Characterization and Phylogenetic Analysis of MADS-Box Gene Family in Magnoliids: Insights into the Evolution of Floral Morphogenesis in Angiosperms
Abstract
1. Introduction
2. Results
2.1. Identification of MADS-Box Genes in Magnoliids
2.2. Phylogenetic Analysis of MADS-Box Genes in Magnoliids
2.3. The Evolutionary History and Expansion of ABCDE Model Genes in Magnoliids
2.4. Expression Pattern Analysis of the Floral Homeotic MADS-Box Genes in Different Floral Organs
3. Discussion
3.1. The MADS-Box Gene Families of Four Magnoliid Plants: Cinnamomum kanehirae, Chimonanthus praecox, Piper nigrum, and Liriodendron chinense Have Undergone Substantial Expansion, Which May Result from Whole-Genome Duplications (WGDs)
3.2. The Expression Patterns of MADS-Box Genes in Magnoliids Exhibit Both Similarities to Those of Angiosperms and Lineage-Specific Characteristics Unique to Magnoliids
3.3. The ABCDE Homologs in Magnoliids Generally Exhibited Broader Expression Ranges in Floral Organs
4. Materials and Methods
4.1. Data Collection
4.2. Identification of MADS-Box Genes
4.3. Classification and Phylogenetic Analysis of MADS-Box Genes
4.4. Expression Analysis of MADS-Box Genes in Magnoliids Using RNA-Seq Data
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gramzow, L.; Ritz, M.S.; Theißen, G. On the origin of MADS-domain transcription factors. Trends Genet. 2010, 26, 149–153. [Google Scholar] [CrossRef] [PubMed]
- Irish, V.F. Duplication, diversification, and comparative genetics of angiosperm MADS-Box genes. Adv. Bot. Res. 2006, 44, 129–161. [Google Scholar]
- Alvarez-Buylla, E.R.; Pelaz, S.; Liljegren, S.J.; Gold, S.E.; Burgeff, C.; Ditta, G.S.; Ribas de Pouplana, L.; Martínez-Castilla, L.; Yanofsky, M.F. An ancestral MADS-box gene duplication occurred before the divergence of plants and animals. Proc. Natl. Acad. Sci. USA 2000, 97, 5328–5333. [Google Scholar] [CrossRef]
- De Bodt, S.; Raes, J.; Florquin, K.; Rombauts, S.; Rouzé, P.; Theißen, G.; Van de Peer, Y. Genomewide structural annotation and evolutionary analysis of the type I MADS-box genes in plants. J. Mol. Evol. 2003, 56, 573–586. [Google Scholar] [CrossRef]
- Liu, Y.; Cui, S.; Wu, F.; Yan, S.; Lin, X.; Du, X.; Chong, K.; Schilling, S.; Theißen, G.; Meng, Z. Functional conservation of MIKC*-Type MADS box genes in Arabidopsis and rice pollen maturation. Plant Cell 2013, 25, 1288–1303. [Google Scholar] [CrossRef]
- De Bodt, S.; Raes, J.; Van de Peer, Y.; Theißen, G. And then there were many: MADS goes genomic. Trends Plant Sci. 2003, 8, 475–483. [Google Scholar] [CrossRef]
- Becker, A.; Winter, K.-U.; Meyer, B.; Saedler, H.; Theißen, G. MADS-box gene diversity in seed plants 300 million years ago. Mol. Biol. Evol. 2000, 17, 1425–1434. [Google Scholar] [CrossRef]
- Hernández-Hernández, T.; Martínez-Castilla, L.P.; Alvarez-Buylla, E.R. Functional diversification of B MADS-box homeotic regulators of flower development: Adaptive evolution in protein–protein interaction domains after major gene duplication events. Mol. Biol. Evol. 2007, 24, 465–481. [Google Scholar] [CrossRef]
