The Role of Silicon Compounds in Plant Responses to Cadmium Stress: A Review
Abstract
1. Introduction
2. Silicon Compounds in Plant Physiology
3. Mechanisms of Silicon–Cadmium Interaction in Plants
3.1. Antioxidant Protection and Oxidative Stress
3.2. Metal Chelation and Compartmentalization
3.3. Effects on Nutrient Uptake and Transport
3.4. Transcriptomic and Proteomic Insights on Silicon’s Effect on Cd-Treated Plants
3.5. Subcellular Changes
4. Future Perspectives
5. Conclusions
- Reduction in Cd uptake, translocation, and accumulation in plants.
- Si decreases the bioavailability of Cd to plant organisms by the increase of soil pH [70].
- There are inconsistent data on the effect of SiNPs on the expression of Cd transporters. It has been found that SiNPs may inhibit the expression of OsNramp5 and increase the expression of OsHMA3 [143]; there are also data indicating that SiO2NPs have no effect on the expression of the OsNramp5, OsHMA2, and OsHMA3 genes [145].
- Si/SiNPs decreases accumulation of Cd in roots and shoots.
- Induction of protective mechanisms in plants.
- Si application may influence the increase in phytochelatin synthesis: PC2 and PC3 [117]. There are no data on SiNPs on phytochelatin synthesis.
- The application of Si may increase the pectin content in the cell walls of root cells, which can bind Cd and limit its translocation to above-ground parts [35]. There are no data on SiNPs on pectin content.
- Potential role of conventional Si and SiNPs in sustainable agriculture.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ali, H.; Khan, E. What Are Heavy Metals? Long-Standing Controversy over the Scientific Use of the Term ‘Heavy Metals’–Proposal of a Comprehensive Definition. Toxicol. Environ. Chem. 2018, 100, 6–19. [Google Scholar] [CrossRef]
- Duffus, J.H. “Heavy metals”-A Meaningless Term? (IUPAC Technical Report). Pure Appl. Chem. 2002, 74, 793–807. [Google Scholar] [CrossRef]
- Zulfiqar, U.; Ayub, A.; Hussain, S.; Waraich, E.A.; El-Esawi, M.A.; Ishfaq, M.; Ahmad, M.; Ali, N.; Maqsood, M.F. Cadmium Toxicity in Plants: Recent Progress on Morpho-Physiological Effects and Remediation Strategies. J. Soil. Sci. Plant Nutr. 2022, 22, 212–269. [Google Scholar] [CrossRef]
- Zhao, F.J.; Ma, Y.; Zhu, Y.G.; Tang, Z.; McGrath, S.P. Soil Contamination in China: Current Status and Mitigation Strategies. Environ. Sci. Technol. 2015, 49, 750–759. [Google Scholar] [CrossRef] [PubMed]
- Niño-Savala, A.G.; Zhuang, Z.; Ma, X.; Fangmeier, A.; Li, H.; Tang, A.; Liu, X. Cadmium Pollution from Phosphate Fertilizers in Arable Soils and Crops: An Overview. Front. Agric. Sci. Eng. 2019, 6, 419–430. [Google Scholar] [CrossRef]
- European Union. Regulation (EU) 2019/1009 of the European Parliament and of the Council of 5 June 2019. Off. J. Eur. Union 2019, 62, 1–114. [Google Scholar]
- Ballabio, C.; Jones, A.; Panagos, P. Cadmium in Topsoils of the European Union—An Analysis Based on LUCAS Topsoil Database. Sci. Total Environ. 2024, 912, 168710. [Google Scholar] [CrossRef]
- Ministerstwo Środowiska. Rozporządzenie Ministra Środowiska z Dnia 1 Września 2016 r. w Sprawie Sposobu Prowadzenia Oceny Zanieczyszczenia Powierzchni Ziemi. Dziennik Ustaw 2016, poz.1395. Available online: https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20160001395/O/D20161395.pdf (accessed on 29 May 2025).
- Wdowczyk, A.; Tomczyk, P.; Szymańska-Pulikowska, A.; Wiatkowska, B.; Rosik-Dulewska, C. Copper and Cadmium Content in Polish Soil: Analysis of 25-Year Monitoring Study. Land Degrad. Dev. 2023, 34, 4857–4868. [Google Scholar] [CrossRef]
- Kubier, A.; Wilkin, R.T.; Pichler, T. Cadmium in Soils and Groundwater: A Review. Appl. Geochem. 2019, 108, 104388. [Google Scholar] [CrossRef]
- Chen, D.; Zhang, H.; Wang, Q.; Shao, M.; Li, X.; Chen, D.; Zeng, R.; Song, Y. Intraspecific Variations in Cadmium Tolerance and Phytoaccumulation in Giant Duckweed (Spirodela polyrhiza). J. Hazard. Mater. 2020, 395, 122672. [Google Scholar] [CrossRef]
- Davidova, S.; Milushev, V.; Satchanska, G. The Mechanisms of Cadmium Toxicity in Living Organisms. Toxics 2024, 12, 875. [Google Scholar] [CrossRef]
- Luo, H.; Gu, R.; Ouyang, H.; Wang, L.; Shi, S.; Ji, Y.; Bao, B.; Liao, G.; Xu, B. Cadmium Exposure Induces Osteoporosis through Cellular Senescence, Associated with Activation of NF-ΚB Pathway and Mitochondrial Dysfunction. Environ. Pollut. 2021, 290, 118043. [Google Scholar] [CrossRef]
- Charkiewicz, A.E.; Omeljaniuk, W.J.; Nowak, K.; Garley, M.; Nikliński, J. Cadmium Toxicity and Health Effects—A Brief Summary. Molecules 2023, 28, 6620. [Google Scholar] [CrossRef]
- Yan, L.J.; Allen, D.C. Cadmium-Induced Kidney Injury: Oxidative Damage as a Unifying Mechanism. Biomolecules 2021, 11, 1575. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Jin, L.; Wang, X. Cadmium Absorption and Transportation Pathways in Plants. Int. J. Phytoremediation 2017, 19, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Curie, C.; Cassin, G.; Couch, D.; Divol, F.; Higuchi, K.; Le Jean, M.; Misson, J.; Schikora, A.; Czernic, P.; Mari, S. Metal Movement within the Plant: Contribution of Nicotianamine and Yellow Stripe 1-like Transporters. Ann. Bot. 2009, 103, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.; Khan, S.; Khan, A.; Alam, M. Soil Contamination with Cadmium, Consequences and Remediation Using Organic Amendments. Sci. Total Environ. 2017, 601, 1591–1605. [Google Scholar] [CrossRef]
- Ismael, M.A.; Elyamine, A.M.; Moussa, M.G.; Cai, M.; Zhao, X.; Hu, C. Cadmium in Plants: Uptake, Toxicity, and Its Interactions with Selenium Fertilizers. Metallomics 2019, 11, 255–277. [Google Scholar] [CrossRef]
- Orzoł, A.; Gołębiowski, A.; Szultka-Młyńska, M.; Głowacka, K.; Pomastowski, P.; Buszewski, B. ICP-MS Analysis of Cadmium Bioaccumulation and Its Effect on Pea Plants (Pisum sativum L.). Pol. J. Environ. Stud. 2022, 31, 4779–4787. [Google Scholar] [CrossRef]
- Soni, S.; Jha, A.B.; Dubey, R.S.; Sharma, P. Mitigating Cadmium Accumulation and Toxicity in Plants: The Promising Role of Nanoparticles. Sci. Total Environ. 2024, 912, 168826. [Google Scholar] [CrossRef]
- Grajek, H.; Rydzyński, D.; Piotrowicz-Cieślak, A.; Herman, A.; Maciejczyk, M.; Wieczorek, Z. Cadmium Ion-Chlorophyll Interaction—Examination of Spectral Properties and Structure of the Cadmium-Chlorophyll Complex and Their Relevance to Photosynthesis Inhibition. Chemosphere 2020, 261, 127434. [Google Scholar] [CrossRef] [PubMed]
