GLR Channels Are Involved in the Mechanism of Chloroplast Avoidance Response in Lemna trisulca
Abstract
1. Introduction
2. Results
2.1. No Effect of pH on Chloroplast Movements
2.2. Effect of GLR Inhibitors at pH 6.5 and pH 7.5 on Chloroplast Movements
3. Discussion
4. Materials and Methods
4.1. Plant Material and Growth Conditions
4.2. Solutions
4.3. Photometric Method—Chloroplast Movement Measurements
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GLR | GLutamate Receptor-like channels |
iGLuRs | ionotropic Glutamate Receptors |
NMDA | N-methyl-D-aspartate (receptor/channel) |
AMPA | α-amino-3-hydroxy-5-methyl-4-isoxazole-proprionic acid (receptor/channel) |
References
- Lam, H.M.; Chiu, J.; Hsieh, M.H.; Meisel, L.; Oliveira, I.C.; Shin, M.; Coruzzi, G. Glutamate-receptor genes in plants. Nature 1998, 396, 125–126. [Google Scholar] [CrossRef]
- Green, M.N.; Gangwar, S.P.; Michard, E.; Simon, A.A.; Portes, M.T.; Barbosa-Caro, J.; Wudick, M.M.; Lizzio, M.A.; Klykov, O.; Yelshanskaya, M.V.; et al. Structure of the Arabidopsis thaliana glutamate receptor-like channel GLR3.4. Mol. Cell 2021, 81, 3216–3226. [Google Scholar] [CrossRef] [PubMed]
- Nicoll, R.A. A brief history of long-term potentiation. Neuron 2017, 93, 281–290. [Google Scholar] [CrossRef] [PubMed]
- Wudick, M.M.; Michard, E.; Oliveira Nunes, C.; Feijó, J.A. Comparing plant and animal glutamate receptors: Common traits but different fates? J. Exp. Bot. 2018, 69, 4151–4163. [Google Scholar] [CrossRef]
- Grenzi, M.; Bonza, M.C.; Costa, A. Signaling by plant glutamate receptor-like channels: What else! Curr. Opin. Plant Biol. 2022, 68, 102253. [Google Scholar] [CrossRef]
- Simon, A.A.; Navarro-Retamal, C.; Feijó, J.A. Merging signaling with structure: Functions and mechanisms of plant glutamate receptor ion channels. Annu. Rev. Plant Biol. 2023, 74, 415–452. [Google Scholar] [CrossRef]
- Hebda, A.; Liszka, A.; Lewandowska, A.; Lyczakowski, J.J.; Gabryś, H.; Krzeszowiec, W. Upregulation of GLRs expression by light in Arabidopsis leaves. BMC Plant Biol. 2022, 22, 197. [Google Scholar] [CrossRef]
- Krzeszowiec, W.; Lewandowska, A.; Lyczakowski, J.J.; Bebko, K.; Scholz, S.S.; Gabryś, H. Two types of GLR channels cooperate differently in light and dark growth of Arabidopsis seedlings. BMC Plant Biol. 2023, 23, 358. [Google Scholar] [CrossRef]
- Gabryś, H.; Krzeszowiec, W. Chloroplast Movements Induced by Light: Diversity of Mechanisms in Various Taxa. In Biological Diversity—From Cell to Ecosystem; Łaska, G., Ed.; PBS: Białystok, Poland, 2012; pp. 9–24. [Google Scholar]
- Zurzycki, J. Blue Light-Induced Intracellular Movements. In The Blue Light Syndrome; Springer: Berlin/Heidelberg, Germany, 1980; pp. 50–68. [Google Scholar]
- Banaś, A.K.; Aggarwal, C.; Łabuz, J.; Sztatelman, O.; Gabryś, H. Blue light signalling in chloroplast movements. J. Exp. Bot. 2012, 63, 1559–1574. [Google Scholar] [CrossRef] [PubMed]
- Suetsugu, N.; Wada, M. Signalling mechanism of phototropin-mediated chloroplast movement in Arabidopsis. J. Plant Biochem. Biotechnol. 2020, 29, 580–589. [Google Scholar] [CrossRef]
- Wilson, S.; Ruban, A.V. Rethinking the influence of chloroplast movements on non-photochemical quenching and photoprotection. Plant Physiol. 2020, 183, 1213–1223. [Google Scholar] [CrossRef]
