Cytotoxic Activity of Chemical Constituents of Clerodendrum glabrum and Combretum nelsonii Root Extracts Against Selected Cancer Cell Lines
Abstract
1. Introduction
2. Results and Discussion
2.1. Compounds Isolated from C. glabrum and C. nelsonii
2.2. Structure Elucidation of Compounds Isolated from C. glabrum and C. nelsonii
2.3. Spectral Data of Isolated Compounds
2.3.1. Ferruginol (1)
2.3.2. Royleanone (2)
2.3.3. β-Amyrin-Palmitate (3)
2.3.4. Combretastatin A-1 (4)
2.3.5. Combretastatin A-1-2′-O-β-D-Glucopyranoside (5a) and Combretastatin B-1-2′-O-β-D-Glucopyranoside (5b)
2.3.6. Stigmasterol (6)
2.4. Selective Cytotoxic Activity of Extracts and Isolated Compounds
2.5. Previous Studies and Mechanism of Action
3. Materials and Methods
3.1. General Experimental Procedure
3.2. Plants Samples
3.3. Extraction and Isolation of Compounds
3.4. Cytotoxicity Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
Caco-2 | Colorectal adenocarcinoma |
MCF-7 | Hormone receptor-positive breast cancer |
NMR | Nuclear magnetic resonance |
WHO | World Health Organization |
MTT | 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide |
DCM | Dichloromethane |
EtOAc | Ethyl acetate |
HepG2 | Human liver hepatocellular carcinoma |
COL-2 | Colon cancer |
DMSO | Dimethyl sulfoxide |
SI | Selectivity index |
LC50 | 50% Lethal concentration |
References
- World Health Organization (WHO). Available online: https://www.statssa.gov.za/publications/03-08-00/03-08-002023.pdf (accessed on 18 August 2023).
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN Estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Kim, J.; Harper, A.; McCormack, V.; Sung, H.; Houssami, N.; Morgan, E.; Mutebi, M.; Garvey, G.; Soerjomataram, I.; Fidler-Benaoudia, M.M. Global patterns and trends in breast cancer incidence and mortality across 185 countries. Nat. Med. 2025, 31, 1154–1162. [Google Scholar] [CrossRef] [PubMed]
- Saberian, M.; Mehrabani, K.; Shahraki, H.R. Clustering time trends of breast cancer incidence in Africa: A 27-year longitudinal study in 53 countries. Afr. Health Sci. 2021, 21, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Filho, A.M.; Laversanne, M.; Ferlay, J.; Colombet, M.; Piñeros, M.; Znaor, A.; Parkin, D.M.; Soerjomataram, I.; Bray, F. The GLOBOCAN 2022 cancer estimates: Data sources, methods, and a snapshot of the cancer burden worldwide. Int. J. Cancer 2025, 156, 1336–1346. [Google Scholar] [CrossRef]
- Hercules, S.M.; Alnajar, M.; Chen, C.; Mladjenovic, S.M.; Shipeolu, B.A.; Perkovic, O.; Pond, G.R.; Mbuagbaw, L.; Blenman, K.R.; Daniel, J.M. Triple-negative breast cancer prevalence in Africa: A systematic review and meta-analysis. BMJ Open 2022, 12, e055735. [Google Scholar] [CrossRef]
- Arnold, M.; Sierra, M.S.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global patterns and trends in colorectal cancer incidence and mortality. Gut 2017, 66, 683–691. [Google Scholar] [CrossRef]
- Cassiem, W.; De Kock, M. The anti-proliferative effect of apricot and peach kernel extracts on human colon cancer cells in vitro. BMC Complement. Altern. Med. 2019, 19, 32. [Google Scholar] [CrossRef]
