Optimization of In Vitro Ovule Culture System in Upland Cotton
Abstract
1. Introduction
2. Results
2.1. Effect of Carbon Sources on In Vitro Culture of Cotton Ovules
2.2. Effect of Gln on In Vitro Culture of Cotton Ovules
2.3. Effect of KT on In Vitro Culture of Cotton Ovules
2.4. Observation of Fiber Changes During In Vitro Culture of Ovules on Optimized Medium
3. Discussion
4. Materials and Methods
4.1. Plant Materials and Planting Conditions
4.2. In Vitro Culture of Cotton Ovules
4.3. Medium Composition
4.4. Culture Observations
4.5. Image Acquisition and Processing
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yang, Z.; Gao, C.; Zhang, Y.; Yan, Q.; Hu, W.; Yang, L.; Wang, Z.; Li, F. Recent progression and future perspectives in cotton genomic breeding. J. Integr. Plant Biol. 2023, 65, 548–569. [Google Scholar] [CrossRef] [PubMed]
- Stewart, J.M. Fiber initiation on the cotton ovule (Gossypium hirsutum). Am. J. Bot. 1975, 62, 723–730. [Google Scholar] [CrossRef]
- Triplett, B.A.; Busch, W.H.; Goynes, W.R. Ovule and suspension culture of a cotton fiber development mutant. Vitr. Cell Dev. Biol. 1989, 25, 197–200. [Google Scholar] [CrossRef]
- Trolinder, N.L.; Berlin, J.D.; Goodin, J.R. Differentiation of cotton fibers from single cells in suspension culture. Vitr. Cell. Dev. Biol. 1987, 23, 789–794. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; He, S.P.; Xu, S.W.; Li, L.; Zheng, Y.; Li, X.B. The transcription factor ERF108 interacts with AUXIN RESPONSE FACTORs to mediate cotton fiber secondary cell wall biosynthesis. Plant Cell 2023, 35, 4133–4154. [Google Scholar] [CrossRef]
- Behnam, M.; Davarpanah, S.J.; Karimian, R. Cotton Ovule Culture: A Tool for Biological and Biotechnological Studies of Cotton. J. Appl. Biotechnol. Rep. 2016, 2, 311–314. [Google Scholar]
- Kim, H.J.; Triplett, B.A. Cotton fiber growth in planta and in vitro: Models for plant cell elongation and cell wall biogenesis. Plant Physiol. 2001, 127, 1361–1366. [Google Scholar] [CrossRef]
- Pierce, E.T.; Graham, B.P.; Stiff, M.R.; Osborne, J.A.; Haigler, C.H. Cultures of Gossypium barbadense cotton ovules offer insights into the microtubule-mediated control of fiber cell expansion. Planta 2019, 249, 1551–1563. [Google Scholar] [CrossRef]
- Beasley, C.A. In vitro culture of fertilized cotton ovules. BioScience 1971, 21, 906–907. [Google Scholar] [CrossRef]
- Beasley, C.A. Hormonal regulation of growth in unfertilized cotton ovules. Science 1973, 179, 1003–1005. [Google Scholar] [CrossRef]
- Besley, C.A.; Ting, I.P. The effect of plant growth substances on in vitro fiber development from fertilized cotton ovules. Am. J. Bot. 1973, 60, 130–139. [Google Scholar] [CrossRef]
- Qian, S.H.; Hong, L.; Cai, Y.P.; Gao, J.S.; Lin, Y. Effects of light on in vitro fiber development and flavonoid biosynthesis in green cotton (Gossypium hirsutum). Acta. Soc. Bot. Pol. 2016, 85, 3499. [Google Scholar] [CrossRef]
- Guo, K.; Du, X.; Tu, L.; Tang, W.; Wang, P.; Wang, M.; Liu, Z.; Zhang, X. Fibre elongation requires normal redox homeostasis modulated by cytosolic ascorbate peroxidase in cotton (Gossypium hirsutum). J. Exp. Bot. 2016, 67, 3289–3301. [Google Scholar] [CrossRef]
