Companion Crops as Catalysts for Sustainable Cover Cropping in Vineyards—A Critical Review and Research Agenda
Abstract
1. Introduction
2. Methods: Focused Scoping Review Approach
3. Companion Crops in Vineyard Cover Crop Systems
3.1. Companion Crop Species
3.2. In-Row vs. Inter-Row Applications
4. Management Considerations and Trade-Offs
5. Critical Synthesis and Research Agenda
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Garcia, L.; Celette, F.; Gary, C.; Ripoche, A.; Valdés-Gómez, H.; Metay, A. Management of service crops for the provision of ecosystem services in vineyards: A review. Agric. Ecosyst. Environ. 2018, 251, 158–170. [Google Scholar] [CrossRef]
- Vanden Heuvel, J.; Centinari, M. Under-Vine Vegetation Mitigates the Impacts of Excessive Precipitation in Vineyards. Front. Plant Sci. 2021, 12, 713135. [Google Scholar] [CrossRef] [PubMed]
- Novara, A.; Cerda, A.; Barone, E.; Gristina, L. Cover crop management and water conservation in vineyard and olive orchards. Soil Tillage Res. 2021, 208, 104896. [Google Scholar] [CrossRef]
- Abad, J.; de Mendoza, I.H.; Marín, D.; Orcaray, L.; Santesteban, L.G. Cover crops in viticulture. A systematic review (1): Implications on soil characteristics and biodiversity in vineyards. Oeno One 2021, 55, 295–312. [Google Scholar] [CrossRef]
- Abad, J.; de Mendoza, I.H.; Marín, D.; Orcaray, L.; Santesteban, L.G. Cover crops in viticulture. A systematic review (2): Implications on vineyard agronomic performance. Oeno One 2021, 55, 1–27. [Google Scholar] [CrossRef]
- Schipanski, M.E.; Barbercheck, M.; Douglas, M.R.; Finney, D.M.; Haider, K.; Kaye, J.P.; Kemanian, A.R.; Mortensen, D.A.; Ryan, M.R.; Tooker, J.; et al. A framework for evaluating ecosystem services provided by cover crops in agroecosystems. Agric. Syst. 2014, 125, 12–22. [Google Scholar] [CrossRef]
- Clark, A. Managing Cover Crops Profitably, 3rd ed.; Diane Publishing: Collingdale, PA, USA, 2008. [Google Scholar]
- Norton, M. Cover Crops in Vineyards; University of California Cooperative Extension: Davis, CA, USA, 2008; Available online: https://ucanr.edu/sites/default/files/2010-08/40482.pdf (accessed on 8 March 2025).
- Liebhard, G.; Guzman, G.; Gomez, J.A.; Winter, S.; Zaller, J.G.; Bauer, T.; Nicolai, A.; Cluzeau, D.; Popescu, D.; Bunea, C.I. Vineyard cover crop management strategies and their effect on soil properties across Europe. Eur. J. Soil Sci. 2024, 75, e13573. [Google Scholar] [CrossRef]
- Quintarelli, V.; Radicetti, E.; Allevato, E.; Stazi, S.R.; Haider, G.; Abideen, Z.; Bibi, S.; Jamal, A.; Mancinelli, R. Cover crops for sustainable cropping systems: A review. Agriculture 2022, 12, 2076. [Google Scholar] [CrossRef]
- Monteiro, A.; Lopes, C.M. Influence of cover crop on water use and performance of vineyard in Mediterranean Portugal. Agric. Ecosyst. Environ. 2007, 121, 336–342. [Google Scholar] [CrossRef]
- Celette, F.; Gary, C. Dynamics of water and nitrogen stress along the grapevine cycle as affected by cover cropping. Eur. J. Agron. 2013, 45, 142–152. [Google Scholar] [CrossRef]