- Wahid, A.; Ghani, A.; Javed, F. Effect of Cadmium on Photosynthesis, Nutrition and Growth of Mungbean. Agron. Sustain. Dev. 2008, 28, 273–280. [Google Scholar] [CrossRef]
- Januškaitienė, I. Impact of low concentration of cadmium on photosynthesis and growth of pea and barley. Environ. Res. Eng. Manag. 2010, 53, 24–29. [Google Scholar]
- Riaz, M.; Kamran, M.; Rizwan, M.; Ali, S.; Parveen, A.; Malik, Z.; Wang, X. Cadmium Uptake and Translocation: Selenium and Silicon Roles in Cd Detoxification for the Production of Low Cd Crops: A Critical Review. Chemosphere 2021, 273, 129690. [Google Scholar] [CrossRef]
- Januskaitiene, I. The Effect of Cadmium on Several Photosynthetic Parameters of Pea (Pisum sativum L.) at Two Growth Stages. Žemdirbystė = Agriculture 2012, 99, 73–85. [Google Scholar]
- Sager, S.M.A.; Wijaya, L.; Alyemeni, M.N.; Hatamleh, A.A.; Ahmad, P. Impact of Different Cadmium Concentrations on Two Pisum sativum L. Genotypes. Pak. J. Bot. 2020, 52, 821–829. [Google Scholar] [CrossRef]
- Almuwayhi, M.A.R. Effect of Cadmium on the Molecular and Morpho-Physiological Traits of Pisum sativum L. Biotechnol. Biotechnol. Equip. 2021, 35, 1374–1384. [Google Scholar] [CrossRef]
- Chugh, L.K.; Sawhney, S.K. Effect of cadmium on germination, amylases and rate of respiration of germinating pea seeds. Environ. Pollut. 1996, 92, 1–5. [Google Scholar] [CrossRef]
- Głowacka, K.; Olszewski, J.; Sowiński, P.; Kalisz, B.; Najdzion, J. Developmental and Physiological Responses of Pisum Sativum L. after Short-and Long-Time Cadmium Exposure. Agriculture 2022, 12, 637. [Google Scholar] [CrossRef]
- Semane, B.; Cuypers, A.; Smeets, K.; Van Belleghem, F.; Horemans, N.; Schat, H.; Vangronsveld, J. Cadmium Responses in Arabidopsis thaliana: Glutathione Metabolism and Antioxidative Defence System. Physiol. Plant. 2007, 129, 519–528. [Google Scholar] [CrossRef]
- Ouzounidou, G.; Moustakas, M.; Eleftheriou, E.P. Physiological and Ultrastructural Effects of Cadmium on Wheat (Triticum aestivum L.) Leaves. Arch. Environ. Contam. Toxicol. 1997, 32, 154–160. [Google Scholar] [CrossRef]
- Lux, A.; Martinka, M.; Vaculík, M.; White, P.J. Root Responses to Cadmium in the Rhizosphere: A Review. J. Exp. Bot. 2011, 62, 21–37. [Google Scholar] [CrossRef] [PubMed]
- Głowacka, K.; Zróbek-Sokolnik, A.; Okorski, A.; Najdzion, J. The Effect of Cadmium on the Activity of Stress-Related Enzymes and the Ultrastructure of Pea Roots. Plants 2019, 8, 413. [Google Scholar] [CrossRef] [PubMed]
- Gołębiowski, A.; Szultka-Młyńska, M.; Pomastowski, P.; Rafińska, K.; Orzoł, A.; Cichorek, M.; Olszewski, J.; Buszewski, B.; Głowacka, K. Role of Silicon in Counteracting Cadmium Stress in Pea Plants (Pisum sativum L.): Insights Into Cadmium Binding Mechanisms and Pectin Methylesterase Activity. J. Soil Sci. Plant Nutr. 2024, 3, 5613–5625. [Google Scholar] [CrossRef]
- Wang, P.; Yang, B.; Wan, H.; Fang, X.; Yang, C. The Differences of Cell Wall in Roots between Two Contrasting Soybean Cultivars Exposed to Cadmium at Young Seedlings. Environ. Sci. Pollut. Res. Int. 2018, 25, 29705–29714. [Google Scholar] [CrossRef]
- Ma, J.F.; Yamaji, N. Functions and Transport of Silicon in Plants. Cell. Mol. Life Sci. 2008, 65, 3049–3057. [Google Scholar] [CrossRef]
- Biswas, A.; Pal, S.; Paul, S. Silicon as a powerful element for mitigation of cadmium stress in rice: A review for global food safety. Plant Stress 2023, 10, 100237. [Google Scholar] [CrossRef]
- Khan, I.; Awan, S.A.; Rizwan, M.; Ali, S.; Hassan, M.J.; Brestic, M.; Zhang, X.; Huang, L. Effects of silicon on heavy metal uptake at the soil-plant interphase: A review. Ecotoxicol. Environ. Saf. 2021, 222, 112510. [Google Scholar] [CrossRef]
- Yan, J.; Wu, X.; Li, T.; Fan, W.; Abbas, M.; Qin, M.; Li, R.; Liu, Z.; Liu, P. Effect and mechanism of nano-materials on plant resistance to cadmium toxicity: A review. Ecotoxicol. Environ. Saf. 2023, 266, 115576. [Google Scholar] [CrossRef]
- Etesami, H.; Glick, B.R. Exploring the potential: Can mycorrhizal fungi and hyphosphere silicate-solubilizing bacteria synergistically alleviate cadmium stress in plants? Curr. Res. Biotechnol. 2023, 6, 100158. [Google Scholar] [CrossRef]
- Yoshida, S.; Ohnishi, Y.; Kitagishi, K. Chemical Forms, Mobility and Deposition of Silicon in Rice Plant. Soil Sci. Plant Nutr. 1962, 8, 15–21. [Google Scholar] [CrossRef]
- Raven, J.A. The transport and function of silicon in plants. Biol. Rev. 1983, 58, 179–207. [Google Scholar] [CrossRef]
- Mali, M.; Aery, N.C. Silicon Effects on Nodule Growth, Dry-Matter Production, and Mineral Nutrition of Cowpea (Vigna unguiculata). J. Plant Nutr. Soil Sci. 2008, 171, 835–840. [Google Scholar] [CrossRef]
- Zhang, D.; Wu, Y.X.; Zhang, X.Y.; Zhang, R.; Zhang, Z.X.; Wang, S.C.; Wang, Y.X. Sodium Metasilicate Solution Enhances Drought Stress Tolerance by Improving Physiological Characteristics in Apple Stocks. Arid Land Res. Manag. 2022, 36, 428–444. [Google Scholar] [CrossRef]
- Ma, J.F.; Tamai, K.; Yamaji, N.; Mitani, N.; Konishi, S.; Katsuhara, M.; Ishiguro, M.; Murata, Y.; Yano, M. A Silicon Transporter in Rice. Nature 2006, 440, 688–691. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.F.; Yamaji, N.; Mitani, N.; Tamai, K.; Konishi, S.; Fujiwara, T.; Katsuhara, M.; Yano, M. An Efflux Transporter of Silicon in Rice. Nature 2007, 448, 209–212. [Google Scholar] [CrossRef]
- Wynn Parry, D.; Soni, S.L. Electron-probe Microanalysis of Silicon in the Roots of Oryza sativa L. Ann. Bot. 1972, 36, 781–783. [Google Scholar] [CrossRef]
- Jones, L.H.P.; Handreck, K.A. Uptake of Silica by Trifolium Incarnatum in Relation to the Concentration in the External Solution and to Transpiration. Plant Soil 1969, 30, 71–80. [Google Scholar] [CrossRef]
- Ma, J.F.; Takahashi, E. Soil, Fertilizer, and Plant Silicon Research in Japan; Elsevier: Amsterdam, the Netherlands, 2002. [Google Scholar]
- Fauteux, F.; Chain, F.; Belzile, F.; Menzies, J.G.; Bé, R.R. The protective role of silicon in the Arabidopsis-powdery mildew pathosystem. Proc. Natl. Acad. Sci. USA 2006, 103, 17554–17559. [Google Scholar] [CrossRef]
