In Vitro Establishment and Maintenance of Culture Lines with Differentiated Somatic Embryogenesis Capacity in Olive (Olea europaea L.)
Abstract
1. Introduction
2. Results
2.1. Establishment of Somatic Embryogenesis
2.2. Characterisation of the Embryogenic Lines Established Under Liquid Medium
2.3. Conversion of Somatic Embryos
2.4. Histological Observations
2.5. Flow Cytometry
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Establishment and Development of Somatic Embryogenic Cultures
4.3. Establishment of Cyclic SE in Liquid Medium
4.4. Conversion of Somatic Embryos
4.5. Histological Analysis
4.6. Evaluation of Ploidy Variation Through Flow Cytometry
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SE | Somatic Embryogenesis |
ECO J | Embryogenesis Cyclic Olive |
OMc | Olive Medium Culture |
IBA | Indole-3-Butyric Acid |
BA | 6-Benzyladenine |
2iP | 6-Dimethylallylamino-Purine |
References
- Méndez-Hernández, H.A.; Ledezma-Rodríguez, M.; Avilez-Montalvo, R.N.; Juárez-Gómez, Y.L.; Skeete, A.; Avilez-Montalvo, J.; De-la-Peña, C.; Loyola-Vargas, V.M. Signaling Overview of Plant Somatic Embryogenesis. Front. Plant Sci. 2019, 10, 77. [Google Scholar] [CrossRef]
- Sánchez-Romero, C. Somatic Embryogenesis in Olive. Plants 2021, 10, 433. [Google Scholar] [CrossRef]
- Nic-Can, G.I.; Avilez-Montalvo, J.R.; Aviles-Montalvo, R.N.; Márquez-López, R.E.; Mellado-Mojica, E.; Galaz-Ávalos, R.M.; Loyola-Vargas, V.M. The Relationship Between Stress and Somatic Embryogenesis. In Somatic Embryogenesis: Fundamental Aspects and Applications; Loyola-Vargas, V.M., Ochoa-Alejo, N., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 151–170. ISBN 978-3-319-33704-3. [Google Scholar]
- Pais, M.S. Somatic Embryogenesis Induction in Woody Species: The Future After OMICs Data Assessment. Front. Plant Sci. 2019, 10, 240. [Google Scholar] [CrossRef]
- Niskanen, A.-M.; Lu, J.; Seitz, S.; Keinonen, K.; Von Weissenberg, K.; Pappinen, A. Effect of Parent Genotype on Somatic Embryogenesis in Scots Pine (Pinus sylvestris). Tree Physiol. 2004, 24, 1259–1265. [Google Scholar] [CrossRef]
- Cardoso, H.G.; Campos, M.C.; Pais, M.S.; Peixe, A. Use of Morphometric Parameters for Tracking Ovule and Microspore Evolution in Grapevine (Vitis vinifera L., Cv. “Aragonez”) and Evaluation of Their Potential to Improve in Vitro Somatic Embryogenesis Efficiency from Gametophyte Tissues. Vitr. Cell. Dev. Biol.-Plant 2010, 46, 499–508. [Google Scholar] [CrossRef][Green Version]
- Udyawar, B.; Edathil, R.; Jayaraj, L.; Krishna, R.; Karun, A. Comparative Gene Expression Profiling during in Vitro Regeneration in Two Coconut Cultivars. Emir. J. Food Agric 2016, 28, 572. [Google Scholar] [CrossRef]
- Daouda, K.; Modeste, K.K.; Oulo, N.A.; Edmond, K.K. Induction of Somatic Embryos of Recalcitrant Genotypes of Theobroma cacao L. J. App. Bioscience. 2019, 133, 13552. [Google Scholar] [CrossRef]