- Brooker, R.W.; Maestre, F.T.; Callaway, R.M.; Lortie, C.L.; Cavieres, L.A.; Kunstler, G.; Liancourt, P.; Tielbörger, K.; Travis, J.M.; Anthelme, F. Facilitation in plant communities: The past, the present, and the future. J. Ecol. 2008, 96, 18–34. [Google Scholar] [CrossRef]
- Ingels, C.A.; Bugg, R.L.; McGourty, G.T.; Christensen, L.P. Cover Cropping in Vineyards: A Grower’s Handbook; University of California Division of Agriculture and Natural Resources: Oakland, CA, USA, 1998; Volume 3338. [Google Scholar]
- Undersander, D.; Greub, L. Summer–Fall Seeding Dates for Six Cool-Season Grasses in the Midwest United States. Agron. J. 2007, 99, 1579–1586. [Google Scholar] [CrossRef]
- Barrio, I.C.; Villafuerte, R.; Tortosa, F.S. Can cover crops reduce rabbit-induced damages in vineyards in southern Spain? Wildl. Biol. 2012, 18, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Cadena, P.; Salmeron, M.; Canisares, L.P.; Poffenbarger, H.J. Productivity benefits of cereal–legume cover crop mixtures under variable soil nitrogen and termination times. Eur. J. Agron. 2024, 155, 127114. [Google Scholar] [CrossRef]
- Engedal, T.; Karlsson, M.; Andersen, M.S.; Rasmussen, J.; Thorup-Kristensen, K.; Jensen, L.S.S.; Magid, J.; Hansen, V. Legume-based cover crop mixtures can overcome trade-offs between carbon inputs, soil mineral nitrogen depletion and residual yield effects. Agric. Ecosyst. Environ. 2023, 349, 108408. [Google Scholar] [CrossRef]
- Bybee-Finley, K.A.; Cordeau, S.; Yvoz, S.; Mirsky, S.B.; Ryan, M.R. Finding the right mix: A framework for selecting seeding rates for cover crop mixtures. Ecol. Appl. 2022, 32, e02484. [Google Scholar] [CrossRef]
- Fernando, M.; Shrestha, A. The potential of cover crops for weed management: A sole tool or component of an integrated weed management system? Plants 2023, 12, 752. [Google Scholar] [CrossRef]
- Zhu, G.; Liu, J.; Wu, H.; Zhu, Y.; Nimir, N.E.A.; Zhou, G. The optimum mixed cropping ratio of oat and alfalfa enhanced plant growth, forage yield, and forage quality in saline soil. Plants 2024, 13, 3103. [Google Scholar] [CrossRef]
- Demie, D.T.; Döring, T.F.; Finckh, M.R.; Werf, W.; Enjalbert, J.; Seidel, S.J. Mixture× genotype effects in cereal/legume intercropping. Front. Plant Sci. 2022, 13, 846720. [Google Scholar] [CrossRef]
- Giese, G.; Velasco-Cruz, C.; Roberts, L.; Heitman, J.; Wolf, T.K. Complete vineyard floor cover crops favorably limit grapevine vegetative growth. Sci. Hortic. 2014, 170, 256–266. [Google Scholar] [CrossRef]
- Mirsky, S.B.; Curran, W.S.; Mortensen, D.A.; Ryan, M.R.; Shumway, D.L. Control of cereal rye with a roller/crimper as influenced by cover crop phenology. Agron. J. 2009, 101, 1589–1596. [Google Scholar] [CrossRef]
- Tonitto, C.; David, M.á.; Drinkwater, L. Replacing bare fallows with cover crops in fertilizer-intensive cropping systems: A meta-analysis of crop yield and N dynamics. Agric. Ecosyst. Environ. 2006, 112, 58–72. [Google Scholar] [CrossRef]