- Brand, M.; Gaylard, P.; Journal, J.R.S.A.M. Colorectal cancer in South Africa: An assessment of disease presentation, treatment pathways and 5-year survival. S. Afr. Med. J. 2018, 108, 118–122. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Zhao, X.; Hu, J.; Jiao, Y.; Yan, Y.; Pan, X.; Wang, X.; Jiao, F. mRNA vaccines in the context of cancer treatment: From concept to application. J. Transl. Med. 2025, 23, 12–42. [Google Scholar] [CrossRef] [PubMed]
- Sonkin, D.; Thomas, A.; Teicher, B.A. Cancer treatments: Past, present, and future. Cancer Genet. 2024, 287, 18–24. [Google Scholar] [CrossRef]
- Liu, B.; Zhou, H.; Tan, L.; Siu, K.T.H.; Guan, X.Y. Exploring treatment options in cancer: Tumor treatment strategies. Signal Transduct. Target. Ther. 2024, 9, 175. [Google Scholar] [CrossRef]
- Wegner, R.E.; Abel, S.; Monga, D.; Raj, M.; Finley, G.; Nosik, S.; McCormick, J.; Kirichenko, A.V. Utilization of adjuvant radiotherapy for resected colon cancer and its effect on outcome. Ann. Surg. Oncol. 2020, 27, 825–832. [Google Scholar] [CrossRef]
- Guo, K.; Liu, Y.; Tang, L.; Shubhra, Q.T.H. Homotypic biomimetic coating synergizes chemo-photothermal combination therapy to treat breast cancer overcoming drug resistance. J. Chem. Eng. 2022, 428, 131120. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, X.; He, D.; Cheng, Y.X. Protection against chemotherapy and radiotherapy-induced side effects: A review based on the mechanisms and therapeutic opportunities of phytochemicals. Phytomedicine 2020, 80, 153402. [Google Scholar] [CrossRef]
- Stoicescu, E.A.; Burcea, M.; Iancu, R.C.; Zivari, M.; Popa Cherecheanu, A.; Bujor, I.A.; Rastoaca, C.; Iancu, G. Docetaxel for breast cancer treatment side effects on ocular surface, a systematic review. Processes 2021, 9, 1086. [Google Scholar] [CrossRef]
- Saeed, M.; Meyer, M.; Hussein, A.; Efferth, T. Cytotoxicity of South-African medicinal plants towards sensitive and multidrug-resistant cancer cells. J. Ethnopharmacol. 2016, 186, 209–223. [Google Scholar] [CrossRef]
- Munir, A.A. A taxonomic revision of the Genus Clerodendrum L. (Verbenaceae) in Australia. J. Adelaide Bot. Gard. 1989, 11, 101–173. [Google Scholar]
- Yuan, Y.; Mabberley, D.; Steane, D.A.; Olmstead, R.G. Further disintegration and redefinition of Clerodendrum (Lamiaceae): Implications for the understanding of the evolution of an intriguing breeding strategy. Taxon 2010, 59, 125–133. [Google Scholar] [CrossRef]
- Clerodendron glabrum | PlantZAfrica. Available online: http://pza.sanbi.org/clerodendron-glabrum (accessed on 18 August 2023).
- Watt, J.M.; Breyer-Brandwijk, M.G. The Medicinal and Poisonous Plants of Southern and Eastern Africa; E. & S. Livingstone Ltd.: Edinburg, UK, 1962; pp. 1047–1048. [Google Scholar]
- Quattrocchi, U. CRC World Dictionary of Medicinal and Poisonous Plants II C-D, 1st ed.; CRC Press: Boca Raton, FL, USA; London, UK; New York, NY, USA, 2012; pp. 310–311. [Google Scholar]
- Jadeja, R.; Thounaojam, M.; Ramachandran, A.V.; Devkar, R. Phytochemical Constituents and Free Radical Scavenging Activity of Clerodendron glandulosum.Coleb Methanolic Extract. J. Complement. Integr. Med. 2009, 6. [Google Scholar] [CrossRef]
