1998, 46, 625–633. [Google Scholar] [CrossRef] [PubMed]
- Bonaga, G.; Giumanini, A.G. The volatile fraction of Castanea sativa honey. J. Apic. Res. 1986, 25, 113–120. [Google Scholar] [CrossRef]
- Karabagias, I.K.; Nikolaou, C.; Karabagias, V.K. Volatile fingerprints of common and rare honeys produced in Greece: In search of PHVMs with implementation of the honey code. Eur. Food Res. Technol. 2019, 245, 23–39. [Google Scholar] [CrossRef]
- Piasenzotto, L.; Gracco, L.; Conte, L. Solid phase microextraction (SPME) applied to honey quality control. J. Sci. Food Agric. 2003, 83, 1037–1044. [Google Scholar] [CrossRef]
- Delafuente, E.; Sanz, M.; Martinezcastro, I.; Sanz, J.; Ruizmatute, A. Volatile and carbohydrate composition of rare unifloral honeys from Spain. Food Chem. 2007, 105, 84–93. [Google Scholar] [CrossRef]
- Bianchi, F.; Careri, M.; Musci, M. Volatile norisoprenoids as markers of botanical origin of Sardinian Arbutus unedo L. tree (Arbutus unedo L.) honey: Characterisation of aroma compounds by dynamic headspace extraction and gas chromatography–mass spectrometry. Food Chem. 2005, 89, 527–532. [Google Scholar] [CrossRef]
- Oddo, L.P.; Piro, R.; Bruneau, É.; Guyot-Declerck, C.; Ivanov, T.; Piskulová, J.; Flamini, C.; Lheritier, J.; Morlot, M.; Russmann, H.; et al. Main European unifloral honeys: Descriptive sheets. Apidologie 2004, 35 (Suppl. S1), S38–S81. [Google Scholar] [CrossRef]
- Senyuva, H.Z.; Gilbert, J.; Silici, S.; Charlton, A.; Dal, C.; Gürel, N.; Cimen, D. Profiling Turkish honeys to determine authenticity using physical and chemical characteristics. J. Agric. Food Chem. 2009, 57, 3911–3919. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Lyu, J.; Wei, L.; Xie, B.; Wei, J.; Zhang, G.; Li, J.; Gao, C.; Xiao, X.; Yu, J. Chemometric approaches for the optimization of headspace-solid phase microextraction to analyze volatile compounds in coriander (Coriandrum sativum L.). LWT 2022, 167, 113842. [Google Scholar] [CrossRef]
- Mustafa, A.M.; Maggi, F.; Öztürk, N.; Öztürk, Y.; Sagratini, G.; Torregiani, E.; Vittori, S.; Caprioli, G. Chemical and biological analysis of the by-product obtained by processing Gentiana lutea L. and other herbs during production of bitter liqueurs. Ind. Crop. Prod. 2016, 80, 131–140. [Google Scholar] [CrossRef]
- Laurita, R.; Gozzi, G.; Tappi, S.; Capelli, F.; Bisag, A.; Laghi, G.; Gherardi, M.; Cellini, B.; Abouelenein, D.; Vittori, S.; et al. Effect of plasma activated water (PAW) on rocket leaves decontamination and nutritional value. Innov. Food Sci. Emerg. Technol. 2021, 73, 102805. [Google Scholar] [CrossRef]
- Mustafa, A.M.; Angeloni, S.; Abouelenein, D.; Acquaticci, L.; Xiao, J.; Sagratini, G.; Maggi, F.; Vittori, S.; Caprioli, G. A new HPLC-MS/MS method for the simultaneous determination of 36 polyphenols in blueberry, Arbutus unedo L. and their commercial products and determination of antioxidant activity. Food Chem. 2022, 367, 130743. [Google Scholar] [CrossRef]
