Using Structural Equation Models to Interpret Genome-Wide Association Studies for Morphological and Productive Traits in Soybean [Glycine max (L.) Merr.]
Abstract
1. Introduction
2. Results
2.1. Descriptive Statistics
2.2. Genetic Parameters
2.3. Bayesian Network Structure
2.4. Structural Equation Model
2.5. Partitioning of SNP Effects
2.5.1. Number of Pods (NP)
2.5.2. Number of Grains (NG)
2.5.3. Hundred-Grain Weight (HGW)
2.5.4. Pod Thickness (PT)
2.6. Integration of Structural Equation Modeling and Genome-Wide Association Study (SEM-GWAS)
3. Discussion
3.1. Genetic Parameters
3.2. Integration of Structural Equation Modeling and Genome-Wide Association Study (SEM-GWAS)
4. Materials and Methods
4.1. Phenotypic Data and SNP Genotyping
4.2. Phenotypic Data Analysis
4.3. Bayesian Multi-Trait Genomic Best Linear Unbiased Prediction Model
4.4. Bayesian Networks
4.5. Multi-Trait Association Analysis (MTM-GWAS)
4.6. Structural Equations Modeling GWAS (SEM-GWAS)
4.7. Pathway Enrichment Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- United States Department of Agriculture. World Agricultural Production. In Proceedings of the Circular Series WAP, 6–23 June 2023; pp. 1–47. Available online: https://downloads.usda.library.cornell.edu/usda-esmis/files/5q47rn72z/2z10z531z/ft84b485b/production.pdf (accessed on 25 September 2025).
- Sun, J.; Mooney, H.; Wu, W.; Tang, H.; Tong, Y.; Xu, Z.; Huang, B.; Cheng, Y.; Yang, X.; Wei, D.; et al. Importing Food Damages Domestic Environment: Evidence from Global Soybean Trade. Proc. Natl. Acad. Sci. USA 2018, 115, 5415–5419. [Google Scholar] [CrossRef] [PubMed]
- Montoya, F.; García, C.; Pintos, F.; Otero, A. Effects of Irrigation Regime on the Growth and Yield of Irrigated Soybean in Temperate Humid Climatic Conditions. Agric. Water Manag. 2017, 193, 30–45. [Google Scholar] [CrossRef]
- Shea, Z.; Singer, W.M.; Zhang, B. Soybean Production, Versatility, and Improvement. Legum. Crop. 2020, 10, 1–22. [Google Scholar] [CrossRef]
- Ludke, W.H.; Schuster, I.; Da Silva, F.L.; Montecelli, T.D.N.; Soares, B.d.A.; De Oliveira, A.B.; Volpato, L. SNP Markers Associated with Soybean Partial Resistance to Phytophthora Sojae. Crop Breed. Appl. Biotechnol. 2019, 19, 31–39. [Google Scholar] [CrossRef]
- Lin, F.; Wani, S.H.; Collins, P.J.; Wen, Z.; Li, W.; Zhang, N.; McCoy, A.G.; Bi, Y.; Tan, R.; Zhang, S.; et al. QTL Mapping and GWAS for Identification of Loci Conferring Partial Resistance to Pythium Sylvaticum in Soybean (Glycine max (L.) Merr). Mol. Breed. 2020, 40, 54. [Google Scholar] [CrossRef]
- Almeida-Silva, F.; Venancio, T.M. Integration of Genome-Wide Association Studies and Gene Coexpression Networks Unveils Promising Soybean Resistance Genes against Five Common Fungal Pathogens. Sci. Rep. 2021, 11, 24453. [Google Scholar] [CrossRef]
- Ferreira, E.G.C.; Marcelino-Guimarães, F.C. Mapping Major Disease Resistance Genes in Soybean. In Methods in Molecular Biology; Torkamaneh, D., François, B., Eds.; Springer Nature: Berlin/Heidelberg, Germany, 2022; ISBN 9781071622377. [Google Scholar]
- Hwang, E.Y.; Song, Q.; Jia, G.; Specht, J.E.; Hyten, D.L.; Costa, J.; Cregan, P.B. A Genome-Wide Association Study of Seed Protein and Oil Content in Soybean. BMC Genom. 2014, 15, 1. [Google Scholar] [CrossRef] [PubMed]
- Sonah, H.; O’Donoughue, L.; Cober, E.; Rajcan, I.; Belzile, F. Identification of Loci Governing Eight Agronomic Traits Using a GBS-GWAS Approach and Validation by QTL Mapping in Soya Bean. Plant Biotechnol. J. 2015, 13, 211–221. [Google Scholar] [CrossRef]