- Jagiełło-Kubiec, K.; Nowakowska, K.; Ilczuk, A.; Łukaszewska, A.J. Optimizing Micropropagation Conditions for a Recalcitrant Ninebark (Physocarpus opulifolius L. Maxim.) Cultivar. Vitr. Cell. Dev. Biol.-Plant 2021, 57, 281–295. [Google Scholar] [CrossRef]
- Guo, T.; Bao, F.; Fan, Y.; Zhang, J.; Zhao, J. Small Molecules, Enormous Functions: Potential Approach for Overcoming Bottlenecks in Embryogenic Tissue Induction and Maintenance in Conifers. Hortic. Res. 2024, 11, uhae180. [Google Scholar] [CrossRef]
- Arnholdt-Schmitt, B.; Ragonezi, C.; Cardoso, H. Do Mitochondria Play a Central Role in Stress-Induced Somatic Embryogenesis? In In Vitro Embryogenesis in Higher Plants; Germana, M.A., Lambardi, M., Eds.; Methods in Molecular Biology; Springer New York: New York, NY, USA, 2016; Volume 1359, pp. 87–100. ISBN 978-1-4939-3060-9. [Google Scholar]
- Frederico, A.M.; Campos, M.D.; Cardoso, H.G.; Imani, J.; Arnholdt-Schmitt, B. Alternative Oxidase Involvement in Daucus Carota Somatic Embryogenesis. Physiol. Plant. 2009, 137, 498–508. [Google Scholar] [CrossRef]
- Van Der Knaap, J.A.; Verrijzer, C.P. Undercover: Gene Control by Metabolites and Metabolic Enzymes. Genes Dev. 2016, 30, 2345–2369. [Google Scholar] [CrossRef]
- Bollati, S.A.; Da Graça, J.P.; Silvente, S.T.; Conci, V.C. Optimization of Culture Media and Environmental Conditions for Somatic Embryogenesis in Olive (Olea europaea L.) Cultivars ‘Arbequina’ and ‘Picual’. J. Saudi Soc. Agric. Sci. 2025, 24, 28. [Google Scholar] [CrossRef]
- Rugini, E.; Caricato, G. Somatic Embryogenesis and Plant Recovery from Mature Tissues of Olive Cultivars (Olea europaea L.) ‘Canino’ and ‘Moraiolo’. Plant Cell Rep. 1995, 14, 257–260. [Google Scholar] [CrossRef]
- Trabelsi, E.B.; Naija, S.; Elloumi, N.; Belfeleh, Z.; Msellem, M.; Ghezel, R.; Bouzid, S. Somatic Embryogenesis in Cell Suspension Cultures of Olive Olea europaea (L.) ‘Chetoui’. Acta Physiol. Plant 2011, 33, 319–324. [Google Scholar] [CrossRef]
- Mazri, M.A.; Belkoura, I.; Pliego-Alfaro, F.; Belkoura, M. Somatic Embryogenesis from Leaf and Petiole Explants of the Moroccan Olive Cultivar Dahbia. Sci. Hortic. 2013, 159, 88–95. [Google Scholar] [CrossRef]
- Toufik, I.; Guenoun, F.; Belkoura, I. Embryogenesis Expression from Somatic Explants of Olive (Olea europaea L.) Cv. Picual. Mor. J. Biol. 2014, 11, 17–25. [Google Scholar]
- Oulbi, S.; Belkoura, I.; Loutfi, K. Somatic Embryogenesis from Somatic Explants of a Moroccan Olive (Olea europaea L.) Cultivar, ‘Moroccan Picholine’. Acta Hortic. 2018, 1199, 91–96. [Google Scholar] [CrossRef]
- Fehér, A. Transition of Somatic Plant Cells to an Embryogenic State. Plant Cell Tissue Organ Cult. 2003, 74, 201–228. [Google Scholar] [CrossRef]
- Corredoira, E.; Ballester, A.; Ibarra, M.; Vieitez, A.M. Induction of Somatic Embryogenesis in Explants of Shoot Cultures Established from Adult Eucalyptus globulus and E. saligna × E. maidenii Trees. Tree Physiol. 2015, 35, 678–690. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, A.; Qin, M.; Qin, X.; Yang, S.; Su, S.; Sun, Y.; Zhang, L. Direct and Indirect Somatic Embryogenesis Induction in Camellia oleifera Abel. Front. Plant Sci. 2021, 12, 644389. [Google Scholar] [CrossRef]