- de Melo Farnezi, M.M.; de Barros Silva, E.; Lopes dos Santos, L.; Christofaro Silva, A.; Grazziotti, P.H.; Taline Prochnow, J.; Marinho Pereira, I.; Costa Ilhéu Fontan, I.d. Potential of Grasses in Phytolith Production in Soils Contaminated with Cadmium. Plants 2020, 9, 109. [Google Scholar] [CrossRef]
- Lux, A.; Luxová, M.; Hattori, T.; Inanaga, S.; Sugimoto, Y. Silicification in Sorghum (Sorghum bicolor) Cultivars with Different Drought Tolerance. Physiol. Plant. 2002, 115, 87–92. [Google Scholar] [CrossRef]
- Gao, X.; Zou, C.; Wang, L.; Zhang, F. Silicon Improves Water Use Efficiency in Maize Plants. J. Plant. Nutr. 2005, 27, 1457–1470. [Google Scholar] [CrossRef]
- Farouk, S.; Elhindi, K.M.; Alotaibi, M.A. Silicon Supplementation Mitigates Salinity Stress on Ocimum basilicum L. via Improving Water Balance, Ion Homeostasis, and Antioxidant Defense System. Ecotoxicol. Environ. Saf. 2020, 206, 111396. [Google Scholar] [CrossRef] [PubMed]
- Nwugo, C.C.; Huerta, A.J. Effects of Silicon Nutrition on Cadmium Uptake, Growth and Photosynthesis of Rice Plants Exposed to Low-Level Cadmium. Plant Soil 2008, 311, 73–86. [Google Scholar] [CrossRef]
- Shi, G.; Cai, Q.; Liu, C.; Wu, L. Silicon Alleviates Cadmium Toxicity in Peanut Plants in Relation to Cadmium Distribution and Stimulation of Antioxidative Enzymes. Plant Growth Regul. 2010, 61, 45–52. [Google Scholar] [CrossRef]
- Vaculík, M.; Lux, A.; Luxová, M.; Tanimoto, E.; Lichtscheidl, I. Silicon Mitigates Cadmium Inhibitory Effects in Young Maize Plants. Environ. Exp. Bot. 2009, 67, 52–58. [Google Scholar] [CrossRef]
- Coskun, D.; Deshmukh, R.; Sonah, H.; Menzies, J.G.; Reynolds, O.; Ma, J.F.; Kronzucker, H.J.; Bélanger, R.R. The Controversies of Silicon’s Role in Plant Biology. New Phytol. 2019, 221, 67–85. [Google Scholar] [CrossRef] [PubMed]
- Saleem, S.; Solanki, B.; Khan, M.S. Beyond Agrochemicals: Potential of Nanoparticles as Nanofertilizer and Nanopesticide in Legumes. Theor. Exp. Plant Physiol. 2025, 37, 7. [Google Scholar] [CrossRef]
- Paramo, L.A.; Feregrino-Pérez, A.A.; Guevara, R.; Mendoza, S.; Esquivel, K. Nanoparticles in Agroindustry: Applications, Toxicity, Challenges, and Trends. Nanomaterials 2020, 10, 1654. [Google Scholar] [CrossRef]
- Naidu, S.; Pandey, J.; Mishra, L.C.; Chakraborty, A.; Roy, A.; Singh, I.K.; Singh, A. Silicon Nanoparticles: Synthesis, Uptake and Their Role in Mitigation of Biotic Stress. Ecotoxicol. Environ. Saf. 2023, 255, 114783. [Google Scholar] [CrossRef]
- Mukarram, M.; Petrik, P.; Mushtaq, Z.; Khan, M.M.A.; Gulfishan, M.; Lux, A. Silicon Nanoparticles in Higher Plants: Uptake, Action, Stress Tolerance, and Crosstalk with Phytohormones, Antioxidants, and Other Signalling Molecules. Environ. Pollut. 2022, 310, 119855. [Google Scholar] [CrossRef]
- Deshmukh, R.; Bélanger, R.R. Molecular evolution of aquaporins and silicon influx in plants. Funct. Ecol. 2016, 30, 1277–1285. [Google Scholar] [CrossRef]
- Yan, G.; Huang, Q.; Zhao, S.; Xu, Y.; He, Y.; Nikolic, M.; Nikolic, N.; Liang, Y.; Zhu, Z. Silicon Nanoparticles in Sustainable Agriculture: Synthesis, Absorption, and Plant Stress Alleviation. Front. Plant Sci. 2024, 15, 1393458. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Mehmood, A.; Khan, N. Uptake, Translocation, and Consequences of Nanomaterials on Plant Growth and Stress Adaptation. J. Nanomater. 2021, 1, 6677616. [Google Scholar] [CrossRef]
- Nazim, M.; Li, X.; Anjum, S.; Ahmad, F.; Ali, M.; Muhammad, M.; Shahzad, K.; Lin, L.; Zulfiqar, U. Silicon Nanoparticles: A Novel Approach in Plant Physiology to Combat Drought Stress in Arid Environment. Biocatal. Agric. Biotechnol. 2024, 58, 103190. [Google Scholar] [CrossRef]
- Anwar, T.; Qureshi, H.; Fatimah, H.; Siddiqi, E.H.; Anwaar, S.; Moussa, I.M.; Adil, M.F. Improvement of Physio-Biochemical Attributes and Mitigation of Salinity Stress by Combined Application of Melatonin and Silicon Nanoparticles in Brassica oleracea var. botrytis. Sci. Hortic. 2023, 322, 112456. [Google Scholar] [CrossRef]
- Ahmed, T.; Masood, H.A.; Noman, M.; AL-Huqail, A.A.; Alghanem, S.M.; Khan, M.M.; Muhammad, S.; Manzoor, N.; Rizwan, M.; Qi, X.; et al. Biogenic Silicon Nanoparticles Mitigate Cadmium (Cd) Toxicity in Rapeseed (Brassica napus L.) by Modulating the Cellular Oxidative Stress Metabolism and Reducing Cd Translocation. J. Hazard. Mater. 2023, 459, 132070. [Google Scholar] [CrossRef]
- Jing, R.; Yu, Y.; Di, X.; Qin, X.; Zhao, L.; Liang, X.; Sun, Y.; Huang, Q. Supplying Silicon Reduces Cadmium Accumulation in Pak Choi by Decreasing Soil Cd Bioavailability and Altering the Microbial Community. Environ. Sci. Process. Impacts 2025, 27, 1145–1156. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, M.; Guo, L.; Yang, D.; He, N.; Ying, B.; Wang, Y. Influence of Silicon on Cadmium Availability and Cadmium Uptake by Rice in Acid and Alkaline Paddy Soils. J. Soils Sediments 2020, 20, 2343–2353. [Google Scholar] [CrossRef]
- Greger, M.; Landberg, T.; Vaculík, M. Silicon Influences Soil Availability and Accumulation of Mineral Nutrients in Various Plant Species. Plants 2018, 7, 41. [Google Scholar] [CrossRef]
- Nazaralian, S.; Majd, A.; Irian, S.; Najafi, F.; Ghahremaninejad, F.; Landberg, T.; Greger, M. Comparison of Silicon Nanoparticles and Silicate Treatments in Fenugreek. Plant Physiol. Biochem. 2017, 115, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Luo, P.; Wu, J.; Li, T.T.; Shi, P.; Ma, Q.; Di, D.W. An Overview of the Mechanisms through Which Plants Regulate ROS Homeostasis under Cadmium Stress. Antioxidants 2024, 13, 1174. [Google Scholar] [CrossRef]
- Cuypers, A.; Plusquin, M.; Remans, T.; Jozefczak, M.; Keunen, E.; Gielen, H.; Opdenakker, K.; Nair, A.R.; Munters, E.; Artois, T.J.; et al. Cadmium Stress: An Oxidative Challenge. Biometals 2010, 23, 927–940. [Google Scholar] [CrossRef] [PubMed]
- Cuypers, A.; Vanbuel, I.; Iven, V.; Kunnen, K.; Vandionant, S.; Huybrechts, M.; Hendrix, S. Cadmium-Induced Oxidative Stress Responses and Acclimation in Plants Require Fine-Tuning of Redox Biology at Subcellular Level. Free Radic. Biol. Med. 2023, 199, 81–96. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Ullah, F.; Zhou, D.X.; Yi, M.; Zhao, Y. Mechanisms of ROS Regulation of Plant Development and Stress Responses. Front. Plant Sci. 2019, 10, 800. [Google Scholar] [CrossRef]