- Weigel, D.; Meyerowitz, E.M. The ABCs of floral homeotic genes. Cell 1994, 78, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Maeda, H.; Dudareva, N. The shikimate pathway and aromatic amino acid biosynthesis in plants. Annu. Rev. Plant Biol. 2012, 63, 73–105. [Google Scholar] [CrossRef] [PubMed]
- Ditta, G.; Pinyopich, A.; Robles, P.; Pelaz, S.; Yanofsky, M.F. The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Curr. Biol. 2004, 14, 1935–1940. [Google Scholar] [CrossRef]
- Massoni, J.; Couvreur, T.L.; Sauquet, H. Five major shifts of diversification through the long evolutionary history of Magnoliidae (Angiosperms). BMC Evol. Biol. 2015, 15, 49. [Google Scholar] [CrossRef]
- Crepet, W.L.; Nixon, K.C. Two new fossil flowers of magnoliid affinity from the Late Cretaceous of New Jersey. Am. J. Bot. 1998, 85, 1273–1288. [Google Scholar] [CrossRef]
- Chai, S.; Li, K.; Deng, X.; Wang, L.; Jiang, Y.; Liao, J.; Yang, R.; Zhang, L. Genome-Wide Analysis of the MADS-box Gene Family and Expression Analysis during Anther Development in Salvia miltiorrhiza. Int. J. Mol. Sci. 2023, 24, 10937. [Google Scholar] [CrossRef]
- Nystedt, B.; Street, N.R.; Wetterbom, A.; Zuccolo, A.; Lin, Y.-C.; Scofield, D.G.; Vezzi, F.; Delhomme, N.; Giacomello, S.; Alexeyenko, A.; et al. The Norway spruce genome sequence and conifer genome evolution. Nature 2013, 497, 579–584. [Google Scholar] [CrossRef]
- Zhang, B.; Yao, X.; Chen, H.; Lu, L. High-quality chromosome-level genome assembly of Litsea coreana L. provides insights into Magnoliids evolution and flavonoid biosynthesis. Genomics 2022, 114, 110394. [Google Scholar] [CrossRef]
- Zhao, T.; Zwaenepoel, A.; Xue, J.-Y.; Kao, S.-M.; Li, Z.; Schranz, M.E.; Van de Peer, Y. Whole-genome microsynteny-based phylogeny of angiosperms. Nat. Commun. 2021, 12, 3498. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Peng, F.; Zhou, L.; Yin, X.; Chen, J.; Zhong, H.; Hou, F.; Xie, X.; Wang, L.; Shi, X.; et al. The chromosome-scale genome of Magnolia officinalis provides insight into the evolutionary position of magnoliids. Iscience 2021, 24, 102997. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.Y.; Li, Z.; Hu, S.Y.; Kao, S.M.; Zhao, T.; Wang, J.Y.; Wang, Y.; Chen, M.; Qiu, Y.; Fan, H.Y.; et al. The Saururus chinensis genome provides insights into the evolution of pollination strategies and herbaceousness in magnoliids. Plant J. 2023, 113, 1021–1034. [Google Scholar] [CrossRef] [PubMed]
- Strijk, J.S.; Hinsinger, D.D.; Roeder, M.M.; Chatrou, L.W.; Couvreur, T.L.; Erkens, R.H.; Sauquet, H.; Pirie, M.D.; Thomas, D.C.; Cao, K. Chromosome-level reference genome of the soursop (Annona muricata): A new resource for Magnoliid research and tropical pomology. Mol. Ecol. Resour. 2021, 21, 1608–1619. [Google Scholar] [CrossRef]
- Zhou, L.; Hou, F.; Wang, L.; Zhang, L.; Wang, Y.; Yin, Y.; Pei, J.; Peng, C.; Qin, X.; Gao, J. The genome of Magnolia hypoleuca provides a new insight into cold tolerance and the evolutionary position of magnoliids. Front. Plant Sci. 2023, 14, 1108701. [Google Scholar] [CrossRef] [PubMed]