- Qanmber, G.; Liu, Z.; Li, F.; Yang, Z. Brassinosteroids in cotton: Orchestrating fiber development. New Phytol. 2024, 244, 1732–1741. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Ji, M.; You, J.; Zhang, Y.; Lindsey, K.; Zhang, X.; Tu, L.; Wang, M. Synergistic interplay of redox homeostasis and polysaccharide synthesis promotes cotton fiber elongation. Plant J. 2024, 118, 405–422. [Google Scholar] [CrossRef] [PubMed]
- Beasley, C.A.; Ting, I.P. Effects of plant growth substances on in vitro fiber development from unfertilized cotton ovules. Am. J. Bot. 1974, 61, 188–194. [Google Scholar] [CrossRef]
- Guinn, G.; Brummett, D.L. Changes in Abscisic Acid and Indoleacetic Acid before and after Anthesis Relative to Changes in Abscission Rates of Cotton Fruiting Forms. Plant Physiol. 1988, 87, 629–631. [Google Scholar] [CrossRef]
- Gialvalis, S.; Seagull, R.W. Plant hormones alter fiber initiation in unfertilized, cultured ovules of Gossypium hirsutum. J. Cotton Sci. 2001, 5, 252–258. [Google Scholar]
- Hou, L.; Zhu, L.; Hao, M.; Liang, Y.; Xiao, G. Brassinosteroids enhance gibberellic acid biosynthesis to promote cotton fibre cell elongation. Plant Biotechnol. J. 2025, 23, 1213–1215. [Google Scholar] [CrossRef]
- John, M.E. Genetic engineering strategies for cotton fiber modification. In Cotton Fibers: Developmental Biology, Quality Improvement and Textile Processing; Basra, A.S., Ed.; Food Products Press: New York, NY, USA, 1999; pp. 271–292. Available online: https://www.taylorfrancis.com/chapters/edit/10.1201/9781003578437-10 (accessed on 29 June 2021).
- Seagull, R.W.; Giavalis, S. Pre- and post-anthesis application of exogenous hormones alters fiber production in Gossypium hirsutum L. cultivar Maxxa GTO. J. Cotton Sci. 2004, 8, 105–111. [Google Scholar]
- Momtaz, O.A. Effect of plant growth regulators on in vitro fiber development from unfertilized and fertilized Egyptian cotton ovules. Plant Growth Regul. 1998, 25, 159–164. [Google Scholar] [CrossRef]
- Ganesan, M.; Jayabalan, N. Carbon source dependent somatic embryogenesis and plant regeneration in cotton, Gossypium hirsutum L. cv. SVPR2 through suspension cultures. Indian J. Exp. Biol. 2005, 43, 921–925. [Google Scholar] [PubMed]
- Masclaux-Daubresse, C.; Daniel-Vedele, F.; Dechorgnat, J.; Chardon, F.; Gaufichon, L.; Suzuki, A. Nitrogen uptake, assimilation and remobilization in plants: Challenges for sustainable and productive agriculture. Ann. bot. 2010, 105, 1141–1157. [Google Scholar] [CrossRef] [PubMed]
- Marino, D.; Cañas, R.A.; Betti, M. Is plastidic glutamine synthetase essential for C3 plants? A tale of photorespiratory mutants, ammonium tolerance and conifers. New Phytol. 2022, 234, 1559–1565. [Google Scholar] [CrossRef] [PubMed]
- Cren, M.; Hirel, B. Glutamine synthetase in higher plants: Regulation of gene and protein expression from the organ to the cell. Plant Cell Physiol. 1999, 40, 1187–1193. [Google Scholar] [CrossRef]
- Zheng, Z.L. Carbon and nitrogen nutrient balance signaling in plants. Plant Signal. Behav. 2009, 4, 584–591. [Google Scholar] [CrossRef]
- Coruzzi, G.M.; Zhou, L. Carbon and nitrogen sensing and signaling in plants: Emerging ‘matrix effects’. Curr. Opin. Plant Biol. 2001, 4, 247–253. [Google Scholar] [CrossRef]