- Rajput, V.D.; Harish; Singh, R.K.; Verma, K.K.; Sharma, L.; Quiroz-Figueroa, F.R.; Meena, M.; Gour, V.S.; Minkina, T.; Sushkova, S.; et al. Recent Developments in Enzymatic Antioxidant Defence Mechanism in Plants with Special Reference to Abiotic Stress. Biology 2021, 10, 267. [Google Scholar] [CrossRef]
- Zhang, Y.; Luan, Q.; Jiang, J.; Li, Y. Prediction and Utilization of Malondialdehyde in Exotic Pine Under Drought Stress Using Near-Infrared Spectroscopy. Front. Plant Sci. 2021, 12, 735275. [Google Scholar] [CrossRef]
- Iwuala, E.; Olajide, O.; Abiodun, I.; Odjegba, V.; Utoblo, O.; Ajewole, T.; Oluwajobi, A.; Uzochukwu, S. Silicon Ameliorates Cadmium (Cd) Toxicity in Pearl Millet by Inducing Antioxidant Defense System. Heliyon 2024, 10, e25514. [Google Scholar] [CrossRef]
- Saber, N.E.; Abdel-Rahman, M.M.; Mabrouk, M.E.M.; Eldebawy, E.M.M.; Ismail, G.S.M. Silicon Alleviates Cadmium Toxicity in Triticum aestivum L. Plants by Modulating Antioxidants, Nutrient Uptake, and Gene Expression. Egypt. J. Bot. 2022, 62, 319–336. [Google Scholar] [CrossRef]
- Faisal, M.; Faizan, M.; Soysal, S.; Alatar, A.A. Synergistic Application of Melatonin and Silicon Oxide Nanoparticles Modulates Reactive Oxygen Species Generation and the Antioxidant Defense System: A Strategy for Cadmium Tolerance in Rice. Front. Plant Sci. 2024, 15, 1484600. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Nahar, K.; Anee, T.I.; Fujita, M. Exogenous Silicon Attenuates Cadmium-Induced Oxidative Stress in Brassica Napus L. by Modulating Asa-Gsh Pathway and Glyoxalase System. Front. Plant Sci. 2017, 8, 1061. [Google Scholar] [CrossRef] [PubMed]
- Jan, S.; Alyemeni, M.N.; Wijaya, L.; Alam, P.; Siddique, K.H.; Ahmad, P. Interactive Effect of 24-Epibrassinolide and Silicon Alleviates Cadmium Stress via the Modulation of Antioxidant Defense and Glyoxalase Systems and Macronutrient Content in Pisum sativum L. Seedlings. BMC Plant Biol. 2018, 18, 146. [Google Scholar] [CrossRef] [PubMed]
- Azam, S.K.; Karimi, N.; Souri, Z.; Vaculík, M. Multiple Effects of Silicon on Alleviation of Arsenic and Cadmium Toxicity in Hyperaccumulator Isatis cappadocica Desv. Plant Physiol. Biochem. 2021, 168, 177–187. [Google Scholar] [CrossRef] [PubMed]
- Naeem, A.; Saifullah; Zia-ur-Rehman, M.; Akhtar, T.; Zia, M.H.; Aslam, M. Silicon Nutrition Lowers Cadmium Content of Wheat Cultivars by Regulating Transpiration Rate and Activity of Antioxidant Enzymes. Environ. Pollut. 2018, 242, 126–135. [Google Scholar] [CrossRef]
- Pereira, T.S.; Pereira, T.S.; Souza, C.L.F.D.C.; Lima, E.J.A.; Batista, B.L.; Lobato, A.K.D.S. Silicon Deposition in Roots Minimizes the Cadmium Accumulation and Oxidative Stress in Leaves of Cowpea Plants. Physiol. Mol. Biol. Plants 2018, 24, 99–114. [Google Scholar] [CrossRef]
- Shafeeq-ur-Rahman; Xuebin, Q.; Yatao, X.; Ahmad, M.I.; Shehzad, M.; Zain, M. Silicon and Its Application Methods Improve Physiological Traits and Antioxidants in Triticum aestivum (L.) Under Cadmium Stress. J. Soil Sci. Plant Nutr. 2020, 20, 1110–1121. [Google Scholar] [CrossRef]
- Zhou, Q.; Cai, Z.; Xian, P.; Yang, Y.; Cheng, Y.; Lian, T.; Ma, Q.; Nian, H. Silicon-Enhanced Tolerance to Cadmium Toxicity in Soybean by Enhancing Antioxidant Defense Capacity and Changing Cadmium Distribution and Transport. Ecotoxicol. Environ. Saf. 2022, 241, 113766. [Google Scholar] [CrossRef]
- ur Rahman, S.; Xuebin, Q.; Zhao, Z.; Du, Z.; Imtiaz, M.; Mehmood, F.; Hongfei, L.; Hussain, B.; Ashraf, M.N. Alleviatory Effects of Silicon on the Morphology, Physiology, and Antioxidative Mechanisms of Wheat (Triticum aestivum L.) Roots under Cadmium Stress in Acidic Nutrient Solutions. Sci. Rep. 2021, 11, 1958. [Google Scholar] [CrossRef]
- Ashraf, H.; Ghouri, F.; Liang, J.; Xia, W.; Zheng, Z.; Shahid, M.Q.; Fu, X. Silicon Dioxide Nanoparticles-Based Amelioration of Cd Toxicity by Regulating Antioxidant Activity and Photosynthetic Parameters in a Line Developed from Wild Rice. Plants 2024, 13, 1715. [Google Scholar] [CrossRef]
- Malik, M.S.; Rehman, A.; Shah, I.H.; Arif, S.; Nan, K.; Yan, Y.; Song, S.; Hameed, M.K.; Azam, M.; Zhang, Y. Green Synthesized Silicon Dioxide Nanoparticles (SiO2NPs) Ameliorated the Cadmium Toxicity in Melon by Regulating Antioxidant Enzymes Activity and Stress-Related Genes Expression. Environ. Pollut. 2025, 366, 125459. [Google Scholar] [CrossRef]
- Yan, G.; Jin, H.; Yin, C.; Hua, Y.; Huang, Q.; Zhou, G.; Xu, Y.; He, Y.; Liang, Y.; Zhu, Z. Comparative Effects of Silicon and Silicon Nanoparticles on the Antioxidant System and Cadmium Uptake in Tomato Under Cadmium Stress. Sci. Total Environ. 2023, 904, 166819. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; He, S.; Liu, T.; Zhang, Q.; Yu, J.; Gao, Y.; Wang, X. Alleviation of Cadmium Toxicity by Nano-Silicon Dioxide in Momordica charantia L. Seedlings. J. Soil Sci. Plant Nutr. 2023, 23, 1060–1069. [Google Scholar] [CrossRef]
- Jalil, S.; Nazir, M.M.; AL-Huqail, A.A.; Ali, B.; Al-Qthanin, R.N.; Asad, M.A.U.; Eweda, M.A.; Zulfiqar, F.; Onursal, N.; Masood, H.A.; et al. Silicon Nanoparticles Alleviate Cadmium Toxicity in Rice (Oryza sativa L.) by Modulating the Nutritional Profile and Triggering Stress-Responsive Genetic Mechanisms. Ecotoxicol. Environ. Saf. 2023, 268, 115699. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Lian, X.; Zhang, B.; Liu, X.; Yu, J.; Gao, Y.; Zhang, Q.; Sun, H. Nano Silicon Dioxide Reduces Cadmium Uptake, Regulates Nutritional Homeostasis and Antioxidative Enzyme System in Barley Seedlings (Hordeum vulgare L.) Under Cadmium Stress. Environ. Sci. Pollut. Res. Int. 2023, 30, 67552–67564. [Google Scholar] [CrossRef] [PubMed]
- Alamri, A.M.; Alharby, H.F.; Naeem, M.; Bukhari, M.A.; Ahmad, Z.; Mahmood Alvi, A.; Majrashi, A.; Alharbi, B.M. Enhancing Photosynthetic Efficiency and Antioxidant Activity in Camelina under Cadmium Stress Through Foliar Silicon Application. J. Plant Nutr. 2025, 48, 1801–1816. [Google Scholar] [CrossRef]
- El-Okkiah, S.A.F.; El-Tahan, A.M.; Ibrahim, O.M.; Taha, M.A.; Korany, S.M.; Alsherif, E.A.; AbdElgawad, H.; Abo Sen, E.Z.F.; Sharaf-Eldin, M.A. Under Cadmium Stress, Silicon Has a Defensive Effect on the Morphology, Physiology, and Anatomy of Pea (Pisum sativum L.) Plants. Front. Plant Sci. 2022, 13, 997475. [Google Scholar] [CrossRef]