- Li, D.; Zhao, X.; Han, Y.; Li, W.; Xie, F. Genome-Wide Association Mapping for Seed Protein and Oil Contents Using a Large Panel of Soybean Accessions. Genomics 2019, 111, 90–95. [Google Scholar] [CrossRef]
- Lee, S.; Van, K.; Sung, M.; Nelson, R.; LaMantia, J.; McHale, L.K.; Mian, M.A.R. Genome-Wide Association Study of Seed Protein, Oil and Amino Acid Contents in Soybean from Maturity Groups I to IV. Theor. Appl. Genet. 2019, 132, 1639–1659. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Wu, T.; Wang, L.; Jiang, B.; Zhen, C.; Yuan, S.; Hou, W.; Wu, C.; Han, T.; Sun, S. A Combined Linkage and GWAS Analysis Identifies QTLs Linked to Soybean Seed Protein and Oil Content. Int. J. Mol. Sci. 2019, 20, 1–19. [Google Scholar] [CrossRef]
- Zeng, A.; Chen, P.; Korth, K.; Hancock, F.; Pereira, A.; Brye, K.; Wu, C.; Shi, A. Genome-Wide Association Study (GWAS) of Salt Tolerance in Worldwide Soybean Germplasm Lines. Mol. Breed. 2017, 37, 30. [Google Scholar] [CrossRef]
- Do, T.D.; Vuong, T.D.; Dunn, D.; Clubb, M.; Valliyodan, B.; Patil, G.; Chen, P.; Xu, D.; Nguyen, H.T.; Shannon, J. Identification of New Loci for Salt Tolerance in Soybean by High-Resolution Genome-Wide Association Mapping. BMC Genom. 2019, 20, 318. [Google Scholar] [CrossRef]
- Hao, D.; Chao, M.; Yin, Z.; Yu, D. Genome-Wide Association Analysis Detecting Significant Single Nucleotide Polymorphisms for Chlorophyll and Chlorophyll Fluorescence Parameters in Soybean (Glycine max) Landraces. Euphytica 2012, 186, 919–931. [Google Scholar] [CrossRef]
- Lü, H.; Yang, Y.; Li, H.; Liu, Q.; Zhang, J.; Yin, J.; Chu, S.; Zhang, X.; Yu, K.; Lv, L.; et al. Genome-Wide Association Studies of Photosynthetic Traits Related to Phosphorus Efficiency in Soybean. Front. Plant Sci. 2018, 9, 1226. [Google Scholar] [CrossRef]
- Wang, L.; Yang, Y.; Zhang, S.; Che, Z.; Yuan, W.; Yu, D. GWAS Reveals Two Novel Loci for Photosynthesis-Related Traits in Soybean. Mol. Genet. Genom. 2020, 295, 705–716. [Google Scholar] [CrossRef]
- Contreras-Soto, R.I.; Mora, F.; De Oliveira, M.A.R.; Higashi, W.; Scapim, C.A.; Schuster, I. A Genome-Wide Association Study for Agronomic Traits in Soybean Using SNP Markers and SNP-Based Haplotype Analysis. PLoS ONE 2017, 12, e0171105. [Google Scholar] [CrossRef] [PubMed]
- Zatybekov, A.; Abugalieva, S.; Didorenko, S.; Gerasimova, Y.; Sidorik, I.; Anuarbek, S.; Turuspekov, Y. GWAS of Agronomic Traits in Soybean Collection Included in Breeding Pool in Kazakhstan. BMC Plant Biol. 2017, 17, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.; Ma, Y.; Wu, S.; Liu, Z.; Wang, Z.; Yang, R.; Hu, G.; Zhou, Z.; Yu, H.; Zhang, M.; et al. Genome-Wide Association Studies Dissect the Genetic Networks Underlying Agronomical Traits in Soybean. Genome Biol. 2017, 18, 161. [Google Scholar] [CrossRef]
- Shook, J.M.; Zhang, J.; Jones, S.E.; Singh, A.; Diers, B.W.; Singh, A.K. Meta-GWAS for Quantitative Trait Loci Identification in Soybean. G3 Genes Genomes Genet. 2021, 11, jkab117. [Google Scholar] [CrossRef]
- Yoosefzadeh-Najafabadi, M.; Torabi, S.; Tulpan, D.; Rajcan, I.; Eskandari, M. Genome-Wide Association Studies of Soybean Yield-Related Hyperspectral Reflectance Bands Using Machine Learning-Mediated Data Integration Methods. Front. Plant Sci. 2021, 12, 777028. [Google Scholar] [CrossRef]