- Merkle, S.A.; Nairn, C.J. Hardwood Tree Biotechnology. Vitr. Cell. Dev. Biol.-Plant 2005, 41, 602–619. [Google Scholar] [CrossRef]
- Savane, P.; Belmokhtar, N.; Delile, A.; Boizot, N.; Ridel, C.; Lelu-Walter, M.-A.; Teyssier, C. Characterization of Hybrid Larch Somatic Embryo Maturation by Biochemical Analyses and by a Novel, Fast Mid-Infrared Approach. Physiol. Plant. 2023, 174, e13966. [Google Scholar] [CrossRef]
- Vidales-Fernández, I.; Salgado-Garciglia, R.; Gómez-Lim, M.A.; Ángel-Palomares, E. Embriogénesis somática de aguacate (Persea americana Mill. cv. Hass). V Congr. Mund. Aguacate 2003, 89–95. [Google Scholar]
- Benzekri, H.; Sánchez-Romero, C. Maturation of olive somatic embryos. Acta Hortic. 2012, 441–447. [Google Scholar] [CrossRef]
- Titouh, K.; Hadj Moussa, K.; Boufis, N.; Khelifi, L. Impact of Cultural Conditions on Germination of Olive (Olea europaea L.) Somatic Embryos and Plantlets Development from the Algerian Cultivar Chemlal. Adv. Hortic. Sci. 2022, 36, 185–191. [Google Scholar] [CrossRef]
- Cerezo, S.; Mercado, J.A.; Pliego-Alfaro, F. An Efficient Regeneration System via Somatic Embryogenesis in Olive. Plant Cell Tissue Organ Cult. 2011, 106, 337–344. [Google Scholar] [CrossRef]
- Mazri, M.A.; Naciri, R.; Belkoura, I. Maturation and Conversion of Somatic Embryos Derived from Seeds of Olive (Olea europaea L.) Cv. Dahbia: Occurrence of Secondary Embryogenesis and Adventitious Bud Formation. Plants 2020, 9, 1489. [Google Scholar] [CrossRef] [PubMed]
- Bradaï, F.; Pliego-Alfaro, F.; Sánchez-Romero, C. Long-Term Somatic Embryogenesis in Olive (Olea europaea L.): Influence on Regeneration Capability and Quality of Regenerated Plants. Sci. Hortic. 2016, 199, 23–31. [Google Scholar] [CrossRef]
- Pires, R.; Cardoso, H.; Ribeiro, A.; Peixe, A.; Cordeiro, A. Somatic Embryogenesis from Mature Embryos of Olea europaea L. Cv. ‘Galega Vulgar’ and Long-Term Management of Calli Morphogenic Capacity. Plants 2020, 9, 758. [Google Scholar] [CrossRef] [PubMed]
- Afreen, F.; Zobayed, S.M.A.; Kozai, T. Development of Photoautotrophy in Coffea Somatic Embryos Enables Mass Production of Clonal Transplants. In Liquid Culture Systems for In Vitro Plant Propagation; Hvoslef-Eide, A.K., Preil, W., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 323–335. ISBN 978-1-4020-3199-1. [Google Scholar]
- Cavallaro, V.; Pellegrino, A.; Muleo, R.; Forgione, I. Light and Plant Growth Regulators on In Vitro Proliferation. Plants 2022, 11, 844. [Google Scholar] [CrossRef]
- Rugini, E.; Bashir, M.A.; Cristofori, V.; Ruggiero, B.; Silvestri, C. A Review of genetic improvement of main fruit trees through modern biotechnological tools and considerations of the cultivation and research of the engineered plant restrictions. Pak. J. Agri. Sci. 2020, 57, 17–42. [Google Scholar]
- Bustami, M.U.; Werbrouck, S.P.O. Cyclic Somatic Embryogenesis in Indonesian Elite Theobroma cacao L. Clones. Horticulturae 2023, 10, 24. [Google Scholar] [CrossRef]