- Thind, S.; Hussain, I.; Ali, S.; Rasheed, R.; Ashraf, M.A. Silicon Application Modulates Growth, Physio-Chemicals, and Antioxidants in Wheat (Triticum aestivum L.) Exposed to Different Cadmium Regimes. Dose-Response 2021, 19, 15593258211014646. [Google Scholar] [CrossRef]
- Heile, A.O.; Zaman, Q.U.; Aslam, Z.; Hussain, A.; Aslam, M.; Saleem, M.H.; Abualreesh, M.H.; Alatawi, A.; Ali, S. Alleviation of Cadmium Phytotoxicity Using Silicon Fertilization in Wheat by Altering Antioxidant Metabolism and Osmotic Adjustment. Sustainability 2021, 13, 11317. [Google Scholar] [CrossRef]
- Gheshlaghpour, J.; Asghari, B.; Khademian, R.; Sedaghati, B. Silicon Alleviates Cadmium Stress in Basil (Ocimum basilicum L.) through Alteration of Phytochemical and Physiological Characteristics. Ind. Crops Prod. 2021, 163, 113338. [Google Scholar] [CrossRef]
- Chen, H.; Huang, X.; Chen, H.; Zhang, S.; Fan, C.; Fu, T.; He, T.; Gao, Z. Effect of Silicon Spraying on Rice Photosynthesis and Antioxidant Defense System on Cadmium Accumulation. Sci. Rep. 2024, 14, 15265. [Google Scholar] [CrossRef]
- Saleem, M.H.; Parveen, A.; Khan, S.U.; Hussain, I.; Wang, X.; Alshaya, H.; El-Sheikh, M.A.; Ali, S. Silicon Fertigation Regimes Attenuates Cadmium Toxicity and Phytoremediation Potential in Two Maize (Zea mays L.) Cultivars by Minimizing Its Uptake and Oxidative Stress. Sustainability 2022, 14, 1462. [Google Scholar] [CrossRef]
- Riaz, M.; Kamran, M.; Fahad, S.; Wang, X. Nano-Silicon Mediated Alleviation of Cd Toxicity by Cell Wall Adsorption and Antioxidant Defense System in Rice Seedlings. Plant Soil 2023, 486, 103–117. [Google Scholar] [CrossRef]
- Miao, G.; Han, J.; Han, T. Silicon Nanoparticles and Apoplastic Protein Interaction: A Hypothesized Mechanism for Modulating Plant Growth and Immunity. Plants 2025, 14, 1630. [Google Scholar] [CrossRef] [PubMed]
- Rahman, S.; Ahmad, I.; Nafees, M. Mitigation of Heavy Metal Stress in Maize (Zea mays L.) through Application of Silicon Nanoparticles. Biocatal. Agric. Biotechnol. 2023, 50, 102757. [Google Scholar] [CrossRef]
- Baker, A.J.M. Accumulators and Excluders-strategies in the Response of Plants to Heavy Metals. J. Plant Nutr. 1981, 3, 643–654. [Google Scholar] [CrossRef]
- Verbruggen, N.; Hermans, C.; Schat, H. Molecular Mechanisms of Metal Hyperaccumulation in Plants. New Phytol. 2009, 181, 759–776. [Google Scholar] [CrossRef]
- Sharma, S.S.; Dietz, K.J.; Mimura, T. Vacuolar Compartmentalization as Indispensable Component of Heavy Metal Detoxification in Plants. Plant Cell Environ. 2016, 39, 1112–1126. [Google Scholar] [CrossRef]
- Cobbett, C.; Goldsbrough, P. Phytochelatins and Metallothioneins: Roles in Heavy Metal Detoxification and Homeostasis. Annu. Rev. Plant Biol. 2002, 53, 159–182. [Google Scholar] [CrossRef]
- González, A.; Laporte, D.; Moenne, A. Cadmium Accumulation Involves Synthesis of Glutathione and Phytochelatins, and Activation of CDPK, CaMK, CBLPK, and MAPK Signaling Pathways in Ulva compressa. Front. Plant Sci. 2021, 12, 669096. [Google Scholar] [CrossRef]
- Bari, M.A.; Prity, S.A.; Das, U.; Akther, M.S.; Sajib, S.A.; Reza, M.A.; Kabir, A.H. Silicon Induces Phytochelatin and ROS Scavengers Facilitating Cadmium Detoxification in Rice. Plant Biol. 2020, 22, 472–479. [Google Scholar] [CrossRef]
- Chen, D.; Chen, D.; Xue, R.; Long, J.; Lin, X.; Lin, Y.; Jia, L.; Zeng, R.; Song, Y. Effects of Boron, Silicon and Their Interactions on Cadmium Accumulation and Toxicity in Rice Plants. J. Hazard. Mater. 2019, 367, 447–455. [Google Scholar] [CrossRef]
- Ishimaru, Y.; Takahashi, R.; Bashir, K.; Shimo, H.; Senoura, T.; Sugimoto, K.; Ono, K.; Yano, M.; Ishikawa, S.; Arao, T.; et al. Characterizing the Role of Rice NRAMP5 in Manganese, Iron and Cadmium Transport. Sci. Rep. 2012, 2, 286. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Guan, M.; Chen, M.; Lin, X.; Xu, P.; Cao, Z. Mutation of OsNRAMP5 Reduces Cadmium Xylem and Phloem Transport in Rice Plants and Its Physiological Mechanism. Environ. Pollut. 2024, 341, 122928. [Google Scholar] [CrossRef] [PubMed]
- Satoh-Nagasawa, N.; Mori, M.; Nakazawa, N.; Nishizawa, N.K.; Higuchi, K. Mutations in Rice (Oryza sativa) Heavy Metal ATPase 2 (OsHMA2) Restrict the Translocation of Zinc and Cadmium. Plant Cell Physiol. 2012, 53, 213–224. [Google Scholar] [CrossRef]
- Wei, W.; Peng, H.; Xie, Y.; Wang, X.; Huang, R.; Chen, H.; Ji, X. The Role of Silicon in Cadmium Alleviation by Rice Root Cell Wall Retention and Vacuole Compartmentalization under Different Durations of Cd Exposure. Ecotoxicol. Environ. Saf. 2021, 226, 112810. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.F.; Ghosal, A.; Alam, M.F.; Kabir, A.H. Remediation of Cadmium Toxicity in Field Peas (Pisum sativum L.) through Exogenous Silicon. Ecotoxicol. Environ. Saf. 2017, 135, 165–172. [Google Scholar] [CrossRef]
- Ahmad, A.; Yasin, N.A.; Khan, W.U.; Akram, W.; Wang, R.; Shah, A.A.; Akbar, M.; Ali, A.; Wu, T. Silicon Assisted Ameliorative Effects of Iron Nanoparticles against Cadmium Stress: Attaining New Equilibrium among Physiochemical Parameters, Antioxidative Machinery, and Osmoregulators of Phaseolus lunatus. Plant Physiol. Biochem. 2021, 166, 874–886. [Google Scholar] [CrossRef]
- Greger, M.; Kabir, A.H.; Landberg, T.; Maity, P.J.; Lindberg, S. Silicate Reduces Cadmium Uptake into Cells of Wheat. Environ. Pollut. 2016, 211, 90–97. [Google Scholar] [CrossRef]
- Ali, U.; Zhong, M.; Shar, T.; Fiaz, S.; Xie, L.; Jiao, G.; Ahmad, S.; Sheng, Z.; Tang, S.; Wei, X.; et al. The Influence of PH on Cadmium Accumulation in Seedlings of Rice (Oryza sativa L.). J. Plant Growth Regul. 2020, 39, 930–940. [Google Scholar] [CrossRef]
- Cruzado-Tafur, E.; Orzoł, A.; Gołębiowski, A.; Pomastowski, P.; Cichorek, M.; Olszewski, J.; Walczak-Skierska, J.; Buszewski, B.; Szultka-Młyńska, M.; Głowacka, K. Metal Tolerance and Cd Phytoremoval Ability in Pisum sativum Grown in Spiked Nutrient Solution. J. Plant Res. 2023, 136, 931–945. [Google Scholar] [CrossRef]
- Guo, L.; Chen, A.; Li, C.; Wang, Y.; Yang, D.; He, N.; Liu, M. Solution Chemistry Mechanisms of Exogenous Silicon Influencing the Speciation and Bioavailability of Cadmium in Alkaline Paddy Soil. J. Hazard. Mater. 2022, 438, 129526. [Google Scholar] [CrossRef]