- Pabón-Mora, N.; Suárez-Baron, H.; Ambrose, B.A.; González, F. Flower Development and Perianth Identity Candidate Genes in the Basal Angiosperm Aristolochia fimbriata (Piperales: Aristolochiaceae). PhytoKeys 2015, 6, 1095. [Google Scholar] [CrossRef]
- Hou, H.; Tian, M.; Liu, N.; Huo, J.; Sui, S.; Li, Z. Genome-wide analysis of MIKCC-type MADS-box genes and roles of CpFUL/SEP/AGL6 superclade in dormancy breaking and bud formation of Chimonanthus praecox. Plant Physiol. Biochem. 2023, 196, 893–902. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.-P.; Sun, W.-H.; Xiong, Y.-F.; Jiang, Y.-T.; Liu, X.-D.; Liao, X.-Y.; Zhang, D.-Y.; Jiang, S.-Z.; Li, Y.; Liu, B.; et al. The Phoebe genome sheds light on the evolution of magnoliids. Hortic. Res. 2020, 7, 876–888. [Google Scholar] [CrossRef] [PubMed]
- Xue, H.; Xu, G.; Guo, C.; Shan, H.; Kong, H. Comparative evolutionary analysis of MADS-box genes in Arabidopsis thaliana and A. lyrata. Biodivers. Sci. 2010, 18, 109–119. [Google Scholar] [CrossRef]
- Chen, F.; Liu, X.; Yu, C.; Chen, Y.; Tang, H.; Zhang, L. Water lilies as emerging models for Darwin’s abominable mystery. Hortic. Res. 2017, 4, 17051. [Google Scholar] [CrossRef]
- Chaw, S.-M.; Liu, Y.-C.; Wu, Y.-W.; Wang, H.-Y.; Lin, C.-Y.I.; Wu, C.-S.; Ke, H.-M.; Chang, L.-Y.; Hsu, C.-Y.; Yang, H.-T. Stout camphor tree genome fills gaps in understanding of flowering plant genome evolution. Nat. Plants 2019, 5, 63–73. [Google Scholar] [CrossRef]
- Qin, L.; Hu, Y.; Wang, J.; Wang, X.; Zhao, R.; Shan, H.; Li, K.; Xu, P.; Wu, H.; Yan, X. Insights into angiosperm evolution, floral development and chemical biosynthesis from the Aristolochia fimbriata genome. Nat. Plants 2021, 7, 1239–1253. [Google Scholar] [CrossRef]
- Shang, J.; Tian, J.; Cheng, H.; Yan, Q.; Li, L.; Jamal, A.; Xu, Z.; Xiang, L.; Saski, C.A.; Jin, S. The chromosome-level wintersweet (Chimonanthus praecox) genome provides insights into floral scent biosynthesis and flowering in winter. Genome Biol. 2020, 21, 200. [Google Scholar] [CrossRef]
- Gaikwad, A.B.; Kaila, T.; Maurya, A.; Kumari, R.; Rangan, P.; Wankhede, D.P.; Bhat, K. The chloroplast genome of black pepper (Piper nigrum L.) and its comparative analysis with related Piper species. Front. Plant Sci. 2023, 13, 1095781. [Google Scholar] [CrossRef]
- Wu, C.-C.; Chu, F.-H.; Ho, C.-K.; Sung, C.-H.; Chang, S.-H. Comparative analysis of the complete chloroplast genomic sequence and chemical components of Cinnamomum micranthum and Cinnamomum kanehirae. Holzforschung 2017, 71, 189–197. [Google Scholar] [CrossRef]
- Chanderbali, A.S.; Albert, V.A.; Ashworth, V.E.; Clegg, M.T.; Litz, R.E.; Soltis, D.E.; Soltis, P.S. Persea americana (avocado): Bringing ancient flowers to fruit in the genomics era. BioEssays 2008, 30, 386–396. [Google Scholar] [CrossRef]
- Cui, X.; Meng, F.; Pan, X.; Qiu, X.; Zhang, S.; Li, C.; Lu, S. Chromosome-level genome assembly of Aristolochia contorta provides insights into the biosynthesis of benzylisoquinoline alkaloids and aristolochic acids. Hortic. Res. 2022, 9, uhac005. [Google Scholar] [CrossRef]