- Masevhe, N.A.; Awouafack, M.D.; Ahmed, A.S.; McGaw, L.J.; Eloff, J.N. Clerodendrumic Acid, a new triterpenoid from Clerodendrum glabrum (Verbenaceae), and antimicrobial activities of fractions and constituents. Helv. Chim. Acta 2013, 96, 1693–1703. [Google Scholar] [CrossRef]
- Fouad, M.A.; Wanas, A.S.; Khalil, H.E. Phytochemical, and biological studies of Clerodendrum glabrum leaves. Int. J. Pharmacog. Phytochem. 2013, 28, 2051–7858. [Google Scholar]
- Teclegeorgish, Z.W.; Mokgalaka, N.S.; Vukea, N.; de la Mare, J.A.; Tembu, V.J. Cytotoxicity of triterpenoids from Clerodendrum glabrum against triple negative breast cancer cells in vitro. S. Afr. J. Bot. 2020, 133, 144–150. [Google Scholar] [CrossRef]
- Tamuli, R.; Nguyen, T.; Macdonald, J.R.; Pierens, G.K.; Fisher, G.M.; Andrews, K.T.; Adewoyin, F.B.; Omisore, N.O.; Odaibo, A.B.; Feng, Y. Isolation and in vitro and in vivo activity of secondary metabolites from Clerodendrum polycephalum baker against plasmodium malaria parasites. J. Nat. Prod. 2023, 86, 2661–2671. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, D.; Li, H.; Huang, H.; Hu, Y.; Zhang, Q.; Li, J.; Xie, C.; Yang, C. Cyclohexylethanoid derivative and rearranged abietane diterpenoids with anti-inflammatory activities from Clerodendrum bungei and C. inerme. Arab. J. Chem. 2024, 17, 105338. [Google Scholar] [CrossRef]
- Penu, F.I.; Al Amin, G.M.; Akhter, F.; Rahman, M.S. Phytochemical screening and antimicrobial activity of Clerodendrum viscosum leaf extracts. Jagannath Univ. J. Life Earth Sci. 2022, 8, 1–8. [Google Scholar]
- Bhattacharyya, S.; Samanta, S.; Hore, M.; Barai, S.; Dash, S.K.; Roy, S. Phytochemical compositions, antioxidant, anticholinesterase, and antibacterial properties of Clerodendrum thomsoniae Balf. f. leaves: In vitro and in silico analyses. Nat. Prod. Rep. 2024, 5, 100121. [Google Scholar]
- Hossain, M.M.; Roy, N.; Islam, F. Exploring the phytochemical composition, antioxidant properties, and anticancer mechanism of Clerodendrum viscosum vent. A comprehensive review. Curr. Tradit. Med. 2025, 1–16. [Google Scholar] [CrossRef]
- Dahlgren, R.; Thorne, R.F. The order myrtales: Circumscription, variation, and relationships. Ann. Mo. Bot. Gard. 1984, 71, 633–699. [Google Scholar] [CrossRef]
- McGaw, L.J.; Rabe, T.; Sparg, S.G.; Jäger, A.K.; Eloff, J.N.; Van Staden, J. An investigation on the biological activity of Combretum species. J. Ethnopharmacol. 2001, 75, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Roy, R.; Singh, R.; Jash, S.K.; Sarkar, A.; Gorai, D. Combretum quadrangulare (Combretaceae): Phytochemical constituents and biological activity. Indo Am. J. Pharm. Res. 2014, 4, 3416–3427. [Google Scholar]
- Silén, H.; Salih, E.Y.; Mgbeahuruike, E.E.; Fyhrqvist, P. Ethnopharmacology, antimicrobial potency, and phytochemistry of African Combretum and Pteleopsis species (Combretaceae): A review. Antibiotics 2023, 12, 264. [Google Scholar] [CrossRef]
- Stace, C.A. The families and genera of vascular plants. In Flowering Plants Eudicots, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 67–82. [Google Scholar]
- Masoko, P.; Picard, J.; Eloff, J.N. The antifungal activity of twenty-four southern african Combretum species (Combretaceae). S. Afr. J. Bot. 2007, 73, 173–183. [Google Scholar] [CrossRef]