- Thapa, R.; Mirsky, S.B.; Tully, K.L. Cover crops reduce nitrate leaching in agroecosystems: A global meta-analysis. J. Environ. Qualit. 2018, 47, 1400–1411. [Google Scholar] [CrossRef] [PubMed]
- Nouri, A.; Lukas, S.; Singh, S.; Singh, S.; Machado, S. When do cover crops reduce nitrate leaching? A global meta-analysis. Glob. Change Biol. 2022, 28, 4736–4749. [Google Scholar] [CrossRef] [PubMed]
- Barnes, J.; Putnam, A. Rye residues contribute weed suppression in no-tillage cropping systems. J. Chem. Ecol. 1983, 9, 1045–1057. [Google Scholar] [CrossRef]
- Camargo Silva, G.; Bagavathiannan, M. Mechanisms of weed suppression by cereal rye cover crop: A review. Agron. J. 2023, 115, 1571–1585. [Google Scholar] [CrossRef]
- Rice, C.P.; Otte, B.A.; Kramer, M.; Schomberg, H.H.; Mirsky, S.B.; Tully, K.L. Benzoxazinoids in roots and shoots of cereal rye (Secale cereale) and their fates in soil after cover crop termination. Chemoecology 2022, 32, 117–128. [Google Scholar] [CrossRef]
- Schulz, M.; Marocco, A.; Tabaglio, V.; Macias, F.A.; Molinillo, J.M. Benzoxazinoids in rye allelopathy-from discovery to application in sustainable weed control and organic farming. J. Chem. Ecol. 2013, 39, 154–174. [Google Scholar] [CrossRef]
- Williams, A.; Scott Wells, M.; Dickey, D.A.; Hu, S.; Maul, J.; Raskin, D.T.; Chris Reberg-Horton, S.; Mirsky, S.B. Establishing the relationship of soil nitrogen immobilization to cereal rye residues in a mulched system. Plant Soil. 2018, 426, 95–107. [Google Scholar] [CrossRef]
- Lopes, C.M. Cover crops competition for water in vineyards: Case studies in Mediterranean terroirs. In Proceedings of the 11th Terroir Congress, McMinnville, OR, USA, 10–14 July 2016; Jones, G., Doran, N., Eds.; Southern Oregon University: Ashland, OR, USA, 2016; pp. 117–123. [Google Scholar]
- Yang, Y.; Liu, H.; Tian, X.; Du, W. Lodging resistance and feeding quality of triticale and cereal rye lines in an alpine pastoral area of PR China. Agron. J. 2022, 114, 1284–1297. [Google Scholar] [CrossRef]
- Ruiz-Colmenero, M.; Bienes, R.; Marques., M.J. Soil and water conservation dilemmas associated with the use of green cover in steep vineyards. Soil Tillage Res. 2011, 117, 211–223. [Google Scholar] [CrossRef]
- Chatterjee, A.; Dinnes, D.L.; Olk, D.C.; O’Brien, P.L. Influence of annual ryegrass (Lolium multiflorum) as cover crop on soil water dynamics in Fragipan soils of southern Illinois, USA. Soil Syst. 2024, 8, 126. [Google Scholar] [CrossRef]
- Office of the Gene Technology Regulator. The Biology of Lolium multiflorum Lam. (Italian Ryegrass), Lolium perenne L. (Perennial Ryegrass) and Lolium arundinaceum (Schreb.) Darbysh (Tall Fescue); Office of the Gene Technology Regulator: Canberra, ACT, Australia, 2022. [Google Scholar]
- International Herbicide-Resistant Weed Database. Available online: https://www.weedscience.org/Pages/filter.aspx (accessed on 10 March 2025).