- Krzeszowiec, W.; Gabrys, H. Phototropin mediated relocation of myosins in Arabidopsis thaliana. Plant Signal. Behav. 2007, 2, 333–336. [Google Scholar] [CrossRef]
- Kong, S.G.; Yamazaki, Y.; Shimada, A.; Kijima, S.T.; Hirose, K.; Katoh, K.; Ahm, J.; Song, H.G.; Han, J.W.; Higa, T.; et al. CHLOROPLAST UNUSUAL POSITIONING 1 is a plant-specific actin polymerization factor regulating chloroplast movement. Plant Cell 2024, 36, 1159–1181. [Google Scholar] [CrossRef]
- Aggarwal, C.; Łabuz, J.; Gabryś, H. Phosphoinositides play differential roles in regulating phototropin1-and phototropin2-mediated chloroplast movements in Arabidopsis. PLoS ONE 2013, 8, e55393. [Google Scholar] [CrossRef]
- Tlałka, M.; Gabryś, H. Influence of calcium on blue-light-induced chloroplast movement in Lemna trisulca L. Planta 1993, 189, 491–498. [Google Scholar] [CrossRef]
- Meyerhoff, O.; Müller, K.; Roelfsema, M.R.G.; Latz, A.; Lacombe, B.; Hedrich, R.; Dietrich, P.; Becker, D. AtGLR3.4, a glutamate receptor channel-like gene is sensitive to touch and cold. Planta 2005, 222, 418–427. [Google Scholar] [CrossRef]
- Rao, S.D.; Banack, S.A.; Cox, P.A.; Weiss, J.H. BMAA selectively injures motor neurons via AMPA/kainate receptor activation. Exp. Neurol. 2006, 201, 244–252. [Google Scholar] [CrossRef]
- Walch-Liu, P.; Liu, L.H.; Remans, T.; Tester, M.; Forde, B.G. Evidence that L-glutamate can act as an exogenous signal to modulate root growth and branching in Arabidopsis thaliana. Plant Cell Physiol. 2006, 47, 1045–1057. [Google Scholar] [CrossRef] [PubMed]
- Kwaaitaal, M.; Huisman, R.; Maintz, J.; Reinstädler, A.; Panstruga, R. Ionotropic glutamate receptor (iGluR)-like channels mediate MAMP-induced calcium influx in Arabidopsis thaliana. Biochem. J. 2011, 440, 355–373. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Xiong, H.R. Culture Conditions and Types of Growth Media for Mammalian Cells. In Biomedical Tissue Culture 1; IntechOpen: London, UK, 2012; pp. 3–18. [Google Scholar] [CrossRef]
- Wong, E.H.; Kemp, J.A.; Priestley, T.; Knight, A.R.; Woodruff, G.N.; Iversen, L.L. The anticonvulsant MK-801 is a potent N-methyl-D-aspartate antagonist. Proc. Natl. Acad. Sci. USA 1986, 83, 7104–7108. [Google Scholar] [CrossRef] [PubMed]
- Amador, M.; Dani, J.A. MK-801 inhibition of nicotinic acetylcholine receptor channels. Synapse 1991, 7, 207–215. [Google Scholar] [CrossRef]
- Ramoa, A.S.; Alkondon, M.; Aracava, Y.; Irons, J.; Lunt, G.G.; Deshpande, S.S.; Wonnacott, S.; Aronstam, R.S.; Albuquerque, E.X. The anticonvulsant MK-801 interacts with peripheral and central nicotinic acetylcholine receptor ion channels. J. Pharmacol. Exp. Ther. 1990, 254, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Jensen, M.Ø.; Jogini, V.; Stein, R.A.; Lee, C.H.; Mchaourab, H.S.; Schaw, D.E.; Gouaux, E. Mechanism of NMDA receptor channel block by MK-801 and memantine. Biophys. J. 2018, 114, 24a–25a. [Google Scholar] [CrossRef]
- Blake, J.F.; Brown, M.W.; Collingridge, G.L. CNQX blocks acidic amino acid induced depolarizations and synaptic components mediated by non-NMDA receptors in rat hippocampal slices. Neurosci. Lett. 1988, 89, 182–186. [Google Scholar] [CrossRef]