- Masoko, P.; Mdee, L.K.; Mampuru, L.J.; Eloff, J.N. Biological activity of two related triterpenes isolated from Combretum nelsonii (Combretaceae) leaves. Nat. Prod. Res. 2008, 22, 1074–1084. [Google Scholar] [CrossRef] [PubMed]
- Rengarajan, T.; Keerthiga, S.; Duraikannu, S.; Periyannan, V. Exploring the anticancer and anti-inflammatory activities of ferruginol in MCF-7 breast cancer cells. Cancer Plus 2020, 1, 1–12. [Google Scholar] [CrossRef]
- Somwong, P.; Suttisri, R. Cytotoxic activity of the chemical constituents of Clerodendrum indicum and Clerodendrum villosum roots. J. Integr. Med. 2018, 16, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Espinoza, M.; Santos, L.S.; Theoduloz, C.; Schmeda-Hirschmann, G.; Rodríguez, J.A. New gastroprotective ferruginol derivatives with selective cytotoxicity against gastric cancer cells. Planta Med. 2008, 74, 802–808. [Google Scholar] [CrossRef]
- Machumi, F.; Samoylenko, V.; Yenesew, A.; Derese, S.; Midiwo, J.O.; Wiggers, F.T.; Muhammad, I. Antimicrobial and antiparasitic abietane diterpenoids from the roots of Clerodendrum eriophyllum. Nat. Prod. Commun. 2010, 5, 853–858. [Google Scholar] [CrossRef]
- Ho, S.T.; Tung, Y.T.; Kuo, Y.H.; Lin, C.C.; Wu, J.H. Ferruginol inhibits non-small cell lung cancer growth by inducing caspase-associated apoptosis. Integr. Cancer Ther. 2015, 14, 86–97. [Google Scholar] [CrossRef]
- Ulubelen, A.; Topçu, G.; Chai, H.B.; Pezzuto, J.M. Cytotoxic activity of diterpenoids isolated from Salvia hypargeia. Pharmaceut. Biol. 2008, 37, 148–151. [Google Scholar] [CrossRef]
- Wu, X.; He, Y.; Zhang, G.; Wu, J.; Hou, Y.; Gu, Y.; Chen, H. Royleanone diterpenoid exhibits potent anticancer effects in lncap human prostate carcinoma cells by inducing mitochondrial mediated apoptosis, cell cycle arrest, suppression of cell migration and down regulation of mTOR/PI3K/AKT signaling pathway. J. BUON 2018, 23, 1055–1060. [Google Scholar]
- Areche, C.; Schmeda-Hirschmann, G.; Theoduloz, C.; Rodríguez, J.A. Gastroprotective effect and cytotoxicity of abietane diterpenes from the chilean lamiaceae Sphacele chamaedryoides (Balbis) Briq. J. Pharm. Pharmacol. 2010, 61, 1689–1697. [Google Scholar] [CrossRef]
- Hijazi, M.; Hijazi, K.; Bouhadir, K.; Fatfat, Z.; Aboul-Ela, M.; Gali-Muhtasib, H.; El-Lakany, A. Anticancer activity of abietane diterpenoids from Salvia libanoticum grown in Lebanon. Pharmacogn. Mag. 2021, 17, 127–133. [Google Scholar] [CrossRef]
- Tozer, G.M.; Kanthou, C.; Parkins, C.S.; Hill, S.A. The biology of the Combretastatins as tumour vascular targeting agents. Int. J. Clin. Exp. Pathol. 2002, 83, 21–38. [Google Scholar] [CrossRef]
- Pettit, G.R.; Grealish, M.P.; Herald, D.L.; Boyd, M.R.; Hamel, E.; Pettit, R.K. Antineoplastic agents. 443. Synthesis of the cancer cell growth inhibitor hydroxyphenstatin and its sodium diphosphate prodrug. J. Med. Chem. 2000, 43, 2731–2737. [Google Scholar] [CrossRef]
- Akim, A. Biological Activities of Oryzanol, Stigmasterol and Microminutinin on Human Breast Cancer Cell-Line, MCF-7. Ph.D. Thesis, University Putra Malaysia, Serdang, Malaysia, 2004. [Google Scholar]
- Maima, A.O.; Thoithi, G.N.; Ndwigah, S.N.; Kamau, F.N.; Kibwage, I.O. Phytosterols from the stem bark of Combretum fragrans F. Hoffm. East Cent. Afr. J. Pharm. Sci. 2008, 11, 52–54. [Google Scholar] [CrossRef]