- Zheng, J.; Chen, Q.; Xu, J.; Wen, L.; Li, F.; Zhang, L. Effect of Degree of Silicification on Silica/Silicic Acid Binding Cd(II) and Its Mechanism. J. Phys. Chem. A 2019, 123, 3718–3727. [Google Scholar] [CrossRef]
- Clemens, S.; Palmgren, M.G.; Krämer, U. A Long Way Ahead: Understanding and Engineering Plant Metal Accumulation. Trends Plant Sci. 2002, 7, 309–315. [Google Scholar] [CrossRef]
- Han, M.; Ullah, H.; Yang, H.; Yu, G.; You, S.; Liu, J.; Chen, B.; Shahab, A.; Antoniadis, V.; Shaheen, S.M.; et al. Cadmium Uptake and Membrane Transport in Roots of Hyperaccumulator Amaranthus hypochondriacus L. Environ. Pollut. 2023, 331, 121846. [Google Scholar] [CrossRef] [PubMed]
- Perfus-Barbeoch, L.; Leonhardt, N.; Vavasseur, A.; Forestier, C. Heavy Metal Toxicity: Cadmium Permeates through Calcium Channels and Disturbs the Plant Water Status. Plant J. 2002, 32, 539–548. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Liang, K.; Shangguan, Y.; Tao, S.; Guo, Y.; Liu, H.; Sun, Z.; Xu, H. Effect of Coexisting Nutrient Divalent Cations on Cadmium Transport in Soil-Herbal Crop Systems. Chemosphere 2024, 369, 143848. [Google Scholar] [CrossRef]
- Khan, A.; Bilal, S.; Khan, A.L.; Imran, M.; Al-Harrasi, A.; Al-Rawahi, A.; Lee, I.J. Silicon-Mediated Alleviation of Combined Salinity and Cadmium Stress in Date Palm (Phoenix dactylifera L.) by Regulating Physio-Hormonal Alteration. Ecotoxicol. Environ. Saf. 2020, 188, 109885. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, L.; Lei, X.; Tang, L.; Li, Y. Effects of Silicon on the Growth, Nutrient Uptake and Cadmium Accumulation of Tomato Seedlings. Int. J. Environ. Anal. Chem. 2023, 103, 963–976. [Google Scholar] [CrossRef]
- Rizwan, M.; Meunier, J.D.; Davidian, J.C.; Pokrovsky, O.S.; Bovet, N.; Keller, C. Silicon Alleviates Cd Stress of Wheat Seedlings (Triticum turgidum L. cv. Claudio) Grown in Hydroponics. Environ. Sci. Pollut. Res. 2016, 23, 1414–1427. [Google Scholar] [CrossRef]
- Silva, J.R.; Veloso, V.D.L.; Silva, F.B.V.D.; Nascimento, C.W.A.D. Cadmium, Silicon and Nutrient Accumulation by Maize Plants Grown on a Contaminated Soil Amended with a Diatomaceous Earth Fertilizer. Cienc. Rural 2021, 51, e20190804. [Google Scholar] [CrossRef]
- Krishna, R.; Shahid, M.; Ansari, W.A.; Al-Anazi, K.M.; Farah, M.A.; Jaiswal, D.K.; Yadav, A.; Pandey, S.; Haque, M.A. Silicon Alleviates Cadmium Toxicity in Muskmelon (Cucumis melo): Integrative Insights from Photosynthesis to Antioxidant Activity to Gene Expression. Environ. Sci. Adv. 2025, 4, 921–937. [Google Scholar] [CrossRef]
- Jiang, Y.; Wei, C.; Jiao, Q.; Li, G.; Alyemeni, M.N.; Ahmad, P.; Shah, T.; Fahad, S.; Zhang, J.; Zhao, Y.; et al. Interactive Effect of Silicon and Zinc on Cadmium Toxicity Alleviation in Wheat Plants. J. Hazard. Mater. 2023, 458, 131933. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.; Rizwan, M.; Ali, S.; ur Rehman, M.Z.; Qayyum, M.F.; Nawaz, R.; Ahmad, A.; Asrar, M.; Ahmad, S.R.; Alsahli, A.A.; et al. Combined Use of Different Nanoparticles Effectively Decreased Cadmium (Cd) Concentration in Grains of Wheat Grown in a Field Contaminated with Cd. Ecotoxicol. Environ. Saf. 2021, 215, 112139. [Google Scholar] [CrossRef] [PubMed]
- Koleva, L.; Umar, A.; Yasin, N.A.; Shah, A.A.; Siddiqui, M.H.; Alamri, S.; Riaz, L.; Raza, A.; Javed, T.; Shabbir, Z. Iron Oxide and Silicon Nanoparticles Modulate Mineral Nutrient Homeostasis and Metabolism in Cadmium-Stressed Phaseolus vulgaris. Front. Plant Sci. 2022, 13, 806781. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Zhang, C.; Zhao, Y.; Huang, Y.; Liu, Z. Foliar Application with Nano-Silicon Reduced Cadmium Accumulation in Grains by Inhibiting Cadmium Translocation in Rice Plants. Environ. Sci. Pollut. Res. 2018, 25, 2361–2368. [Google Scholar] [CrossRef]
- Hashmi, S.S.; Lubna; Bilal, S.; Jan, R.; Asif, S.; Abdelbacki, A.M.M.; Kim, K.M.; Al-Harrasi, A.; Asaf, S. Exploring the Role of ATP-Binding Cassette Transporters in Tomato (Solanum lycopersicum) under Cadmium Stress through Genome-Wide and Transcriptomic Analysis. Front. Plant Sci. 2025, 16, 1536178. [Google Scholar] [CrossRef]
- Liu, Z.; Wu, X.; Yan, J.; Fan, W.; Li, T.; Wang, S.; Liu, P. Silicon Reduces Cadmium Accumulation and Toxicity by Regulating Transcriptional and Physiological Pathways, and Promotes the Early Growth of Tomato Seedlings. Ind. Crops Prod. 2023, 206, 117720. [Google Scholar] [CrossRef]
- Tao, J.; Lu, L. Advances in Genes-Encoding Transporters for Cadmium Uptake, Translocation, and Accumulation in Plants. Toxics 2022, 10, 411. [Google Scholar] [CrossRef]
- Ma, J.; Cai, H.; He, C.; Zhang, W.; Wang, L. A Hemicellulose-Bound Form of Silicon Inhibits Cadmium Ion Uptake in Rice (Oryza sativa) Cells. New Phytol. 2015, 206, 1063–1074. [Google Scholar] [CrossRef]
- Lin, H.; Fang, C.; Li, Y.; Lin, W.; He, J.; Lin, R.; Lin, W. Cadmium-Stress Mitigation through Gene Expression of Rice and Silicon Addition. Plant Growth Regul. 2017, 81, 91–101. [Google Scholar] [CrossRef]
- Cui, J.; Liu, T.; Li, F.; Yi, J.; Liu, C.; Yu, H. Silica Nanoparticles Alleviate Cadmium Toxicity in Rice Cells: Mechanisms and Size Effects. Environ. Pollut. 2017, 228, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Shao, J.F.; Che, J.; Yamaji, N.; Fang Shen, R.; Ma, J.F. Silicon Reduces Cadmium Accumulation by Suppressing Expression of Transporter Genes Involved in Cadmium Uptake and Translocation in Rice. J. Exp. Bot. 2017, 68, 5641–5651. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Liang, X.; Gong, X.; Chen, H.; Liu, X.; Zhang, S.; Li, F.; Zhao, J.; Yi, J. Comparative Transcriptomics Provide New Insights into the Mechanisms by Which Foliar Silicon Alleviates the Effects of Cadmium Exposure in Rice. J. Environ. Sci. 2022, 115, 294–307. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Liang, X.; Gong, X.; Reinfelder, J.R.; Chen, H.; Sun, C.; Liu, X.; Zhang, S.; Li, F.; Liu, C.; et al. Comparative Physiological and Transcriptomic Analyses Illuminate Common Mechanisms by Which Silicon Alleviates Cadmium and Arsenic Toxicity in Rice Seedlings. J. Environ. Sci. 2021, 109, 88–101. [Google Scholar] [CrossRef]
- Kabir, A.H.; Hossain, M.M.; Khatun, M.A.; Mandal, A.; Haider, S.A. Role of Silicon Counteracting Cadmium Toxicity in Alfalfa (Medicago sativa L.). Front. Plant Sci. 2016, 7, 1117. [Google Scholar] [CrossRef]