- Krishna, H.; Alizadeh, M.; Singh, D.; Singh, U.; Chauhan, N.; Eftekhari, M.; Sadh, R.K. Somaclonal Variations and Their Applications in Horticultural Crops Improvement. 3 Biotech 2016, 6, 54. [Google Scholar] [CrossRef]
- Duta-Cornescu, G.; Constantin, N.; Pojoga, D.-M.; Nicuta, D.; Simon-Gruita, A. Somaclonal Variation—Advantage or Disadvantage in Micropropagation of the Medicinal Plants. Int. J. Mol. Sci. 2023, 24, 838. [Google Scholar] [CrossRef]
- Escobedo-Gracia-Medrano, R.M.; Burgos-Tan, M.J.; Ku-Cauich, J.R.; Quiroz-Moreno, A. Using Flow Cytometry Analysis in Plant Tissue Culture Derived Plants. In Plant Cell Culture Protocols; Loyola-Vargas, V.M., Ochoa-Alejo, N., Eds.; Methods in Molecular Biology; Springer: New York, NY, USA, 2018; Volume 1815, pp. 317–332. ISBN 978-1-4939-8593-7. [Google Scholar]
- Bradaï, F.; Pliego-Alfaro, F.; Sánchez-Romero, C. Somaclonal Variation in Olive (Olea europaea L.) Plants Regenerated via Somatic Embryogenesis: Influence of Genotype and Culture Age on Phenotypic Stability. Sci. Hortic. 2016, 213, 208–215. [Google Scholar] [CrossRef]
- Bogdanović, M.D.; Ćuković, K.B.; Subotić, A.R.; Dragićević, M.B.; Simonović, A.D.; Filipović, B.K.; Todorović, S.I. Secondary Somatic Embryogenesis in Centaurium erythraea Rafn. Plants 2021, 10, 199. [Google Scholar] [CrossRef]
- Carra, A.; Wijerathna-Yapa, A.; Pathirana, R.; Carimi, F. Development and Applications of Somatic Embryogenesis in Grapevine (Vitis spp.). Plants 2024, 13, 3131. [Google Scholar] [CrossRef]
- Duan, M.; Liu, J.; Zhao, Y.; Wang, X.; Li, L.; Wang, S.; Jia, R.; Zhao, X.; Kou, Y.; Su, K.; et al. Somatic Embryogenesis from the Leaf-Derived Calli of In Vitro Shoot-Regenerated Plantlets of Rosa hybrida ‘Carola’. Plants 2024, 13, 3553. [Google Scholar] [CrossRef] [PubMed]
- Martínez, M.T.; Vieitez, A.M.; Corredoira, E. Improved Secondary Embryo Production in Quercus alba and Q. rubra by Activated Charcoal, Silver Thiosulphate and Sucrose: Influence of Embryogenic Explant Used for Subculture. Plant Cell Tissue Organ Cult. 2015, 121, 531–546. [Google Scholar] [CrossRef]
- Ben Ali, N.; Benkaddour, R.; Rahmouni, S.; Boussaoudi, I.; Hamdoun, O.; Hassoun, M.; Azaroual, L.; Badoc, A.; Martin, P.; Lamarti, A. Secondary Somatic Embryogenesis in Cork Oak: Influence of Plant Growth Regulators. For. Sci. Technol. 2023, 19, 78–88. [Google Scholar] [CrossRef]
- Cerezo, S.; Palomo-Ríos, E.; Ben Mariem, S.; Mercado, J.A.; Pliego-Alfaro, F. Use of Fluorescent Reporter Genes in Olive (Olea europaea L.) Transformation. Acta Physiol. Plant 2019, 41, 49. [Google Scholar] [CrossRef]
- Ben-Amar, A. Secretome-Derived Cultured Cell System: Overview Towards Extracellular Protein Characterization and Biotechnological Applications. J. Basic Appl. Sci. 2021, 17, 13–24. [Google Scholar] [CrossRef]
- Quiroz-Figueroa, F.; Méndez-Zeel, M.; Larqué-Saavedra, A.; Loyola-Vargas, V. Picomolar Concentrations of Salicylates Induce Cellular Growth and Enhance Somatic Embryogenesis in Coffea Arabica Tissue Culture. Plant Cell Rep. 2001, 20, 679–684. [Google Scholar] [CrossRef]