- Bartholomew, P.; Williams, R. Establishment of Italian ryegrass (Lolium multiflorum Lam.) by self-seeding as affected by cutting date and degree of herbage removal in spring in pastures of the southern Great Plains of the United States. Grass Forage Sci. 2009, 64, 177–186. [Google Scholar] [CrossRef]
- Brennan, E.B.; Boyd, N.S. Winter cover crop seeding rate and variety affects during eight years of organic vegetables: I. Cover crop biomass production. Agron. J. 2012, 104, 684–698. [Google Scholar] [CrossRef]
- Baumgartner, K.; Steenwerth, K.L.; Veilleux, L. Cover-crop systems affect weed communities in a California vineyard. Weed Sci. 2008, 56, 596–605. [Google Scholar] [CrossRef]
- Den Hollander, N.; Bastiaans, L.; Kropff, M. Clover as a cover crop for weed suppression in an intercropping design: I. Characteristics of several clover species. Eur. J. Agron. 2007, 26, 92–103. [Google Scholar] [CrossRef]
- Nosratti, I.; Korres, N.E.; Cordeau, S. Knowledge of cover crop seed traits and treatments to enhance weed suppression: A narrative review. Agronomy 2023, 13, 1683. [Google Scholar] [CrossRef]
- Yang, X.; Drury, C.F.; Reynolds, W.; Phillips, L. Nitrogen release from shoots and roots of crimson clover, hairy vetch, and red clover. Can. J. Soil Sci. 2020, 100, 179–188. [Google Scholar] [CrossRef]
- Snapp, S.; Borden, H. Enhanced nitrogen mineralization in mowed or glyphosate treated cover crops compared to direct incorporation. Plant Soil 2005, 270, 101–112. [Google Scholar] [CrossRef]
- Weil, R.; Kremen, A. Thinking across and beyond disciplines to make cover crops pay. J. Sci. Food Agric. 2007, 87, 551–557. [Google Scholar] [CrossRef]
- Sharifi, M.; Vanvolkenburg, H.; Vasseur, L.; Rosa, D. Screening Cover Crop Species for In-Row and Inter-Row in Canadian Organic Vineyards. In Proceedings of the Organic World Congress 2021, Rennes, France, 8–10 September 2021. [Google Scholar]
- Sharifi, M.; Yearley, J.; Jones, M. Biomass carbon and nitrogen input from cover crops in an irrigated vineyard in Okanagan Valley, Canada. In Proceedings of the GiESCO, Ithaca, NY, USA, 17–21 July 2023. [Google Scholar]
- Williams, S.M.; Weil, R.R. Crop cover root channels may alleviate soil compaction effects on soybean crop. Soil Sci. Soc. Am. J. 2004, 68, 1403–1409. [Google Scholar] [CrossRef]
- Creamer, N.G.; Baldwin, K.R. An evaluation of summer cover crops for use in vegetable production systems in North Carolina. HortScience 2000, 35, 600–603. [Google Scholar] [CrossRef]
- Zamaratskaia, G.; Gerhardt, K.; Knicky, M.; Wendin, K. Buckwheat: An underutilized crop with attractive sensory qualities and health benefits. Crit. Rev. Food Sci. Nutr. 2024, 64, 12303–12318. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Brainard, D.C.; Bellinder, R.R. Effects of spring-sown cover crops on establishment and growth of hairy galinsoga (Galinsoga ciliata) and four vegetable crops. HortScience 2009, 44, 730–736. [Google Scholar] [CrossRef]
- Hendgen, M.; Hoppe, B.; Döring, J.; Friedel, M.; Kauer, R.; Frisch, M.; Dahl, A.; Kellner, H. Effects of different management regimes on microbial biodiversity in vineyard soils. Sci. Rep. 2018, 8, 9393. [Google Scholar] [CrossRef]
- Giese, G.; Wolf, T.K.; Velasco-Cruz, C.; Roberts, L.; Heitman, J. Cover crop and root pruning impacts on vegetative growth, crop yield components, and grape composition of Cabernet Sauvignon. Am. J. Enol. Vitic. 2015, 66, 212–226. [Google Scholar] [CrossRef]