- Ravelombola, W.; Qin, J.; Shi, A.; Song, Q.; Yuan, J.; Wang, F.; Chen, P.; Yan, L.; Feng, Y.; Zhao, T.; et al. Genome-Wide Association Study and Genomic Selection for Yield and Related Traits in Soybean. PLoS ONE 2021, 16, e0255761. [Google Scholar] [CrossRef]
- Kim, S.H.; Tayade, R.; Kang, B.H.; Hahn, B.S.; Ha, B.K.; Kim, Y.H. Genome-Wide Association Studies of Seven Root Traits in Soybean (Glycine max L.) Landraces. Int. J. Mol. Sci. 2023, 24, 873. [Google Scholar] [CrossRef]
- Shim, H.; Chasman, D.I.; Smith, J.D.; Mora, S.; Ridker, P.M.; Nickerson, D.A.; Krauss, R.M.; Stephens, M. A Multivariate Genome-Wide Association Analysis of 10 LDL Subfractions, and Their Response to Statin Treatment, in 1868 Caucasians. PLoS ONE 2015, 10, e0120758. [Google Scholar] [CrossRef]
- Gianola, D.; Sorensen, D. Quantitative Genetic Models for Describing Simultaneous and Recursive Relationships between Phenotypes. Genetics 2004, 167, 1407–1424. [Google Scholar] [CrossRef] [PubMed]
- Momen, M.; Mehrgardi, A.A.; Roudbar, M.A.; Kranis, A.; Pinto, R.M.; Valente, B.D.; Morota, G.; Rosa, G.J.M.; Gianola, D. Including Phenotypic Causal Networks in Genome-Wide Association Studies Using Mixed Effects Structural Equation Models. Front. Genet. 2018, 9, 455. [Google Scholar] [CrossRef]
- Suela, M.M.; Azevedo, C.F.; Nascimento, A.C.C.; Momen, M.; de Oliveira, A.C.B.; Caixeta, E.T.; Morota, G.; Nascimento, M. Genome-Wide Association Study for Morphological, Physiological, and Productive Traits in Coffea Arabica Using Structural Equation Models. Tree Genet. Genomes 2023, 19, 23. [Google Scholar] [CrossRef]
- Pegolo, S.; Momen, M.; Morota, G.; Rosa, G.J.M.; Gianola, D.; Bittante, G.; Cecchinato, A. Structural Equation Modeling for Investigating Multi-Trait Genetic Architecture of Udder Health in Dairy Cattle. Sci. Rep. 2020, 10, 7751. [Google Scholar] [CrossRef] [PubMed]
- Momen, M.; Campbell, M.T.; Walia, H.; Morota, G. Utilizing Trait Networks and Structural Equation Models as Tools to Interpret Multi-Trait Genome-Wide Association Studies. Plant Methods 2019, 15, 107. [Google Scholar] [CrossRef] [PubMed]
- Töpner, K.; Rosa, G.J.M.; Gianola, D.; Schön, C.C. Bayesian Networks Illustrate Genomic and Residual Trait Connections in Maize (Zea mays L.). G3 Genes Genomes Genet. 2017, 7, 2779–2789. [Google Scholar] [CrossRef]
- Valente, B.D.; Rosa, G.J.M.; De Los Campos, G.; Gianola, D.; Silva, M.A. Searching for Recursive Causal Structures in Multivariate Quantitative Genetics Mixed Models. Genetics 2010, 185, 633–644. [Google Scholar] [CrossRef]
- Suela, M.M.; Nascimento, M.; Nascimento, A.C.C.; Azevedo, C.F.; Teodoro, P.E.; Farias, F.J.C.; de Carvalho, L.P.; Jarquin, D. Integrating Environmental Covariates into Adaptability and Stability Analyses: A Structural Equation Modeling Approach for Cotton Breeding. Agriculture 2024, 14, 1914. [Google Scholar] [CrossRef]
- Suela, M.M.; Azevedo, C.F.; Nascimento, A.C.C.; Moura, E.T.C.; Oliveira, A.C.B.d.; Morota, G.; Nascimento, M. Structural Equation Modeling and Genome-Wide Selection for Multiple Traits to Enhance Arabica Coffee Breeding Programs. Agronomy 2025, 15, 1686. [Google Scholar] [CrossRef]
- Aditya, J.P.; Bhartya, P.; Anuradha, B. Genetic Variability, Heritability and Character Association for Yield and Component Character in Soybean. J. Cent. Eur. Agric. 2013, 12, 27–34. [Google Scholar] [CrossRef]