- Elmeer, K.E.S. Factors Regulating Somatic Embryogenesis in Plants. Factors Regulating Somatic Embryogenesis in Plants. In Somatic Embryogenesis and Gene Expression; Aslam, J., Srivastava, P.S., Sharma, M.P., Eds.; Narosa Publishing House: New Delhi, India, 2013; pp. 56–81. ISBN 978-81-8487-228-6. [Google Scholar]
- Mazri, M.A.; Belkoura, I.; Pliego-Alfaro, F.; Belkoura, M. Embryogenic capacity of embryo-derived explants from different olive cultivars. Acta Hortic. 2012, 397–403. [Google Scholar] [CrossRef]
- Trabelsi, E.B.; Bouzid, S.; Bouzid, M.; Elloumi, N.; Belfeleh, Z.; Benabdallah, A.; Ghezel, R. In-Vitro Regeneration of Olive Tree by Somatic Embryogenesis. J. Plant Biol. 2003, 46, 173–180. [Google Scholar] [CrossRef]
- Orinos, T.H.; Mitrakos, K. Rhizogenesis and Somatic Embryogenesis in Calli from Wild Olive (Olea europaea Var. sylvestris (Miller) Lehr) Mature Zygotic Embryos. Plant Cell Tissue Organ Cult. 1991, 27, 183–187. [Google Scholar] [CrossRef]
- Paul, H.; Belaizi, M.; Sangwan-Norreel, B.S. Somatic Embryogenesis in Apple. J. Plant Physiol. 1994, 143, 78–86. [Google Scholar] [CrossRef]
- Du, L.; Kang, X.; Guo, H.; Zhu, Z.; Wu, R.; Yuan, M.; Ding, C. Cotyledonary Somatic Embryo Is One Kind of Intermediate Material Similar to Callus in the Process of in Vitro Tissue Culture from Rosa hybrida “John F. Kennedy”. BMC Genomics 2024, 25, 362. [Google Scholar] [CrossRef]
- Peyvandi, M.; Ebnrahimzadeh, H.; Majd, A. Somatic embryos at different maturity stages in two olive cultivars. Acta Hortic. 2008, 791, 213–216. [Google Scholar] [CrossRef]
- Jafarzadeh-Bajestani, M.; Khodai-Kalaki, M.; Motamed, N. Genetic Transformation of Olive Somatic Embryos through Agrobacterium tumefaciens and Regeneration of Transgenic Plants. Afr. J. Biotechnol. 2011, 10, 5468–5475. [Google Scholar]
- Su, Y.-H.; Liu, Y.-B.; Zhang, X.-S. Auxin–Cytokinin Interaction Regulates Meristem Development. Mol. Plant 2011, 4, 616–625. [Google Scholar] [CrossRef]
- Pérez-Barranco, G.; Torreblanca, R.; Padilla, I.M.G.; Sánchez-Romero, C.; Pliego-Alfaro, F.; Mercado, J.A. Studies on Genetic Transformation of Olive (Olea europaea L.) Somatic Embryos: I. Evaluation of Different Aminoglycoside Antibiotics for nptII Selection; II. Transient Transformation via Particle Bombardment. Plant Cell Tissue Organ Cult. 2009, 97, 243–251. [Google Scholar] [CrossRef]
- Malik, M.; Tomiak, E.; Pawłowska, B. Effect of Liquid Culture Systems (Temporary Immersion Bioreactor and Rotary Shaker) Used During Multiplication and Differentiation on Efficiency of Repetitive Somatic Embryogenesis of Narcissus L. ‘Carlton’. Agronomy 2024, 15, 85. [Google Scholar] [CrossRef]
- Pernis, M.; Salaj, T.; Bellová, J.; Danchenko, M.; Baráth, P.; Klubicová, K. Secretome Analysis Revealed That Cell Wall Remodeling and Starch Catabolism Underlie the Early Stages of Somatic Embryogenesis in Pinus nigra. Front. Plant Sci. 2023, 14, 1225424. [Google Scholar] [CrossRef]