- Sharifi, M.; Salimi, K.; Rosa, D.; Hart, M. Screening cover crops for utilization in irrigated vineyards: A greenhouse study on species’ nitrogen uptake and carbon sequestration potential. Plants 2024, 13, 1959. [Google Scholar] [CrossRef]
- Jordan, L.M.; Björkman, T.; Vanden Heuvel, J.E. Annual under-vine cover crops did not impact vine growth or fruit composition of mature cool-climate ‘Riesling’ grapevines. HortTechnology 2016, 26, 36–45. [Google Scholar] [CrossRef]
- Griesser, M.; Khalil, S.; De Berardinis, F.; Porret, O.F.; Hörmayer, R.; Mayer, N.; Kührer, E.; Forneck, A. Under-vine vegetation in vineyards: A case study considering soil hydrolytic enzyme activity, yield and grape quality in Austria. Oeno One 2022, 56, 81–93. [Google Scholar] [CrossRef]
- Christina, M.; Negrier, A.; Marnotte, P.; Viaud, P.; Mansuy, A.; Auzoux, S.; Chabanne, A. A trait-based analysis to assess the ability of cover crops to control weeds in a tropical island. Eur. J. Agron. 2021, 128, 126316. [Google Scholar] [CrossRef]
- Griffiths, M.; Delory, B.M.; Jawahir, V.; Wong, K.M.; Bagnall, G.C.; Dowd, T.G.; Nusinow, D.A.; Miller, A.J.; Topp, C.N. Optimisation of root traits to provide enhanced ecosystem services in agricultural systems: A focus on cover crops. Plant Cell Environ. 2022, 45, 751–770. [Google Scholar] [CrossRef]
- Karl, A.D.; Merwin, I.A.; Brown, M.G.; Hervieux, R.A.; Vanden Heuvel, J.E. Impact of undervine management on vine growth, yield, fruit composition, and wine sensory analyses in Cabernet franc. Am. J. Enol. Vitic. 2016, 67, 269–280. [Google Scholar] [CrossRef]
- Celette, F.; Gaudin, R.; Gary, C. Spatial and temporal changes to the water regime of a Mediterranean vineyard due to the adoption of cover cropping. Eur. J. Agron. 2008, 29, 153–162. [Google Scholar] [CrossRef]
- Miglécz, T.; Valko, O.; Török, P.; Deak, B.; Kelemen, A.; Donko, A.; Drexler, D.; Tóthmérész, B. Establishment of three cover crop mixtures in vineyards. Sci. Hortic. 2015, 197, 117–123. [Google Scholar] [CrossRef]
- Donkó, Á.; Miglécz, T.; Valkó, O.; Tóthmérész, B.; Deák, B.; Kelemen, A.; Török, P.; Zanathy, G.; Zsigrai, G.; Drexler, D. Comparison of species-rich cover crop mixtures in the Tokaj wine region (Hungary). Org. Agric. 2017, 7, 133–139. [Google Scholar] [CrossRef]
- Steenwerth, K.; Belina, K. Cover crops enhance soil organic matter, carbon dynamics and microbiological function in a vineyard agroecosystem. Appl. Soil. Ecol. 2008, 40, 359–369. [Google Scholar] [CrossRef]
- Volaire, F. Summer dormancy in perennial temperate grasses. Ann. Bot. 2006, 98, 927–933. [Google Scholar] [CrossRef]
- Missaoui, A.M.; Malinowski, D.P.; Pinchak, W.E.; Kigel, J. Insights into the drought and heat avoidance mechanism in summer-dormant Mediterranean tall fescue. Front. Plant Sci. 2017, 8, 1971. [Google Scholar] [CrossRef]
- Moore, V.M.; Schlautman, B.; Fei, S.-z.; Roberts, L.M.; Wolfe, M.; Ryan, M.R.; Wells, S.; Lorenz, A.J. Plant breeding for intercropping in temperate field crop systems: A review. Front. Plant Sci. 2022, 13, 843065. [Google Scholar] [CrossRef]
- Garcia, L.; Krafft, G.; Enard, C.; Bouisson, Y.; Metay, A. Adapting service crop termination strategy in viticulture to increase soil ecosystem functions and limit competition with grapevine. Eur. J. Agron. 2024, 156, 127161. [Google Scholar] [CrossRef]
- Wolf, T.; Smith, A.H.; Giese, G.; Lunas, L. Floor Management Strategies for Virginia Vineyards (SPES-209); Virginia Cooperative Extension: Blacksburg, VA, USA, 2020; Available online: https://www.pubs.ext.vt.edu/SPES/SPES-209/SPES-209.html (accessed on 8 March 2025).