- Ghiday, T.; Amogne, A.; Tefera, G.; Malede, M. Heritability, Genetic Advance and Path Coefficient Analysis for Grain Yield and Its Component Characters in Soybean (Glycine max L. Merrill). Int. J. Res. Stud. Agric. Sci. 2017, 3, 1–11. [Google Scholar] [CrossRef]
- Del Conte, M.V.; Carneiro, P.C.S.; De Resende, M.D.V.; Da Silva, F.L.; Peternelli, L.A. Overcoming Collinearity in Path Analysis of Soybean [Glycine max (L.) Merr.] Grain Oil Content. PLoS ONE 2020, 15, e0233290. [Google Scholar] [CrossRef]
- de Albuquerque, J.R.; Lins, H.A.; Dos Santos, M.G.; de Freitas, M.A.; de Oliveira, F.S.; de Souza, A.R.; da Silveira, L.M.; Nunes, G.H.; Júnior, A.P.B.; Vieira, P.F.M.J. Influence of Genotype-Environment Interaction on Soybean (Glycine max L.) Genetic Divergence under Semiarid Conditions. Rev. Fac. Cienc. Agrar. 2022, 54, 1–12. [Google Scholar] [CrossRef]
- Bisinotto, F.F.; Hamawaki, O.T.; Oliveira, A.P.; Hamawaki, R.L.; Glansenapp, J.S.; Hamawaki, C.L. Path Analysis and Traits Correlation in Soybean. Commun. Plant Sci. 2017, 7, 27–33. [Google Scholar]
- Li, M.; Liu, Y.; Wang, C.; Yang, X.; Li, D.; Zhang, X.; Xu, C.; Zhang, Y.; Li, W.; Zhao, L. Identification of Traits Contributing to High and Stable Yields in Different Soybean Varieties Across Three Chinese Latitudes. Front. Plant Sci. 2020, 10, 1642. [Google Scholar] [CrossRef]
- Silva, A.F.; Sediyama, T.; Silva, F.C.S.; Bezerra, A.R.G.; Ferreira, L. V Correlation and Path Analysis of Yield Components in Soybean Varieties. Turkish J. F. Crop. 2015, 10, 177–179. [Google Scholar]
- Jianng, C.; Zeng, Z.-B. Multiple Trait Analysis of Genetic Mapping for Quantitative Trait Loci. Genetics 1995, 140, 111–127. [Google Scholar] [CrossRef] [PubMed]
- Rosa, G.J.M.; Valente, B.D.; De Los Campos, G.; Wu, X.L.; Gianola, D.; Silva, M.A. Inferring Causal Phenotype Networks Using Structural Equation Models. Genet. Sel. Evol. 2011, 43, 6. [Google Scholar] [CrossRef] [PubMed]
- O’Reilly, P.F.; Hoggart, C.J.; Pomyen, Y.; Calboli, F.C.F.; Elliott, P.; Jarvelin, M.R.; Coin, L.J.M. MultiPhen: Joint Model of Multiple Phenotypes Can Increase Discovery in GWAS. PLoS ONE 2012, 7, e34861. [Google Scholar] [CrossRef]
- Zhou, X.; Stephens, M. Efficient Multivariate Linear Mixed Model Algorithms for Genome-Wide Association Studies. Nat. Methods 2014, 11, 407–409. [Google Scholar] [CrossRef] [PubMed]
- Palharini, W.G. Influência Do Estresse Hídrico Sobre Caracteres Agronômicos, Fisiológicos e Abertura de Vagens Imaturas em Soja, Universidade Federal de Viçosa, 2016. Available online: https://locus.ufv.br/server/api/core/bitstreams/2eaebc74-9e67-4130-aeee-226465b81448/content (accessed on 13 January 2024).
- Zhao, J.; Chen, L.; Zhao, T.; Gai, J. Chicken Toes-Like Leaf and Petalody Flower (CTP) Is a Novel Regulator That Controls Leaf and Flower Development in Soybean. J. Exp. Bot. 2017, 68, 5565–5581. [Google Scholar] [CrossRef]
- Dong, L.; Cheng, Q.; Fang, C.; Kong, L.; Yang, H.; Hou, Z.; Li, Y.; Nan, H.; Zhang, Y.; Chen, Q.; et al. Parallel Selection of Distinct Tof5 Alleles Drove the Adaptation of Cultivated and Wild Soybean to High Latitudes. Mol. Plant 2022, 15, 308–321. [Google Scholar] [CrossRef]
- Joaquim, P.; Molinari, M.; Marin, S.; Barbosa, D.; Viana, A.; Rech, E.; Henning, F.; Nepomuceno, A.; Mertz-Henning, L. Nitrogen compounds transporters: Candidates to increase the protein content in soybean seeds. J. Plant Interact. 2022, 17, 309–318. [Google Scholar] [CrossRef]