- Maddison, W.P.; Lacey, K.L. Inferring Phylogeny Despite Incomplete Lineage Sorting. Syst. Biol. 2006, 55, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Chen, H.; Liu, J.; Du, Q.; Lu, S.; Liu, C. Genome-wide identification and functional characterization of natural antisense transcripts in Salvia miltiorrhiza. Sci. Rep. 2021, 11, 4769. [Google Scholar] [CrossRef] [PubMed]
- Arora, R.; Agarwal, P.; Ray, S.; Singh, A.K.; Singh, V.P.; Tyagi, A.K.; Kapoor, S. MADS-box gene family in rice: Genome-wide identification, organization and expression profiling during reproductive development and stress. BMC Genom. 2007, 8, 242. [Google Scholar] [CrossRef]
- Aerts, N.; de Bruijn, S.; van Mourik, H.; Angenent, G.C.; van Dijk, A.D. Comparative analysis of binding patterns of MADS-domain proteins in Arabidopsis thaliana. BMC Plant Biol. 2018, 18, 131. [Google Scholar] [CrossRef]
- Wang, F.; Zhou, Z.; Zhu, L.; Gu, Y.; Guo, B.; Lv, C.; Zhu, J.; Xu, R.; Zhang, L.; Chen, F.; et al. Genome-wide analysis of the MADS-box gene family involved in salt and waterlogging tolerance in barley (Hordeum vulgare L.). Front. Plant Sci. 2023, 14, 1178065. [Google Scholar] [CrossRef]
- Tsaftaris, A.S.; Pasentsis, K.; Iliopoulos, I.; Polidoros, A.N. Isolation of three homologous AP1-like MADS-box genes in crocus (Crocus sativus L.) and characterization of their expression. Plant Sci. 2004, 166, 1235–1243. [Google Scholar] [CrossRef]
- Yu, Q.; Steiger, D.; Kramer, E.M.; Moore, P.H.; Ming, R. Floral MADS-box genes in trioecious papaya: Characterization of AG and AP1 subfamily genes revealed a sex-type-specific gene. Trop. Plant Biol. 2008, 1, 97–107. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, F.; Zhang, X.; Li, Z.; Zhao, Y.; Lohaus, R.; Chang, X.; Dong, W.; Ho, S.Y.; Liu, X. The water lily genome and the early evolution of flowering plants. Nature 2020, 577, 79–84. [Google Scholar] [CrossRef]
- Shen, G.; Yang, C.-H.; Shen, C.-Y.; Huang, K.-S. Origination and selection of ABCDE and AGL6 subfamily MADS-box genes in gymnosperms and angiosperms. Biol. Res. 2019, 52, 25. [Google Scholar] [CrossRef] [PubMed]
- Tsaftaris, A.S.; Polidoros, A.N.; Pasentsis, K.; Kalivas, A. Tepal formation and expression pattern of B-class paleoAP3-like MADS-box genes in crocus (Crocus sativus L.). Plant Sci. 2006, 170, 238–246. [Google Scholar] [CrossRef]
- Hsu, H.-F.; Hsu, W.-H.; Lee, Y.-I.; Mao, W.-T.; Yang, J.-Y.; Li, J.-Y.; Yang, C.-H. Model for perianth formation in orchids. Nat. Plants 2015, 1, 15046. [Google Scholar] [CrossRef]
- Melzer, R.; Wang, Y.-Q.; Theißen, G. The naked and the dead: The ABCs of gymnosperm reproduction and the origin of the angiosperm flower. Semin. Cell Dev. Biol. 2010, 21, 118–128. [Google Scholar] [CrossRef] [PubMed]
- Frohlich, M.W. Recent Developments Regarding the Evolutionary Origin of Flowers. Adv. Bot. Res. 2006, 44, 64–129. [Google Scholar] [CrossRef]
- Matasci, N.; Hung, L.-H.; Yan, Z.; Carpenter, E.J.; Wickett, N.J.; Mirarab, S.; Nguyen, N.; Warnow, T.; Ayyampalayam, S.; Barker, M. Data access for the 1000 Plants (1KP) project. Gigascience 2014, 3, 2047-217X. [Google Scholar] [CrossRef]