- Tesic, D.; Keller, M.; Hutton, R.J. Influence of vineyard floor management practices on grapevine vegetative growth, yield, and fruit composition. Am. J. Enol. Vitic. 2007, 58, 1–11. [Google Scholar] [CrossRef]
- Rutan, J.; Steinke, K. Corn nitrogen management following daikon radish and forage oat cover crops. Soil Sci. Soc. Am. J. 2019, 83, 181–199. [Google Scholar] [CrossRef]
- Tadiello, T.; Potenza, E.; Marino, P.; Perego, A.; Torre, D.D.; Michelon, L.; Bechini, L. Growth, weed control, and nitrogen uptake of winter-killed cover crops, and their effects on maize in conservation agriculture. Agron. Sustain. Dev. 2022, 42, 18. [Google Scholar] [CrossRef]
- Bulan, M.T.S.; Stoltenberg, D.E.; Posner, J.L. Buckwheat species as summer cover crops for weed suppression in no-tillage vegetable cropping systems. Weed Sci. 2015, 63, 690–702. [Google Scholar] [CrossRef]
- Brennan, E.B.; Smith, R.F. Mustard cover crop growth and weed suppression in organic, strawberry furrows in California. HortScience 2018, 53, 432–440. [Google Scholar] [CrossRef]
- Lanini, W.; Orloff, S.; Vargas, R.; Orr, J. Fight weeds and increase forage: Using oats as a companion crop in establishing alfalfa. Calif. Agric. 1992, 46, 25–27. [Google Scholar] [CrossRef]
- Cicek, H.; Ates, S.; Ozcan, G.; Tezel, M.; Kling, J.G.; Louhaichi, M.; Keles, G. Effect of nurse crops and seeding rate on the persistence, productivity and nutritive value of sainfoin in a cereal-based system. Grass Forage Sci. 2020, 75, 86–95. [Google Scholar] [CrossRef]
- Roberts, C.D.; Yost, M.A.; Robins, J.G.; Ransom, C.V.; Creech, J.E. Oat companion seeding rate, herbicide, and irrigation effects on alfalfa stand establishment. Agron. J. 2023, 115, 273–285. [Google Scholar] [CrossRef]
- Rees, H.; Duiker, S.W.; Wallace, J.; Mozzone, T.R. Cereal Rye as a Cover Crop; Penn State Extension: University Park, PA, USA, 2024; Available online: https://extension.psu.edu/cereal-rye-as-a-cover-crop (accessed on 8 March 2025).
- Graybill, J.S.; Rees, H.; Mozzone, T.R.; Duiker, S.W.; Wallace, J.; Hoover, R. Winter Wheat as a Cover Crop; Penn State Extension: University Park, PA, USA, 2024; Available online: https://extension.psu.edu/winter-wheat-as-a-cover-crop (accessed on 8 March 2025).
- Malhi, S.; Foster, A. Cover Crop Seeding Rate Effects on Forage Yields of Oat and Barley and Underseeded Bromegrass–Alfalfa Mixture. Commun. Soil Sci. Plant Anal. 2011, 42, 2344–2350. [Google Scholar] [CrossRef]
- Lawson, A.; Cogger, C.; Bary, A.; Fortuna, A.M. Influence of seeding ratio, planting date, and termination date on rye–hairy vetch mixture performance. PLoS ONE 2015, 10, e0129597. [Google Scholar] [CrossRef]
- Jasieniuk, M.; Ahmad, R.; Sherwood, A.M.; Firestone, J.L.; Perez-Jones, A.; Lanini, W.T.; Mallory-Smith, C.; Stednick, Z. Glyphosate-resistant Italian ryegrass (Lolium multiflorum) in California: Distribution, response to glyphosate, and molecular evidence for an altered target enzyme. Weed Sci. 2008, 56, 496–502. [Google Scholar] [CrossRef]
- Karn, E.; Jasieniuk, M. Genetic diversity and structure of Lolium perenne ssp. multiflorum in California vineyards and orchards indicate potential for spread of herbicide resistance via gene flow. Evol. Appl. 2017, 10, 616–629. [Google Scholar] [CrossRef]