- Biová, J.; Dietz, N.; Chan, Y.O.; Joshi, T.; Bilyeu, K.; Škrabišová, M. AccuCalc: A Python Package for Accuracy Calculation in GWAS. Genes 2023, 14, 123. [Google Scholar] [CrossRef]
- Yadav, M.; Panwar, R.; Rustagi, A.; Chakraborty, A.; Roy, A.; Singh, I.K.; Singh, A. Comprehensive and Evolutionary Analysis of Spodoptera Litura-Inducible Cytochrome P450 Monooxygenase Gene Family in Glycine max Elucidate Their Role in Defense. Front. Plant Sci. 2023, 14, 1221526. [Google Scholar] [CrossRef]
- Wang, L.; Niu, F.; Wang, J.; Zhang, H.; Zhang, D.; Hu, Z. Genome-Wide Association Studies Prioritize Genes Controlling Seed Size and Reproductive Period Length in Soybean. Plants 2024, 13, 615. [Google Scholar] [CrossRef]
- Kim, E.; Hwang, S.; Lee, I. SoyNet: A Database of Co-Functional Networks for Soybean Glycine max. Nucleic Acids Res. 2017, 45, D1082–D1089. [Google Scholar] [CrossRef]
- Vadivel, A.K.A. GmMYB176 Interactome and Regulation of Isoflavonoid GmMYB176 Interactome and Regulation of Isoflavonoid Biosynthesis in Soybean. Ph.D. Thesis, Western University, London, ON, Canada, 2017. [Google Scholar]
- Wei, Y.; Jiang, C.; Han, R.; Xie, Y.; Liu, L.; Yu, Y. Plasma Membrane Proteomic Analysis by TMT-PRM Provides Insight into Mechanisms of Aluminum Resistance in Tamba Black Soybean Roots Tips. PeerJ 2020, 8, e9312. [Google Scholar] [CrossRef] [PubMed]
- Chu, S.; Zhang, X.; Yu, K.; Lv, L.; Sun, C.; Liu, X.; Zhang, J.; Jiao, Y.; Zhang, D. Genome-Wide Analysis Reveals Dynamic Epigenomic Differences in Soybean Response to Low-Phosphorus Stress. Int. J. Mol. Sci. 2020, 21, 6817. [Google Scholar] [CrossRef]
- Kim, K.H.; Kim, J.Y.; Lim, W.J.; Jeong, S.; Lee, H.Y.; Cho, Y.; Moon, J.K.; Kim, N. Genome-Wide Association and Epistatic Interactions of Flowering Time in Soybean Cultivar. PLoS ONE 2020, 15, e0228114. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Pan, X.; Wang, F.; Liu, C.; Wang, X.; Li, Y.; Zhang, Q. Novel QTL and Meta-QTL Mapping for Major Quality Traits in Soybean. Front. Plant Sci. 2021, 12, 774270. [Google Scholar] [CrossRef]
- Khoei, M.A.; Karimi, M.; Karamian, R.; Amini, S.; Soorni, A. Identification of the Complex Interplay Between Nematode-Related LncRNAs and Their Target Genes in Glycine max L. Front. Plant Sci. 2021, 12, 779597. [Google Scholar] [CrossRef]
- Mendes, R.A.G.; Basso, M.F.; Melo, B.P.; Ribeiro, T.P.; Lima, R.N.; Araújo, J.F.; Grossi-de-Sa, M.; Mattos, V.S.; Togawa, R.C.; Albuquerque, E.V.S.; et al. The Mi-EFF1/Minc17998 Effector Interacts with the Soybean GmHub6 Protein to Promote Host Plant Parasitism by Meloidogyne Incognita. Physiol. Mol. Plant Pathol. 2021, 114, 101630. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, J.; Chen, Y.; Yang, X.; Jiao, S.; Zhang, H.; Ma, X.; Zhai, H.; Bai, X. GmSTK12 Participates in Salt Stress Resistance in Soybean. Agronomy 2023, 13, 613. [Google Scholar] [CrossRef]
- Manavalan, L.P.; Guttikonda, S.K.; Tran, L.P.; Nguyen, H.T. Physiological and Molecular Approaches to Improve Drought Resistance in Soybean. Plant Cell Physiol. 2009, 50, 1260–1276. [Google Scholar] [CrossRef]
- Zhao, M.; Gu, Y.; He, L.; Chen, Q.; He, C. Sequence and Expression Variations Suggest an Adaptive Role for the DA1-like Gene Family in the Evolution of Soybeans. BMC Plant Biol. 2015, 15, 120. [Google Scholar] [CrossRef]
- Li, Y.; Zheng, L.; Corke, F.; Smith, C.; Bevan, M.W. Control of Final Seed and Organ Size by the DA1 Gene Family in Arabidopsis Thaliana. Genes Dev. 2008, 22, 1331–1336. [Google Scholar] [CrossRef]