- Calvin, M. The Path of Carbon in Photosynthesis. Science 1962, 135, 879–889. [Google Scholar] [CrossRef]
- Yang, W.; Hu, Y.; Liu, J.; Rao, X.; Huang, X.; Guo, X.; Zhang, J.L.; Rensing, C.; Xing, S.; Zhang, L. Physiology and Transcriptomic Analysis Revealed the Mechanism of Silicon Promoting Cadmium Accumulation in Sedum alfredii Hance. Chemosphere 2024, 360, 142417. [Google Scholar] [CrossRef]
- Shang, Q.; Wei, Z.; Fang, L.; Huang, D.; Pan, X. Integrated Physiological, Biochemical, Transcriptomic, and Metabolomic Analysis Reveals the Mechanism of Silicon in Alleviating Cadmium Stress in Juglans sigillata. Ind. Crops Prod. 2025, 231, 121212. [Google Scholar] [CrossRef]
- Shin, Y.; Chane, A.; Jung, M.; Lee, Y. Recent Advances in Understanding the Roles of Pectin as an Active Participant in Plant Signaling Networks. Plants 2021, 10, 1712. [Google Scholar] [CrossRef]
- Guo, J.; Ye, D.; Zhang, X.; Huang, H.; Wang, Y.; Zheng, Z.; Li, T.; Yu, H. Characterization of Cadmium Accumulation in the Cell Walls of Leaves in a Low-Cadmium Rice Line and Strengthening by Foliar Silicon Application. Chemosphere 2022, 287, 132374. [Google Scholar] [CrossRef]
- Micheli, F. Pectin Methylesterases: Cell Wall Enzymes with Important Roles in Plant Physiology. Trends Plant Sci. 2001, 6, 414–419. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Ye, D.; Zhang, X.; Huang, H.; Wang, Y.; Zheng, Z.; Li, T.; Yu, H. Regulatory Mechanism of Silicon in Strengthening Cadmium Immobilization in the Foliar Cell Wall of a Grain Low-Cadmium Rice Line. ESS Open Arch. Eprints 2024, 705, 70535275. [Google Scholar] [CrossRef]
- Pan, C.; Zhang, M.; Chen, J.; Lu, H.; Zhao, X.; Chen, X.; Wang, L.; Guo, P.; Liu, S. MiR397 Regulates Cadmium Stress Response by Coordinating Lignin Polymerization in the Root Exodermis in Kandelia obovata. J. Hazard. Mater. 2024, 471, 134313. [Google Scholar] [CrossRef] [PubMed]
- Radotić, K.; Djikanović, D.; Kalauzi, A.; Tanasijević, G.; Maksimović, V.; Dragišić Maksimović, J. Influence of Silicon on Polymerization Process during Lignin Synthesis. Implications for Cell Wall Properties. Int. J. Biol. Macromol. 2022, 198, 168–174. [Google Scholar] [CrossRef]
- Djikanović, D.; Jovanović, J.; Kalauzi, A.; Maksimović, J.D.; Radotić, K. Effects of Silicon Concentration and Synthesis Duration on Lignin Structure: A Spectroscopic and Microscopic Study. Biopolymers 2024, 116, e23640. [Google Scholar] [CrossRef]
- Vandionant, S.; Hendrix, S.; Alfano, R.; Plusquin, M.; Cuypers, A. Comparing Cadmium-Induced Effects on the Regulation of the DNA Damage Response and Cell Cycle Progression between Entire Rosettes and Individual Leaves of Arabidopsis thaliana. Plant Physiol. Biochem. 2023, 204, 108105. [Google Scholar] [CrossRef]
- Araniti, F.; Talarico, E.; Madeo, M.L.; Greco, E.; Minervino, M.; Álvarez-Rodríguez, S.; Muto, A.; Ferrari, M.; Chiappetta, A.; Bruno, L. Short-Term Exposition to Acute Cadmium Toxicity Induces the Loss of Root Gravitropic Stimuli Perception through PIN2-Mediated Auxin Redistribution in Arabidopsis thaliana (L.) Heynh. Plant Sci. 2023, 332, 111726. [Google Scholar] [CrossRef]
- Ma, H.; Liu, M. The Microtubule Cytoskeleton Acts as a Sensor for Stress Response Signaling in Plants. Mol. Biol. Rep. 2019, 46, 5603–5608. [Google Scholar] [CrossRef]
- Majda, M.; Robert, S. The Role of Auxin in Cell Wall Expansion. Int. J. Mol. Sci. 2018, 19, 951. [Google Scholar] [CrossRef]
- Asgari, F.; Majd, A.; Jonoubi, P.; Najafi, F. Effects of Silicon Nanoparticles on Molecular, Chemical, Structural and Ultrastructural Characteristics of Oat (Avena sativa L.). Plant Physiol. Biochem. 2018, 127, 152–160. [Google Scholar] [CrossRef]
- Baruah, S.; Bora, M.S.; Sharma, P.; Deb, P.; Sarma, K.P. Understanding of the Distribution, Translocation, Bioaccumulation, and Ultrastructural Changes of Monochoria hastata Plant Exposed to Cadmium. Water Air Soil Pollut. 2017, 228, 17. [Google Scholar] [CrossRef]
- Zhao, S.; Kamran, M.; Rizwan, M.; Ali, S.; Yan, L.; Alwahibi, M.S.; Elshikh, M.S.; Riaz, M. Regulation of Proline Metabolism, AsA-GSH Cycle, Cadmium Uptake and Subcellular Distribution in Brassica napus L. under the Effect of Nano-Silicon. Environ. Pollut. 2023, 335, 122321. [Google Scholar] [CrossRef]
- Wu, J.; Mock, H.P.; Giehl, R.F.H.; Pitann, B.; Mühling, K.H. Silicon Decreases Cadmium Concentrations by Modulating Root Endodermal Suberin Development in Wheat Plants. J. Hazard. Mater. 2019, 364, 581–590. [Google Scholar] [CrossRef] [PubMed]
- Rasin, P.; Ashwathi, A.V.; Basheer, S.M.; Haribabu, J.; Santibanez, J.F.; Garrote, C.A.; Arulraj, A.; Mangalaraja, R.V. Exposure to Cadmium and Its Impacts on Human Health: A Short Review. J. Hazard. Mater. Adv. 2025, 17, 100608. [Google Scholar] [CrossRef]
- Chen, D.; Cao, B.; Qi, L.; Yin, L.; Wang, S.; Deng, X. Silicon-Moderated K-Deficiency-Induced Leaf Chlorosis by Decreasing Putrescine Accumulation in Sorghum. Ann. Bot. 2016, 118, 305–315. [Google Scholar] [CrossRef]
- Bhat, J.A.; Rajora, N.; Raturi, G.; Sharma, S.; Dhiman, P.; Sanand, S.; Shivaraj, S.M.; Sonah, H.; Deshmukh, R. Silicon Nanoparticles (SiNPs) in Sustainable Agriculture: Major Emphasis on the Practicality, Efficacy and Concerns. Nanoscale Adv. 2021, 3, 4019–4028. [Google Scholar] [CrossRef]
- Szymańska, R.; Orzechowska, A.; Trela-Makowej, A. Nanocząstki Krzemu w Zrównoważonym Rolnictwie. Posepy Biochem. 2024, 70, 447–461. [Google Scholar] [CrossRef]
Species | Cultivation | Concentration of the Cd Salt Used | Concentration of Cd2+ in Salt | Results | References |
---|---|---|---|---|---|
Pisum sativum (L.) | Pots with peat substrate | 6 mM CdSO4 | 674.5 mg L−1 | leaf growth phase:
| [26] |
Pisum sativum (L.) | Pots with reconstituted sand, supplemented with vermicompost | 400 µM CdCl2 | 44.96 mg L−1 |
| [27] |
Pisum sativum (L.) | Pots with sterilized soil | 10 mg kg−1 Cd | 10 mg kg−1 Cd |
| [28] |
Pisum sativum (L.) | Petri dishes filled with distilled water and streptomycin sulfate | 1 mM CdCl2 | 112.41 mg L−1 |
| [29] |
Pisum sativum L. | Pots with perlite | 200 µM CdSO4 | 22.48 mg L−1 |
| [30] |
Arabidopsis thaliana | Mineral wool saturated with a 1:10 Hoagland solution containing half the standard dose of iron in the form of Fe-EDTA and microelements. | 10 mM CdSO4 | 1124.1 mg L−1 |
| [31] |