- Brunharo, C.A.; Hanson, B.D. Multiple herbicide–resistant Italian ryegrass [Lolium perenne L. spp. multiflorum (Lam.) Husnot] in California perennial crops: Characterization, mechanism of resistance, and chemical management. Weed Sci. 2018, 66, 696–701. [Google Scholar] [CrossRef]
- Cechin, J.; Schmitz, M.F.; Hencks, J.R.; Vargas, A.A.M.; Agostinetto, D.; Vargas, L. Burial depths favor Italian ryegrass persistence in the soil seed bank. Sci. Agric. 2021, 78, e20190078. [Google Scholar] [CrossRef]
- Celette, F.; Findeling, A.; Gary, C. Competition for nitrogen in an unfertilized intercropping system: The case of an association of grapevine and grass cover in a Mediterranean climate. Eur. J. Agron. 2009, 30, 41–51. [Google Scholar] [CrossRef]
- Bodner, G.; Nakhforoosh, A.; Kaul, H.-P. Management of crop water under drought: A review. Agron. Sustain. Dev. 2015, 35, 401–442. [Google Scholar] [CrossRef]
- Tognetti, P.M.; Prober, S.M.; Báez, S.; Chaneton, E.J.; Firn, J.; Risch, A.C.; Schuetz, M.; Simonsen, A.K.; Yahdjian, L.; Borer, E.T. Negative effects of nitrogen override positive effects of phosphorus on grassland legumes worldwide. Proc. Natl. Acad. Sci. USA 2021, 118, e2023718118. [Google Scholar] [CrossRef]
- Cottney, P.; Black, L.; White, E.; Williams, P.N. A Review of Supporting Evidence, Limitations and Challenges of Using Cover Crops in Agricultural Systems. Agriculture 2025, 15, 1194. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Shaver, T.M.; Lindquist, J.L.; Shapiro, C.A.; Elmore, R.W.; Francis, C.A.; Hergert, G.W. Cover Crops and Ecosystem Services: Insights from Studies in Temperate Soils. Agron. J. 2015, 107, 2449. [Google Scholar] [CrossRef]
- Gagliardi, L.; Fontanelli, M.; Luglio, S.M.; Frasconi, C.; Peruzzi, A.; Raffaelli, M. Evaluation of sustainable strategies for mechanical under-row weed control in the vineyard. Agronomy 2023, 13, 3005. [Google Scholar] [CrossRef]
- Gutiérrez-Gamboa, G.; Mucalo, A. Adaptive viticulture strategies to enhance resilience and grape quality in cold climate regions in response to climate warming. Horticulturae 2025, 11, 394. [Google Scholar] [CrossRef]
- Pardini, A.; Faiello, C.; Longhi, F.; Mancuso, S.; Snowball, R. Cover crop species and their management in vineyards and olive groves. Adv. Hortic. Sci. 2002, 16, 225–234. [Google Scholar] [CrossRef]
- BC Wine Grape Council. Production Guide for Grapes. Available online: https://bpg.bcwgc.org/ (accessed on 15 April 2025).
- Environment and Climate Change Canada. Historical Climate Data. Available online: https://climate.weather.gc.ca/climate_normals/index_e.html#1981 (accessed on 1 November 2024).
- Bernaschina, Y.; Fresia, P.; Garaycochea, S.; Leoni, C. Permanent cover crop as a strategy to promote soil health and vineyard performance. Environ. Sustain. 2023, 6, 243–258. [Google Scholar] [CrossRef]
- Truong, N.Q.; York, L.M.; Decker, A.; Douglas, A.M. A mixture of grass–legume cover crop species may ameliorate water stress in a changing climate. AoB Plants 2024, 16, plae039. [Google Scholar] [CrossRef]
- Menker, A. Decision Support Tools for Cover Crops. Available online: https://covercrops.ces.ncsu.edu/decision-support-tools/ (accessed on 3 August 2025).