- Vierstra, R.D. The Ubiquitin-26S Proteasome System at the Nexus of Plant Biology. Nat. Rev. Mol. Cell Biol. 2009, 10, 385–397. [Google Scholar] [CrossRef] [PubMed]
- King, R.W.; Deshaies, R.J.; Peters, J.; Kirschner, M.W. How Proteolysis Drives the Cell Cycle. Science 1996, 274, 1652–1659. [Google Scholar] [CrossRef] [PubMed]
- Yan, N.; Doelling, J.H.; Falbel, T.G.; Durski, A.M.; Vierstra, R.D. The Ubiquitin-Specific Protease Family from Arabidopsis. AtUBP1 and 2 Are Required for the Resistance to the Amino Acid Analog Canavanine. Plant Physiol. 2000, 124, 1828–1843. [Google Scholar] [CrossRef]
- Raasi, S.; Wolf, D.H. Ubiquitin Receptors and ERAD: A Network of Pathways to the Proteasome. Semin. Cell Dev. Biol. 2007, 18, 780–791. [Google Scholar] [CrossRef] [PubMed]
- Dreher, K.; Callis, J. Ubiquitin, Hormones and Biotic Stress in Plants. Ann. Bot. 2007, 99, 787–822. [Google Scholar] [CrossRef]
- Santner, A.; Estelle, M. The Ubiquitin-Proteasome System Regulates Plant Hormone Signaling. Plant J. 2010, 61, 1029–1040. [Google Scholar] [CrossRef]
- Trujillo, M.; Shirasu, K. Ubiquitination in Plant Immunity. Curr. Opin. Plant Biol. 2010, 13, 402–408. [Google Scholar] [CrossRef]
- Liu, Y.C.; Wu, Y.R.; Huang, X.H.; Sun, J.; Xie, Q. AtPUB19, a U-Box E3 Ubiquitin Ligase, Negatively Regulates Abscisic Acid and Drought Responses in Arabidopsis Thaliana. Mol. Plant 2011, 4, 938–946. [Google Scholar] [CrossRef]
- Balasubramanian, V.; Vashisht, D.; Cletus, J.; Sakthivel, N. Plant β-1,3-Glucanases: Their Biological Functions and Transgenic Expression against Phytopathogenic Fungi. Biotechnol. Lett. 2012, 34, 1983–1990. [Google Scholar] [CrossRef]
- Stone, B.A.; Clarke, A.E. Chemistry and Boilogy of (1→3)-β-Glucans; La Trobe University Press: Bundoora, Australia, 1992. [Google Scholar]
- Kauss, H. Callose Synthesis. In Membranes: Specialized Functions in Plants; Smallwood, M., Knox, P., Bowles, D.J., Eds.; Bios Scientific: Oxford, UK, 1996; pp. 77–92. [Google Scholar]
- Du, H.; Yang, S.S.; Liang, Z.; Feng, B.R.; Liu, L.; Huang, Y.B.; Tang, Y.X. Genome-Wide Analysis of the MYB Transcription Factor Superfamily in Soybean. BMC Plant Biol. 2012, 12, 106. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Yuan, H.Y.; Ren, R.; Zhao, S.Q.; Han, Y.P.; Zhou, Q.Y.; Ke, D.X.; Wang, Y.X.; Wang, L. Genome-Wide Identification, Classification, and Expression Analysis of Amino Acid Transporter Gene Family in Glycine max. Front. Plant Sci. 2016, 7, 515. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Guo, Y.; Qiu, L.J. Genome-Wide Identification and Evolutionary Analysis of Leucine-Rich Repeat Receptor-like Protein Kinase Genes in Soybean. BMC Plant Biol. 2016, 16, 58. [Google Scholar] [CrossRef]
- Gou, J.Y.; Felippes, F.F.; Liu, C.J.; Weigel, D.; Wang, J.W. Negative Regulation of Anthocyanin Biosynthesis in Arabidopsis by a MiR156-Targeted SPL Transcription Factor. Plant Cell 2011, 23, 1512–1522. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.H.; Ju, Y.; Seo, P.J.; Lee, J.H.; Park, C.M. The SOC1-SPL Module Integrates Photoperiod and Gibberellic Acid Signals to Control Flowering Time in Arabidopsis. Plant J. 2012, 69, 577–588. [Google Scholar] [CrossRef]
- Cui, L.G.; Shan, J.X.; Shi, M.; Gao, J.P.; Lin, H.X. The MiR156-SPL9-DFR Pathway Coordinates the Relationship between Development and Abiotic Stress Tolerance in Plants. Plant J. 2014, 80, 1108–1117. [Google Scholar] [CrossRef]