- Isabel, C.F.R.; Ferreira, E.A.; JCM, B.; Estevinho, L.M. Antioxidant activity of Portuguese honey samples: Different contributions of the entire honey and phenolic extract. Food Chem. 2009, 114, 1438–1443. [Google Scholar] [CrossRef]
- Kenjerić, D.; Mandić, M.L.; Primorac, L.; Čačić, F. Flavonoid Pattern of Sage (Salvia officinalis L.) Unifloral Honey. Food Chem. 2008, 110, 187–192. [Google Scholar] [CrossRef]
- Liang, Z.; Pai, A.; Liu, D.; Luo, J.; Wu, J.; Fang, Z.; Zhang, P. Optimizing extraction method of aroma compounds from grape pomace. J. Food Sci. 2020, 85, 4225–4240. [Google Scholar] [CrossRef]
TPC (mg GAE/kg) | TFC (mg RE/kg) | DPPH (mg TE/kg) | |
---|---|---|---|
H-1 Castanea sativa | 868.41 ± 152.6 | 195.20 ± 17.0 | 635.54 ± 49.1 |
H-2 Robinia pseudoacacia | 232.40 ± 48.9 | 56.15 ± 5.6 | 37.01 ± 20.3 |
H-3 Multiflower | 615.47 ± 26.9 | 298.59 ± 51.1 | 422.36 ± 73.5 |
H-4 Robinia pseudoacacia | 406.03 ± 155.2 | 57.81 ± 14.7 | 36.48 ± 27 |
H-5 Multiflower | 635.05 ± 164.4 | 165.80 ± 40.3 | 446.34 ± 28.1 |
H-6 Castanea sativa | 414.92 ± 99.3 | 108.88 ± 12.9 | 257.27 ± 249.2 |
H-7 Multiflower | 597.43 ± 151.7 | 181.60 ± 34.3 | 267.78 ± 133.2 |
H-8 Castanea sativa | 848.36 ± 226 | 227.88 ± 41.6 | 670.92 ± 13.3 |
H-9 Blossom honey | 246.90 ± 75.9 | 36.15 ± 29.6 | 94.65 ± 14.3 |
H-10 Arbutus unedo L. | 761.11 ± 196.5 | 292.44 ± 69.6 | 583.75 ± 98.2 |
H-11 Helianthus annuus | 549.56 ± 146.8 | 307.90 ± 70.5 | 244.06 ± 155.6 |
H-12 Multiflower | 505.59 ± 143.9 | 236.16 ± 82.2 | 460.96 ± 243.2 |
H-13 Coriandrum sativum L. | 554.84 ± 83.4 | 242.69 ± 110.1 | 360.33 ± 69.3 |
H-14 Robinia pseudoacacia | 379.64 ± 69.4 | 50.35 ± 29.9 | 19.74 ± 6.6 |
H-15 Blossom honey | 176.18 ± 8.3 | 203.79 ± 57.7 | 234.37 ± 54.1 |
H-16 Blossom honey | 190.08 ± 22.6 | 127.40 ± 53.7 | 23.53 ± 90.9 |
H-17 Multiflower | 216.99 ± 18.5 | 210.31 ± 23.7 | 23.54 ± 64.1 |
H-18 Multiflower | 401.16 ± 24.9 | 68.34 ± 7.9 | 17.14 ± 281.4 |
Name | Scale Pfund (mm) | Colour |
---|---|---|
-1 Castanea sativa | 90 ± 2.8 | Amber |
-2 Robinia pseudoacacia | 32.1 ± 6.7 | White to very light amber |
-3 Multiflower | 203.6 ± 4.8 | Dark amber |
-4 Robinia pseudoacacia | 31.1 ± 4.5 | White to very light amber |
-5 Multiflower | 135.9 ± 4.9 | Dark amber |
-6 Castanea sativa | 82.5 ± 11.3 | Amber |
-7 Multiflower | 92.4 ± 1.1 | Amber |
-8 Castanea sativa | 141.3 ± 0.2 | Dark amber |
-9 Blossom honey | 10 ± 2.9 | Light white |
-10 Arbutus unedo L. | 204.7 ± 12.1 | Dark amber |
-11 Helianthus annuus | 191.7 ± 17.6 | Dark amber |
-12 Multiflower | 152.2 ± 10.3 | Dark amber |
-13 Coriandrum sativum L. | 169.9 ± 4.7 | Dark amber |
-14 Robinia pseudoacacia | 39.3 ± 5 | Very light amber |
-15 Blossom honey | 171.32 ± 1.3 | Dark amber |
-16 Blossom honey | 151.08 ± 0.5 | Dark amber |
-17 Multiflower | 151.70 ± 27 | Dark amber |
-18 Multiflower | 141.18 ± 5.6 | Dark amber |
Sample Name | Botanical Origin | Glucose Content (mg kg−1) | Brand | Geographical Origin | Year of Production |