- Pires, R.; Rodrigues, L.; Santos, F.L.; Duarte, I.; Ciordia, S.; Peixe, A.; Cardoso, H. Establishment of a Protocol for the Characterization of Secreted Biomolecules in Somatic Embryogenic Cultures of Olea europaea L. Horticulturae 2025, 11, 331. [Google Scholar] [CrossRef]
- Baharan, E.; Mohammadi, P.P. Induction of Direct Somatic Embryogenesis and Callogenesis in Date Palm (Phoenix dactylifera L.) Using Leaf Explants. J. Biotechnol. Comput. Biol. Bionanotechnol. 2018, 99, 197–203. [Google Scholar] [CrossRef]
- Oulbi, S.; Kohaich, K.; Baaziz, M.; Belkoura, I.; Loutfi, K. Peroxidase Enzyme Fractions as Markers of Somatic Embryogenesis Capacities in Olive (Olea europaea L.). Plants 2021, 10, 901. [Google Scholar] [CrossRef] [PubMed]
- Voxeur, A.; Wang, Y.; Sibout, R. Lignification: Different Mechanisms for a Versatile Polymer. Curr. Opin. Plant Biol. 2015, 23, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Guo, B.; He, W.; Zhao, Y.; Wu, Y.; Fu, Y.; Guo, J.; Wei, Y. Changes in Endogenous Hormones and H2O2 Burst during Shoot Organogenesis in TDZ-Treated Saussurea involucrate Explants. Plant Cell Tissue Organ Cult. 2017, 128, 1–8. [Google Scholar] [CrossRef]
- Sun, P.; Zhu, Z.; Jin, Z.; Xie, J.; Miao, H.; Liu, J. Molecular Characteristics and Functional Identification of a Key Alpha-Amylase-Encoding Gene AMY11 in Musa acuminata. Int. J. Mol. Sci. 2024, 25, 7832. [Google Scholar] [CrossRef]
- Kumaravel, M.; Uma, S.; Backiyarani, S.; Saraswathi, M.S. Proteomic Analysis of Somatic Embryo Development in Musa Spp. Cv. Grand Naine (AAA). Sci. Rep. 2020, 10, 4501. [Google Scholar] [CrossRef]
- Navarro, B.V.; De Oliveira, L.F.; De Oliveira, L.P.; Elbl, P.; Macedo, A.F.; Buckeridge, M.S.; Floh, E.I.S. Starch Turnover Is Stimulated by Nitric Oxide in Embryogenic Cultures of Araucaria Angustifolia. Plant Cell Tissue Organ Cult. 2021, 147, 583–597. [Google Scholar] [CrossRef]
- Sánchez-Romero, C. Somaclonal Variation in Olive. In Somaclonal Variation: Basic and Practical Aspects; Springer: Cham, Switzerland, 2024. [Google Scholar]
- Leva, A.R.; Petruccelli, R.; Rinaldi, L.M.R. Somaclonal Variation in Tissue Culture: A Case Study with Olive. In Recent Advances in Plant In Vitro Culture; Leva, A., Ed.; InTech: London, UK, 2012; pp. 123–150. [Google Scholar] [CrossRef]
- Catalano, C.; Abbate, L.; Motisi, A.; Crucitti, D.; Cangelosi, V.; Pisciotta, A.; Di Lorenzo, R.; Carimi, F.; Carra, A. Autotetraploid Emergence via Somatic Embryogenesis in Vitis Vinifera Induces Marked Morphological Changes in Shoots, Mature Leaves, and Stomata. Cells 2021, 10, 1336. [Google Scholar] [CrossRef]
- De Sousa, P.C.A.; Silva, E.; Souza, S.S.; Nogueira, G.F.; De Araújo Silva-Cardoso, I.M.; Scherwinski-Pereira, J.E. Indirect Somatic Embryogenesis of Piper hispidinervum L. and Evaluation of the Regenerated Plants by Flow Cytometry. J. Genet. Eng. Biotechnol. 2022, 20, 40. [Google Scholar] [CrossRef]