- Zhang, D.; Luo, Z.; Liu, S.; Li, W.; WeiTang; Dong, H. Effects of Deficit Irrigation and Plant Density on the Growth, Yield and Fiber Quality of Irrigated Cotton. Field Crops Res. 2016, 197, 1–9. [Google Scholar] [CrossRef]
- Ioannidi, E.; Rigas, S.; Tsitsekian, D.; Daras, G.; Alatzas, A.; Makris, A.; Tanou, G.; Argiriou, A.; Alexandrou, D.; Poethig, S.; et al. Trichome Patterning Control Involves TTG1 Interaction with SPL Transcription Factors. Plant Mol. Biol. 2016, 92, 675–687. [Google Scholar] [CrossRef]
- Preston, J.C.; Jorgensen, S.A.; Orozco, R.; Hileman, L.C. Paralogous SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) Genes Differentially Regulate Leaf Initiation and Reproductive Phase Change in Petunia. Planta 2016, 243, 429–440. [Google Scholar] [CrossRef]
- Ma, L.; Liu, X.; Liu, W.; Wen, H.; Zhang, Y.; Pang, Y.; Wang, X. Characterization of Squamosa-Promoter Binding Protein-Box Family Genes Reveals the Critical Role of MsSPL20 in Alfalfa Flowering Time Regulation. Front. Plant Sci. 2022, 12, 775690. [Google Scholar] [CrossRef]
- Verma, G.; Srivastava, D.; Tiwari, P.; Chakrabarty, D. ROS Modulation in Crop Plants Under Drought Stress. In Reactive Oxygen, Nitrogen and Sulfur Species in Plants; Hasanuzzaman, M., Fotopoulos, V., Fujita, M., Eds.; John Wiley and Sons: Hoboken, NJ, USA, 2019; pp. 311–336. [Google Scholar]
- Diers, B.W.; Specht, J.; Rainey, K.M.; Cregan, P.; Song, Q.; Ramasubramanian, V.; Graef, G.; Nelson, R.; Schapaugh, W.; Wang, D.; et al. Genetic Architecture of Soybean Yield and Agronomic Traits. G3 Genes Genomes Genet. 2018, 8, 3367–3375. [Google Scholar] [CrossRef] [PubMed]
- Taylor, N.G. A Role for Arabidopsis Dynamin Related Proteins DRP2A/B in Endocytosis; DRP2 Function Is Essential for Plant Growth. Plant Mol. Biol. 2011, 76, 117–129. [Google Scholar] [CrossRef]
- Silva, F.; Borém, A.; Sediyama, T.; Câmara, G. Soja: Do Plantio à Colheita, 2nd ed.; Oficina de Textos: São Paulo, Brazil, 2022; ISBN 9786586235531. [Google Scholar]
- Kisha, T.J.; Sneller, C.H.; Diers, B.W. Relationship between Genetic Distance among Parents and Genetic Variance in Populations of Soybean. Crop Sci. 1997, 37, 1317–1325. [Google Scholar] [CrossRef]
- Moura, L.D.O.; da Silva, M.F.; da Cunha, F.F.; Picoli, E.A.T.; Silva, F.C.S.; da Silva, F.L. Water Deficit as a Trigger to Immature Soybean Pod Opening. J. Agron. Crop Sci. 2023, 209, 390–401. [Google Scholar] [CrossRef]
- Elshire, R.J.; Glaubitz, J.C.; Sun, Q.; Poland, J.A.; Kawamoto, K.; Buckler, E.S.; Mitchell, S.E. A Robust, Simple Genotyping-by-Sequencing (GBS) Approach for High Diversity Species. PLoS ONE 2011, 6, e19379. [Google Scholar] [CrossRef] [PubMed]
- Sonah, H.; Bastien, M.; Iquira, E.; Tardivel, A.; Légaré, G.; Boyle, B.; Normandeau, É.; Laroche, J.; Larose, S.; Jean, M.; et al. An Improved Genotyping by Sequencing (GBS) Approach Offering Increased Versatility and Efficiency of SNP Discovery and Genotyping. PLoS ONE 2013, 8, e54603. [Google Scholar] [CrossRef] [PubMed]
- de los Campos, G.; Hickey, J.M.; Pong-Wong, R.; Daetwyler, H.D.; Calus, M.P.L. Whole-Genome Regression and Prediction Methods Applied to Plant and Animal Breeding. Genetics 2013, 193, 327–345. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. 2025. Available online: https://www.R-project.org/ (accessed on 25 September 2025).