- Ziche, Z.I.; Mezzapesa, G.N.; Dragonetti, G.; Piscitelli, L. Unveiling the Opportunities of Unexplored Use of Cover Crop in Mediterranean Agriculture through Systematic Review and Meta-Analysis. Sustainability 2024, 16, 7362. [Google Scholar] [CrossRef]
Species (Scientific Name) | Common Name | Growth Traits | Main Roles as Companion/Nurse | Key Considerations |
---|---|---|---|---|
Cereals & Grasses | ||||
Avena sativa L. | Oat | Rapid germination, cool-season, high early biomass | Fast groundcover, weed suppression, soil stabilization, mulch after winterkill | Self-terminates in frost-prone zones; reduce seeding rate to avoid dominance |
Hordeum vulgare L. | Barley | Rapid growth, cool-season, moderate shading | Early cover, weed suppression, structural support for legumes, balanced light penetration | Tolerate temperatures down to about −6 to −8 °C, tolerates shading, moderate competition |
Lolium multiflorum Lam. | Annual ryegrass | Dense root system, fast establishment | Erosion control, early weed suppression, soil stabilization | Can persist in warm climates; may need timely mowing, winterkills in cold climate; potential of being invasive in some climates |
Secale cereale L. | Fall rye | Rapid growth, drought/cold tolerant | Strong weed suppression (allelopathy), erosion control, nitrogen scavenging | Can become overly competitive; terminate early |
× Triticosecale Wittmack ex A. Camus | Triticale | Intermediate-fast establishment, high biomass, nutrient scavenger, lodging resistance | Quick cover, weed suppression, structural support | More stress tolerant than wheat but less than fall rye; canopy height shorter than fall rye |
Legumes | ||||
Pisum sativum L. (subsp. arvense) | Field pea (Austrian winter pea) | Rapid emergence, vining, large seed | Nitrogen fixation, climbs cereals for support, biomass production | Usually winterkills; paired with oats in mixtures; not suitable for under-vine |
Trifolium alexandrinum L. | Berseem clover | Fast-growing annual; erect habit; rapid early biomass; low winter hardiness; low drought tolerance; large seed; | Early groundcover and weed suppression; strong nitrogen fixation; supports establishment in perennial legume mixtures | Frost-sensitive; terminate before seed set; pair with cereals to moderate nitrogen and vigor; monitor reseeding in warm regions |
Trifolium incarnatum L. | Crimson clover | Quick germination, dense canopy, winter annual | Early weed suppression, nitrogen fixation, floral resource; supports establishment in perennial legume mixtures | Often used in mixes with ryegrass/oats |
Vicia faba L. | Fava bean/bell bean | Quick germination, large seeds, robust seedlings, tall canopy | Fast cover, strong nitrogen fixation | Can add excess nitrogen (risk of vine vigor); balance with cereals; warm season |
Vicia sativa L. | Common vetch | Aggressive growth, vine-like habit | Nitrogen fixation, cover in mixtures with cereals | Needs support; can become competitive if unmanaged; not suitable for under-vine |
Other Broadleaves/Brassicas | ||||
Brassica spp. (e.g., Sinapis alba L.) | Mustards | Fast growth, tall canopy | Weed suppression, floral resources, nitrogen cycling | Short cycle; terminate before seed set or can be invasive; not suitable for under-vine |
Fagopyrum esculentum Moench | Buckwheat | Very rapid growth (30–40 days), allelopathic, frost- and drought-sensitive | Weed suppression, pollinator habitat | Must terminate early to avoid reseeding; not suitable for under-vine |
Raphanus sativus L. var. longipinnatus (L.H. Bailey) Hanelt | Tillage (Daikon or oilseed) radish | Fast-growing annual; large taproot, rapid leaf growth, frost-sensitive | Soil decompaction, nutrient retrieval, canopy cover | Sensitive to heat → bolting; cool-season; winterkills |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 His Majesty the King in Right of Canada, as represented by the Minister of Agriculture and Agri-Food Canada.
Share and Cite
Sharifi, M.; Zolfaghari, Z. Companion Crops as Catalysts for Sustainable Cover Cropping in Vineyards—A Critical Review and Research Agenda. Plants 2025, 14, 3056. https://doi.org/10.3390/plants14193056
Sharifi M, Zolfaghari Z. Companion Crops as Catalysts for Sustainable Cover Cropping in Vineyards—A Critical Review and Research Agenda. Plants. 2025; 14(19):3056. https://doi.org/10.3390/plants14193056
Chicago/Turabian StyleSharifi, Mehdi, and Zahra Zolfaghari. 2025. "Companion Crops as Catalysts for Sustainable Cover Cropping in Vineyards—A Critical Review and Research Agenda" Plants 14, no. 19: 3056. https://doi.org/10.3390/plants14193056
APA StyleSharifi, M., & Zolfaghari, Z. (2025). Companion Crops as Catalysts for Sustainable Cover Cropping in Vineyards—A Critical Review and Research Agenda. Plants, 14(19), 3056. https://doi.org/10.3390/plants14193056