- Finn, R.D.; Clements, J.; Eddy, S.R. HMMER web server: Interactive sequence similarity searching. Nucleic Acids Res. 2011, 39, W29–W37. [Google Scholar] [CrossRef] [PubMed]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Bateman, A.; Coin, L.; Durbin, R.; Finn, R.D.; Hollich, V.; Griffiths-Jones, S.; Khanna, A.; Marshall, M.; Moxon, S.; Sonnhammer, E.L. The Pfam protein families database. Nucleic Acids Res. 2004, 32, D138–D141. [Google Scholar] [CrossRef]
- Letunic, I.; Doerks, T.; Bork, P. SMART 6: Recent updates and new developments. Nucleic Acids Res. 2009, 37, D229–D232. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef]
- Liu, K.; Linder, C.R.; Warnow, T. RAxML and FastTree: Comparing two methods for large-scale maximum likelihood phylogeny estimation. PLoS ONE 2011, 6, e27731. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Gao, S.; Lercher, M.J.; Hu, S.; Chen, W.-H. EvolView, an online tool for visualizing, annotating and managing phylogenetic trees. Nucleic Acids Res. 2012, 40, W569–W572. [Google Scholar] [CrossRef]
- Pertea, M.; Kim, D.; Pertea, G.M.; Leek, J.T.; Salzberg, S.L. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat. Protoc. 2016, 11, 1650–1667. [Google Scholar] [CrossRef]
- Liao, Y.; Smyth, G.K.; Shi, W. featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 2013, 30, 923–930. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
Clade | Order | Family | Species | Abbr. | Type I | Type II | Total |
---|---|---|---|---|---|---|---|
Early-diverging Angiosperms | Nymphaeales | Nymphaeaceae | Nymphaea colorata | NC | 37 | 21 | 58 |
Amborellales | Amborellaceae | Amborella trichopoda | scaffold | 13 | 24 | 37 | |
Eudicots | Vitales | Vitaceae | Vitis vinifera | VIVT | 10 | 40 | 50 |
Solanales | Solanaceae | Solanum lycopersicum | Solyc | 59 | 41 | 100 | |
Brassicales | Brassicaceae | Arabidopsis thaliana | AT | 64 | 46 | 110 | |
Monocots | Poales | Poaceae | Oryza sativa | LOC_Os | 19 | 45 | 64 |
Sorghum bicolor | Sobic | 35 | 39 | 74 | |||
Bromeliaceae | Ananas comosus | Aco | 10 | 30 | 40 | ||
Magnoliids | Laurales | Lauraceae | Cinnamomum kanehirae | RWR | 36 | 36 | 72 |
Persea americana cultivar drymifolia | PamV1 | 7 | 26 | 33 | |||
Persea americana cultivar Hass | PamV2 | 10 | 25 | 35 | |||
Calycanthaceae | Chimonanthus praecox | Cs | 48 | 37 | 85 | ||
Piperales | Aristolochiaceae | Aristo fimbriata | Af | 16 | 17 | 33 | |
Piperaceae | Pipernigrum | Pn | 13 | 52 | 65 | ||
Magnoliales | Magnoliaceae | Magnolia biondii Pamp | MBI | 13 | 18 | 31 | |
Liriodendron chinense | Lchi | 31 | 29 | 60 | |||
Total | 421 | 526 | 947 |
Class | Species Name | Sources of Genomic Data |
---|---|---|
Early-diverging angiosperms | Nymphaea colorata | https://plants.ensembl.org/index.html (accessed on 26 September 2025) |
Amborella trichopoda | https://plants.ensembl.org/index.html (accessed on 26 September 2025) | |
Eudicots | Vitis vinifera | http://plants.ensembl.org/index.html (accessed on 26 September 2025) |
Solanum lycopersicum | https://phytozome.jgi.doe.gov/pz/portal.html (accessed on 26 September 2025) | |