- Bahmankar, M.; Rahnama, H. Somatic Embryogenesis and Genetic Fidelity in Camelina by RAPD Markers and Flow Cytometry. Plant Cell Tissue Organ Cult. 2024, 156, 67. [Google Scholar] [CrossRef]
- Bradaï, F.; Sánchez-Romero, C.; Martín, C. Somaclonal Variation in Olive (Olea europaea L.) Plants Regenerated via Somatic Embryogenesis: Influence of Genotype and Culture Age on Genetic Stability. Sci. Hortic. 2019, 251, 260–266. [Google Scholar] [CrossRef]
- Porfírio, S.; Gomes Da Silva, M.D.R.; Cabrita, M.J.; Azadi, P.; Peixe, A. Reviewing Current Knowledge on Olive (Olea europaea L.) Adventitious Root Formation. Sci. Hortic. 2016, 198, 207–226. [Google Scholar] [CrossRef]
- Pérez-Barranco, G.; Mercado, J.A.; Pliego-Alfaro, F.; Sánchez-Romero, C. Genetic transformation of olive somatic embryos through biolistics. Acta Hortic. 2007, 738, 473–477. [Google Scholar] [CrossRef]
- Sass, J.E. Botanical Microtechnique; The Iowa State College Press: Ames, IA, USA; Constable & Co.: London, UK, 1958. [Google Scholar]
- Arumuganathan, K.; Earle, E.D. Estimation of Nuclear DNA Content of Plants by Flow Cytometry. Plant Mol. Biol. Rep. 1991, 9, 229–241. [Google Scholar] [CrossRef] [PubMed]
- Doležel, J.; Greilhuber, J.; Suda, J. Estimation of Nuclear DNA Content in Plants Using Flow Cytometry. Nat. Protoc. 2007, 2, 2233–2244. [Google Scholar] [CrossRef]
Cultivar | Explant | Induction | Expression | |||
---|---|---|---|---|---|---|
n | Callogenesis | Rizhogenesis | Necrosis | SE | ||
‘Galega Vulgar’ | Radicle | 134 | 48.5 ± 4.3 Ab | 9.7 ± 2.6 Ab | 29.1 ± 3.9 b | 8.2 ± 2.4 |
Proximal | 27.6 ± 3.9 Aa | 0.8 ± 0.7 Aa | 16.4 ± 3.2 Aa | 2.2 ± 1.3 | ||
Distal | 39.6 ± 4.2 Aab | 0.8 ± 0.7 Aa | 21.6 ± 3.6 Aab | 4.5 ± 1.8 | ||
Radicle | 163 | 65.6 ± 3.7 B | 30.1 ± 3.6 B | 34.4 ± 3.7 | 9.8 ± 2.3 b | |
‘Arbequina’ | Proximal | 66.8 ± 3.6 B | 21.5 ± 3.2 B | 33.1 ± 3.7 B | 1.9 ± 1.1 a | |
Distal | 66.9 ± 3.7 B | 22.7 ± 3.3 B | 30.1 ± 3.6 B | 4.9 ± 1.7 ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pires, R.; Cardoso, H.; Rodrigues, L.; Peixe, A. In Vitro Establishment and Maintenance of Culture Lines with Differentiated Somatic Embryogenesis Capacity in Olive (Olea europaea L.). Plants 2025, 14, 2881. https://doi.org/10.3390/plants14182881
Pires R, Cardoso H, Rodrigues L, Peixe A. In Vitro Establishment and Maintenance of Culture Lines with Differentiated Somatic Embryogenesis Capacity in Olive (Olea europaea L.). Plants. 2025; 14(18):2881. https://doi.org/10.3390/plants14182881
Chicago/Turabian StylePires, Rita, Hélia Cardoso, Lénia Rodrigues, and Augusto Peixe. 2025. "In Vitro Establishment and Maintenance of Culture Lines with Differentiated Somatic Embryogenesis Capacity in Olive (Olea europaea L.)" Plants 14, no. 18: 2881. https://doi.org/10.3390/plants14182881
APA StylePires, R., Cardoso, H., Rodrigues, L., & Peixe, A. (2025). In Vitro Establishment and Maintenance of Culture Lines with Differentiated Somatic Embryogenesis Capacity in Olive (Olea europaea L.). Plants, 14(18), 2881. https://doi.org/10.3390/plants14182881