- MacLean, D.M.; Bowie, D. Transmembrane AMPA receptor regulatory protein regulation of competitive antagonism: A problem of interpretation. J. Physiol. 2011, 589, 5383–5390. [Google Scholar] [CrossRef]
- Rajdev, S.; Reynolds, I.J. Effects of pH on the actions of dizocilpine at the N-methyl-D-aspartate receptor complex. Br. J. Pharmacol. 1993, 109, 107–112. [Google Scholar] [CrossRef]
- Chen, Y.H.; Wu, M.L.; Fu, W.M. Regulation of presynaptic NMDA responses by external and intracellular pH changes at developing neuromuscular synapses. J. Neurosci. 1998, 18, 2982–2990. [Google Scholar] [CrossRef]
- Traynelis, S.F.; Wollmuth, L.P.; McBain, C.J.; Menniti, F.S.; Vance, K.M.; Ogden, K.K.; Hansen, K.B.; Yuan, H.; Myers, S.J.; Dingledine, R. Glutamate receptor ion channels: Structure, regulation, and function. Pharmacol. Rev. 2010, 62, 405–496. [Google Scholar] [CrossRef]
- Rothman, S.M.; Olney, J.W. Excitotoxity and the NMDA receptor. Trends Neurosci. 1987, 10, 299–302. [Google Scholar] [CrossRef]
- Tapken, D.; Anschütz, U.; Liu, L.H.; Huelsken, T.; Seebohm, G.; Becker, D.; Hollmann, M. A plant homolog of animal glutamate receptors is an ion channel gated by multiple hydrophobic amino acids. Sci. Signal. 2013, 6, ra47. [Google Scholar] [CrossRef]
- Qi, Z.; Stephens, N.R.; Spalding, E.P. Calcium entry mediated by GLR3.3, an Arabidopsis glutamate receptor with a broad agonist profile. Plant Physiol. 2006, 142, 963–971. [Google Scholar] [CrossRef]
- Łabuz, J.; Sztatelman, O.; Hermanowicz, P. Molecular insights into the phototropin control of chloroplast movements. J. Exp. Bot. 2022, 73, 6034–6051. [Google Scholar] [CrossRef] [PubMed]
- Jarillo, J.A.; Gabrys, H.; Capel, J.; Alonso, J.M.; Ecker, J.R.; Cashmore, A.R. Phototropin-related NPL1 controls chloroplast relocation induced by blue light. Nature 2001, 410, 952–954. [Google Scholar] [CrossRef] [PubMed]
- Luesse, D.R.; DeBlasio, S.L.; Hangarter, R.P. Integration of phot1, phot2, and PhyB signalling in light-induced chloroplast movements. J. Exp. Bot. 2010, 61, 4387–4397. [Google Scholar] [CrossRef]
- Appenroth, K.J.; Teller, S.; Horn, M. Photophysiology of turion formation and germination in Spirodela polyrhiza. Biol. Plant. 1996, 38, 95–106. [Google Scholar] [CrossRef]
- Gabryś, H.; Banaś, A.K.; Hermanowicz, P.; Krzeszowiec, W.; Leśniewski, S.; Łabuz, J.; Sztatelman, O. Photometric assays for chloroplast movement responses to blue light. Bio Protoc. 2017, 7, e2310. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krzeszowiec, W.; Gabryś, H. GLR Channels Are Involved in the Mechanism of Chloroplast Avoidance Response in Lemna trisulca. Plants 2025, 14, 2990. https://doi.org/10.3390/plants14192990
Krzeszowiec W, Gabryś H. GLR Channels Are Involved in the Mechanism of Chloroplast Avoidance Response in Lemna trisulca. Plants. 2025; 14(19):2990. https://doi.org/10.3390/plants14192990
Chicago/Turabian StyleKrzeszowiec, Weronika, and Halina Gabryś. 2025. "GLR Channels Are Involved in the Mechanism of Chloroplast Avoidance Response in Lemna trisulca" Plants 14, no. 19: 2990. https://doi.org/10.3390/plants14192990
APA StyleKrzeszowiec, W., & Gabryś, H. (2025). GLR Channels Are Involved in the Mechanism of Chloroplast Avoidance Response in Lemna trisulca. Plants, 14(19), 2990. https://doi.org/10.3390/plants14192990