---|---|---|---|---|---|
H-1 | Castanea sativa | 80 g/100 g | Fior di loto | Italy | 2023 |
H-2 | Robinia pseudoacacia | 83 g/100 g | Mielizia Bio | Italy, Hungary | 2023 |
H-3 | Multifloral | - | Wild Flowers | Italy | 2023 |
H-4 | Robinia pseudoacacia | 80 g/100 g | Mariangela Prunotto | Italy | 2023 |
H-5 | Multifloral | 80 g/100 g | Mariangela Prunotto | Italy | 2023 |
H-6 | Linden | 80 g/100 g | Fior di loto | Italy | 2023 |
H-7 | Multifloral | 80.3 g/100 g | Agrisicilia | Italy | 2023 |
H-8 | Castanea sativa | 80.3 g/100 g | Agrisicilia | Italy | 2023 |
H-9 | Multifloral | - | Menz&Gasser | Italy | 2023 |
H-10 | Arbutus unedo L. | 68.20 g/100 g | - | Greece | 2023 |
H-11 | Helianthus annuus | 82 g/100 g | Apicoltura Bianco | Italy | 2023 |
H-12 | Multifloral | - | Azienda Luca Bianchi | Italy | 2022 |
H-13 | Coriandrum sativum L. | - | Azienda Luca Bianchi | Italy | 2022 |
H-14 | Robinia pseudoacacia | - | Azienda Luca Bianchi | Italy | 2022 |
H-15 | Multifloral | 80.6 g/100 | Ambrosoli | Italy, Argentina, Hungary, Moldova | 2023 |
H-16 | Multifloral | 80.6 g/100 | Ambrosoli | Italy, Argentina, Hungary, Moldova | 2023 |
H-17 | Multifloral | 80.6 g/100 | Ambrosoli | Italy, Argentina, Hungary, Moldova | 2023 |
H-18 | Multifloral | 80 g/100 | Adi Apicoltura | Italy | 2023 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abouelenein, D.; Acquaticci, L.; Spinozzi, E.; Santanatoglia, A.; Khamitova, G.; Mustafa, A.M.; Cespi, M.; Preziuso, S.; Bianchi, L.; Maggi, F.; et al. Analysis of the Phenolic Compounds, Volatile Profile, and Evaluation of the Antioxidant Activity of 18 Different Varieties of Honey from the Italian Market. Plants 2025, 14, 3109. https://doi.org/10.3390/plants14193109
Abouelenein D, Acquaticci L, Spinozzi E, Santanatoglia A, Khamitova G, Mustafa AM, Cespi M, Preziuso S, Bianchi L, Maggi F, et al. Analysis of the Phenolic Compounds, Volatile Profile, and Evaluation of the Antioxidant Activity of 18 Different Varieties of Honey from the Italian Market. Plants. 2025; 14(19):3109. https://doi.org/10.3390/plants14193109
Chicago/Turabian StyleAbouelenein, Doaa, Laura Acquaticci, Eleonora Spinozzi, Agnese Santanatoglia, Gulzhan Khamitova, Ahmed M. Mustafa, Marco Cespi, Silvia Preziuso, Luca Bianchi, Filippo Maggi, and et al. 2025. "Analysis of the Phenolic Compounds, Volatile Profile, and Evaluation of the Antioxidant Activity of 18 Different Varieties of Honey from the Italian Market" Plants 14, no. 19: 3109. https://doi.org/10.3390/plants14193109
APA StyleAbouelenein, D., Acquaticci, L., Spinozzi, E., Santanatoglia, A., Khamitova, G., Mustafa, A. M., Cespi, M., Preziuso, S., Bianchi, L., Maggi, F., & Caprioli, G. (2025). Analysis of the Phenolic Compounds, Volatile Profile, and Evaluation of the Antioxidant Activity of 18 Different Varieties of Honey from the Italian Market. Plants, 14(19), 3109. https://doi.org/10.3390/plants14193109