- VanRaden, P.M. Efficient Methods to Compute Genomic Predictions. J. Dairy Sci. 2008, 91, 4414–4423. [Google Scholar] [CrossRef]
- Smith, B.J. Boa: An R Package for MCMC Output Convergence Assessment and Posterior Inference. J. Stat. Softw. 2007, 21, 1–37. [Google Scholar] [CrossRef]
- Korb, K.B.; Nicholson, A.E. Bayesian Artificial Intelligence; Chapman & Hall/CRC: London, UK, 2004; Volume 7, pp. 221–223. [Google Scholar]
- Korb, K.B.; Nicholson, A.E. Bayesian Artificial Intelligence, 2nd ed.; Chapman & Hall/CRC: London, UK, 2010; ISBN 2013206534. [Google Scholar]
- Scutari, M. Learning Bayesian Networks with the Bnlearn R Package. J. Stat. Softw. 2010, 35, 1–22. [Google Scholar] [CrossRef]
- Meyer, K.; Tier, B. “SNP Snappy”: A Strategy for Fast Genome-Wide Association Studies Fitting a Full Mixed Model. Genetics 2012, 190, 275–277. [Google Scholar] [CrossRef] [PubMed]
- Meyer, K. WOMBAT: A Tool for Mixed Model Analyses in Quantitative Genetics by Restricted Maximum Likelihood (REML). J. Zhejiang Univ. Sci. B. 2007, 8, 815–821. [Google Scholar] [CrossRef]
- Storey, J.D.; Tibshirani, R. Statistical Significance for Genomewide Studies. Proc. Natl. Acad. Sci. USA 2003, 100, 9440–9445. [Google Scholar] [CrossRef] [PubMed]
- Goodstein, D.M.; Shu, S.; Howson, R.; Neupane, R.; Hayes, R.D.; Fazo, J.; Mitros, T.; Dirks, W.; Hellsten, U.; Putnam, N.; et al. Phytozome: A Comparative Platform for Green Plant Genomics. Nucleic Acids Res. 2012, 40, 1178–1186. [Google Scholar] [CrossRef] [PubMed]
Trait | Mean | SD |
---|---|---|
NP () | 53.47 | 11.72 |
NG () | 111.40 | 22.54 |
HGW () | 14.57 | 3.04 |
PT () | 6.41 | 0.87 |
NP | NG | HGW | PT | |
---|---|---|---|---|
NP | 0.89 (0.73, 1.00) | 0.96 (0.82, 1.00) | −0.84 (−0.99, −0.55) | −0.54 (−0.78, −0.28) |
NG | −0.47 (−0.99, 0.84) | 0.79 (0.44, 1.00) | −0.88 (−0.99, −0.68) | −0.57 (−0.80, −0.32) |
HGW | 0.45 (−0.43, 0.98) | −0.24 (−0.78, 0.76) | 0.39 (0.14, 0.67) | 0.61 (0.35, 0.83) |
PT | 0.17 (−0.46, 0.69) | −0.04 (−0.51, 0.57) | 0.59 (0.35, 0.80) | 0.45 (0.24, 0.66) |
BIC (a) | Path | BIC (b) |
---|---|---|
−907.3641 | NP → NG | −35.8808 |
NG → HGW | −13.1780 | |
HGW → PT | −25.9670 |
Path | Path Coefficient |
---|---|
NP → NG | 0.00006 |
NG → HGW | −0.05450 |
HGW → PT | 0.00697 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Massariol Suela, M.; Ferreira Azevedo, C.; Campana Nascimento, A.C.; Morota, G.; Lopes da Silva, F.; Malone, G.; Giasson, N.F.; Nascimento, M. Using Structural Equation Models to Interpret Genome-Wide Association Studies for Morphological and Productive Traits in Soybean [Glycine max (L.) Merr.]. Plants 2025, 14, 3015. https://doi.org/10.3390/plants14193015
Massariol Suela M, Ferreira Azevedo C, Campana Nascimento AC, Morota G, Lopes da Silva F, Malone G, Giasson NF, Nascimento M. Using Structural Equation Models to Interpret Genome-Wide Association Studies for Morphological and Productive Traits in Soybean [Glycine max (L.) Merr.]. Plants. 2025; 14(19):3015. https://doi.org/10.3390/plants14193015
Chicago/Turabian StyleMassariol Suela, Matheus, Camila Ferreira Azevedo, Ana Carolina Campana Nascimento, Gota Morota, Felipe Lopes da Silva, Gaspar Malone, Nizio Fernando Giasson, and Moysés Nascimento. 2025. "Using Structural Equation Models to Interpret Genome-Wide Association Studies for Morphological and Productive Traits in Soybean [Glycine max (L.) Merr.]" Plants 14, no. 19: 3015. https://doi.org/10.3390/plants14193015
APA StyleMassariol Suela, M., Ferreira Azevedo, C., Campana Nascimento, A. C., Morota, G., Lopes da Silva, F., Malone, G., Giasson, N. F., & Nascimento, M. (2025). Using Structural Equation Models to Interpret Genome-Wide Association Studies for Morphological and Productive Traits in Soybean [Glycine max (L.) Merr.]. Plants, 14(19), 3015. https://doi.org/10.3390/plants14193015