Triticum aestivum L. | Polyethylene pots filled with modified Hoagland nutrient solution | 1 mM Cd(NO3)2 | 112.4 mg L−1 |
| [32] |
Species | Cultivation | Cd Salt Concentration | Concentration and Type of Si | Method of Application Si | Cd Effect | Impact of Cd + Si | Si Impact on Cd Accumulation | References |
---|---|---|---|---|---|---|---|---|
Pisum sativum (L.) | Growing in pots | 150 mg L−1 CdSO4·8H2O | 2 mM Na2SiO3 | Si applied with nutrient solution | Shoots: ↓ S (34.69%), Mg (58.33%), Ca (43.47%), P (48.62%), K (57.55%), B (45.00%), Cu (28.48%), Fe (27.05%), Mn (56.07%), Zn (37.85%) vs. control plants. | Shoots: S, Mg, Ca, P, K, B, Cu, Fe, Mn and Zn in shoots:
| Roots, shoots, leaves: ↓ Cd in vs. Cd-treated plants. | [84] |
Phoenix dactylifera L. | Growing in pots | 200 μM Cd | 1.0 mM Na2SiO3 | Applied to the root zone | Roots: ↓ K, Mg vs. control; Ca—ns (not significant) vs. control plants. Shoots (Cd-treated): ↑ K, P, Mg, Ca vs. control plants. | Roots: ↑ K, Mg, Ca and ↓ P vs. Cd-treated plants Shoots: ↑ K, Mg and Ca and P—ns (not significant) vs. Cd-treated plants. | Roots and shoots: ↓ Cd in vs. Cd-treated plants. | [129] |
Triticum aestivum L. | Growing in pots | 200 µM CdSO4·8H2O | 1 mM Na2O3Si·9H2O | Si applied with nutrient solution | Roots: ↓: K, Ca, Mg, P, Fe, Cu, Mn, Si vs. control plants; ↑ Zn vs. control plants. Shoots: ↓: K, Ca, Mg, P, Fe, Zn, Cu, Mn, Si vs. control plants. | Roots: ↑ Ca, Mg, P, Fe, Si; ↓ Zn, Cu; K, Mn—ns (not significant) vs. Cd-treated plants Shoots: ↑ Ca, Mg, P, Fe, Zn, Cu, Mn, Si; K—ns (not significant) vs. Cd-treated plants | Roots and shoots: ↓ Cd in vs. Cd-treated plants. | [81] |
Solanum lycopersium Mill | Hydroponic cultivation | 3 mg L−1 CdCl2·2.5H2O | 3 mmol L−1 Na2O3Si·9H2O | Si applied with nutrient solution | - | Roots: ↑ Fe, Mn, Zn; K, Ca, Mg—ns (not significant) vs. Cd-treated plants Shoots: ↑: K, Ca, Mg, Fe, Mn, Zn vs. Cd-treated plants | Roots and shoots: ↓ Cd in vs. Cd-treated plants. | [130] |
Triticum turgidum L. cv. Claudio | Hydroponic cultivation | 50 μM Cd(NO3)2·4H2O | 1 mM Si(KOH)2 | Si applied with nutrient solution | Roots: ↓ Mn; Zn—ns (not significant) vs. control plants Shoots: ↓: Mn, Zn vs. control plants | Roots: ↑ Zn; Mn—ns (not significant) vs. Cd-treated plants Shoots: Mn, Zn—ns (not significant) vs. Cd-treated plants | Roots: Cd—ns (not significant) vs. Cd-treated plants Shoots: ↓ Cd in vs. Cd-treated plants. | [131] |
Triticum aestivum L. | Hydroponic cultivation | 200 μmol L−1 CdCl2 | 3 mmol L−1 Na2SiO3 | Si applied with nutrient solution | Roots: ↓: N, P, K, Ca, Mg, Zn vs. control plants | Roots: ↑ N, P, K, Ca, Mg, Zn vs. Cd-treated plants. | Roots and shoots: ↓ Cd in vs. Cd-treated plants. | [90] |
Vigna unguiculata (L.) Walp. | Growing in pots, semi-hydroponic | 500 μM CdCl2 | 2.50 mM Na2SiO3·9H2O | Si applied with nutrient solution | Roots, stems and leaves: ↓: P, K, Ca, Mg, S vs. control plants | Roots, stems and leaves: ↑ K, Ca, Mg, S vs. Cd-treated plants. | Roots, stems and leaves: ↓ Cd in vs. Cd-treated plants. | [87] |
Zea mays L. | Growing in pots | 10 mg kg−1 CdCl2 H2O | 300 mg kg−1 Si in the form of fertilizer | Si mixed with soil | - | Aboveground plant parts: a tendency to increase the nutrient content vs. Cd-treated plants. | Roots: Soil-pH = 4.6, ↑ Cd; Soil pH = 6.5↓ Cd vs. Cd-treated plants. Shoots: ↓ Cd vs. Cd-treated plants. | [132] |
Cucumis melo | Growing in pots | 200 mg kg−1 CdSO4 | 200 mg kg−1 SiO2 | Si mixed with soil | Leaves: ↑: Na, K, Fe, Ca; ↓ Mg vs. control plants | Leaves: ↑ Na, K, Mg, Fe, Ca vs. Si-treated plants.; ↓ Na, K, Mg, Fe, Ca vs. Cd-treated plants. | - | [133] |
Triticum aestivum L. | Hydroponic cultivation | 10 μM CdCl2·2.5H2O | 1 mM Na2SiO3·9H2O | Si added to the nutrient solution | Roots: ↓ P, Na Mn; Ca, B, Zn, Mg, K—ns (not significant) vs. control plants Shoots: ↓ B; P, Ca, Si, K, Mg, Na, Mn, Cu, Al, Zn—ns (not significant) vs. control plants | Roots: ↓ P, Ca, S, Fe, B, Mo, K, Mg, Cu; ↑: Mn, Si vs. Cd-treated plants. Shoots: ↓ Ca, S, B, Mo; P, Fe, Mg, Cu, Al, Zn—ns (not significant) vs. Cd-treated plants. | Roots and shoots: ↓ Cd in vs. Cd-treated plants. | [134] |
Species | Cultivation | Cd Salt Concentration | Concentration and Type of SiNPs | Method of Application SiNPs | Cd Effect | Impact of Cd + SiNPs | SiNPs Impact on Cd Accumulation | References |
---|---|---|---|---|---|---|---|---|
Triticum aestivum L. | Cultivation in a field contaminated with Cd | 4.23 mg kg−1 Cd | 300 mg L−1 Si NPs | Si NPs applied as a foliar spray | - | Grain unit: ↓ Fe; Zn—ns (not significant) vs. Cd-treated plants. | Grain and straw: ↓ Cd vs. Cd-treated plants. | [135] |
Phaseolus vulgaris | Growing in pots | 2 mM CdCl2 | 20 mg L−1 Si NPs | Seed treatment | - | Plant sample: ↓ Mo, Ca, K, Mn vs. control plants. | - | [136] |
Oryza sativa L. | Cultivation in a field contaminated with Cd | 0.69 mg kg−1 Cd in soil | 25 mM SiNPs | Foliar application | - | Grains: ↑ K, Mg, Fe; Ca, Mn, Zn—ns (not significant) vs. Cd-treated plants. Rachises: ↑ K, Mg, Fe; Ca Mn, Zn—ns (not significant) vs. Cd-treated plants. | Grains and rachises: ↓ Cd vs. SiNPs -treated plants. | [137] |
Oryza sativa L. | Hydroponic cultivation | 20 µM L−1 CdN2O6·4H2O | 100 mg L−1 SiO NPs | SiO NPs added to the nutrient solution | Roots: ↓ Mg, Ca and K vs. control plants Shoots: ↓ Mg, Ca, K, Si vs. control plants | Roots: ↑ Mg, Ca, K, Si vs. Cd-treated plants. Shoots: ↑ Mg, Ca, K, Si vs. Cd-treated plants. | Roots and shoots: ↓ Cd in vs. Cd-treated plants. | [95] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Komorowska-Trepner, M.; Głowacka, K. The Role of Silicon Compounds in Plant Responses to Cadmium Stress: A Review. Plants 2025, 14, 2911. https://doi.org/10.3390/plants14182911
Komorowska-Trepner M, Głowacka K. The Role of Silicon Compounds in Plant Responses to Cadmium Stress: A Review. Plants. 2025; 14(18):2911. https://doi.org/10.3390/plants14182911
Chicago/Turabian StyleKomorowska-Trepner, Monika, and Katarzyna Głowacka. 2025. "The Role of Silicon Compounds in Plant Responses to Cadmium Stress: A Review" Plants 14, no. 18: 2911. https://doi.org/10.3390/plants14182911
APA StyleKomorowska-Trepner, M., & Głowacka, K. (2025). The Role of Silicon Compounds in Plant Responses to Cadmium Stress: A Review. Plants, 14(18), 2911. https://doi.org/10.3390/plants14182911