Arabidopsis thaliana | https://phytozome.jgi.doe.gov/pz/portal.html (accessed on 26 September 2025) | |
Monocots | Oryza sativa | https://phytozome.jgi.doe.gov/pz/portal.html (accessed on 26 September 2025) |
Sorghum bicolor | https://phytozome.jgi.doe.gov/pz/portal.html (accessed on 26 September 2025) | |
Ananas comosus | https://phytozome.jgi.doe.gov/pz/portal.html (accessed on 26 September 2025) | |
Magnoliids | Cinnamomum kanehirae | https://www.ncbi.nlm.nih.gov/ (accessed on 26 September 2025) |
Persea americana cultivar drymifolia | https://genomevolution.org/ (accessed on 26 September 2025) | |
Persea americana cultivar Hass | https://genomevolution.org/ (accessed on 26 September 2025) | |
Chimonanthus praecox | https://www.ncbi.nlm.nih.gov/ (accessed on 26 September 2025) | |
Aristolochia fimbriata | https://www.ncbi.nlm.nih.gov/ (accessed on 26 September 2025) | |
Piper nigrum | https://www.ncbi.nlm.nih.gov/ (accessed on 26 September 2025) | |
Magnolia biondii Pamp. | https://datadryad.org/ (accessed on 26 September 2025) | |
Liriodendron chinensis | https://www.ebi.ac.uk/ (accessed on 26 September 2025) | |
Annona muricata | https://db.cngb.org/onekp/ (accessed on 26 September 2025) | |
Eupomatia bennettii | ||
Magnolia grandiflora | ||
Michelia maudiae | ||
Myristica fragrans | ||
Uvaria microcarpa | ||
Aristolochia elegans | ||
Houttuynia cordata | ||
Peperomia fraseri | ||
Piper auritum | ||
Saruma henryi | ||
Saururus cernuus | ||
Calycanthus floridus | ||
Cassytha filiformis | ||
Cinnamomum camphora | ||
Gomortega keule | ||
Gyrocarpus americanus | ||
Idiospermum australiense | ||
Laurelia sempervirens | ||
Lindera benzoin | ||
Persea borbonia | ||
Peumus boldus | ||
Sassafras albidum | ||
Canella winterana | ||
Drimys winteri |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Qu, H.; Zhou, J.; Pan, J.; Wang, Z.; Zhang, L.; Li, X.; Cheng, K. Characterization and Phylogenetic Analysis of MADS-Box Gene Family in Magnoliids: Insights into the Evolution of Floral Morphogenesis in Angiosperms. Plants 2025, 14, 2991. https://doi.org/10.3390/plants14192991
Chen H, Qu H, Zhou J, Pan J, Wang Z, Zhang L, Li X, Cheng K. Characterization and Phylogenetic Analysis of MADS-Box Gene Family in Magnoliids: Insights into the Evolution of Floral Morphogenesis in Angiosperms. Plants. 2025; 14(19):2991. https://doi.org/10.3390/plants14192991
Chicago/Turabian StyleChen, Haowei, Haoyue Qu, Junmei Zhou, Junjie Pan, Zhoutao Wang, Liangsheng Zhang, Xiuxiu Li, and Kejun Cheng. 2025. "Characterization and Phylogenetic Analysis of MADS-Box Gene Family in Magnoliids: Insights into the Evolution of Floral Morphogenesis in Angiosperms" Plants 14, no. 19: 2991. https://doi.org/10.3390/plants14192991
APA StyleChen, H., Qu, H., Zhou, J., Pan, J., Wang, Z., Zhang, L., Li, X., & Cheng, K. (2025). Characterization and Phylogenetic Analysis of MADS-Box Gene Family in Magnoliids: Insights into the Evolution of Floral Morphogenesis in Angiosperms. Plants, 14(19), 2991. https://doi.org/10.3390/plants14192991