- Davidonis, G.H. Fiber development in preanthesis cotton ovules. Physiol. Plant. 1989, 75, 290–294. [Google Scholar] [CrossRef]
- Davidonis, G. A comparison of cotton ovule and cotton cell suspension cultures: Response to gibberellic acid and 2-chloroethylphosphonic acid. J. Plant Physiol. 1993, 141, 505–507. [Google Scholar] [CrossRef]
- Feng, R.; Brown, R.M. A novel cotton ovule culture: Induction, growth, and characterization of submerged cotton fibers (Gossypium hirsutum L.). Vitr. Cell Dev. Biol. 2000, 36, 293–299. [Google Scholar] [CrossRef]
- Cui, X.H.; Murthy, H.N.; Wu, C.H.; Paek, K.Y. Sucrose-induced osmotic stress affects biomass, metabolite, and antioxidant levels in root suspension cultures of Hypericum perforatum L. Plant Cell Tissue Organ Cult. 2010, 103, 7–14. [Google Scholar] [CrossRef]
- Paiva Neto, V.; Otoni, W. Carbon sources and their osmotic potential in plant tissue culture: Does it matter? Sci. Hortic. 2003, 97, 193–202. [Google Scholar] [CrossRef]
- Gemechu, E.C.; Amante, G. Control of browning in Plant Tissue Culture: A Review. J. Sci. Inn. Res. 2021, 10, 89–93. [Google Scholar] [CrossRef]
- Danova, K.; Pistelli, L. Plant Tissue Culture and Secondary Metabolites Production. Plants 2022, 11, 3312. [Google Scholar] [CrossRef]
- Gill, M.S.; Bajaj, Y.P.S. Hybridization between diploid (Gossypium arboreum) and tetraploid (Gossypium hirsutum) cotton through ovule culture. Euphytica 1987, 36, 625–630. [Google Scholar] [CrossRef]
- Liao, H.S.; Lee, K.T.; Chung, Y.H.; Chen, S.Z.; Hung, Y.J.; Hsieh, M.H. Glutamine induces lateral root initiation, stress responses, and disease resistance in Arabidopsis. Plant Physiol. 2024, 195, 2289–2308. [Google Scholar] [CrossRef]
- Leitzen, S.; Vogel, M.; Steffens, M.; Zapf, T.; Müller, C.E.; Brandl, M. Quantification of Degradation Products Formed during Heat Sterilization of Glucose Solutions by LC-MS/MS: Impact of Autoclaving Temperature and Duration on Degradation. Pharmaceuticals 2021, 14, 1121. [Google Scholar] [CrossRef]
The Composition of the Optimized Culture Medium | Concentration |
---|---|
BT medium | Inorganic–organic mixture [11] |
Glucose (M) | 0.05 |
Fructose (M) | 0.02 |
IAA (µM) | 5.0 |
GA3 (µM) | 5.0 |
KT (mg/L) | 0.5 |
Gln (g/L) | 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Zheng, C.; Wang, A.; Huo, X.; Wu, X.; Liu, J.; Fan, Y.; Dai, J.; Zeng, F. Optimization of In Vitro Ovule Culture System in Upland Cotton. Plants 2025, 14, 2936. https://doi.org/10.3390/plants14182936
Zhang L, Zheng C, Wang A, Huo X, Wu X, Liu J, Fan Y, Dai J, Zeng F. Optimization of In Vitro Ovule Culture System in Upland Cotton. Plants. 2025; 14(18):2936. https://doi.org/10.3390/plants14182936
Chicago/Turabian StyleZhang, Li, Congcong Zheng, Aijuan Wang, Xuehui Huo, Xiaoying Wu, Jialin Liu, Yupeng Fan, Jianlong Dai, and Fanchang Zeng. 2025. "Optimization of In Vitro Ovule Culture System in Upland Cotton" Plants 14, no. 18: 2936. https://doi.org/10.3390/plants14182936
APA StyleZhang, L., Zheng, C., Wang, A., Huo, X., Wu, X., Liu, J., Fan, Y., Dai, J., & Zeng, F. (2025). Optimization of In Vitro Ovule Culture System in Upland Cotton. Plants, 14(18), 2936. https://doi.org/10.3390/plants14182936