- Fantacuzzi, M.; Carradori, S.; Giampietro, L.; Maccallini, C.; De Filippis, B.; Amoroso, R.; Ammazzalorso, A. A novel life for antitumor combretastatins: Recent developments of hybrids, prodrugs, combination therapies, and antibody-drug conjugates. Eur. J. Med. Chem. 2025, 281, 117021. [Google Scholar] [CrossRef]
- Porcù, E.; Salvador, A.; Primac, I.; Mitola, S.; Ronca, R.; Ravelli, C.; Viola, G. Vascular disrupting activity of combretastatin analogues. Vasc. Pharmacol. 2016, 83, 78–89. [Google Scholar] [CrossRef]
- Patel, S.; Singh, A. Sterols and phytosterols in cancer prevention and therapy: Perspective. J. Food Biochem. 2018, 42, e12533. [Google Scholar]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Yang, Y.; He, P.Y.; Zhang, Y.; Li, N. Natural products targeting the mitochondria in cancers. Molecules 2021, 26, 92. [Google Scholar] [CrossRef] [PubMed]
- de Jesus, M.B.; Zambuzzi, W.F.; de Sousa, R.R.R.; Areche, C.; de Souza, A.C.S.; Aoyama, H.; Ferreira, C.V. Ferruginol suppresses survival signalling pathways in androgen-independent human prostate cancer cells. Biochimie 2008, 90, 843–854. [Google Scholar] [CrossRef]
- Matias, D.; Nicolai, M.; Saraiva, L.; Pinheiro, R.; Faustino, C.; Diaz Lanza, A.; Pinto Reis, C.; Stankovic, T.; Dinic, J.; Pesic, M.; et al. Cytotoxic activity of royleanone diterpenes from Plectranthus madagascariensis Benth. ACS Omega 2019, 4, 8094–8103. [Google Scholar] [CrossRef] [PubMed]
- Karatoprak, G.Ş.; Küpeli Akkol, E.; Genç, Y.; Bardakcı, H.; Yücel, Ç.; Sobarzo-Sánchez, E. Combretastatins: An overview of structure, probable mechanisms of action and potential applications. Molecules 2020, 25, 2560. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, R.; Xie, H. Stigmasterol sensitizes hepatocellular carcinoma cells to sorafenib by inducing ROS-mediated apoptosis and autophagy. Biomed. Pharmacother. 2021, 135, 111198.s. [Google Scholar]
Compounds | Compound Name | Vero (LC50) µg/mL | Caco-2 (LC50) µg/mL | MCF-7 (LC50) µg/mL | Selectivity Index | |
---|---|---|---|---|---|---|
Caco-2 | MCF-7 | |||||
1 | Ferruginol | 2.00 × 10−4 | 24.3 | 48.4 | 8.23 × 10−6 | 4.13 × 10−6 |
2 | Royleanone | 30.7 | >2.00 × 102 | >2.00 × 102 | <0.150 | <0.150 |
3 | β-amyrin palmitate | * ND | * ND | * ND | * ND | * ND |
4 | Combretastatin A-1 | 15.3 | * ND | 72.0 | * ND | 0.210 |
5a | Combretastatin A-1-2′-O-β-D-glucopyranoside | 83.8 | * ND | 44.1 | * ND | 1.90 |
5b | Combretastatin B-1-2′-O-β-D-glucopyranoside | |||||
6 | Stigmasterol | 137 | >2.00 × 102 | >2.00 × 102 | <0.690 | <0.690 |
Extracts | ||||||
DCM | C. glabrum | 4.30 × 103 | 1.30 × 103 | 2790 | 3.31 | 1.54 |
DCM | C. nelsonii | 1.70 × 103 | 2390 | 6610 | 0.710 | 0.260 |
EtOAc | C. nelsonii | 117 | * ND | 252 | * ND | 0.460 |
Positive control | Doxorubicin | 6.90 | 0.760 | 3.10 | 9.08 | 2.20 |
Compound Name/ Extract | Cell Line (LC50) µg/mL | Selectivity Index | Literature Report (Cell Line & IC50/GI5) | References |
---|---|---|---|---|
Ferruginol | Caco-2: 24.3 µg/mL; MCF-7: 48.4 µg/mL; Vero: 0.0002 µg/mL | Low SI (8.23 × 10−6, and 4.13 × 10−6), highly toxic to Vero, moderate to MCF-7 | MCF-7: 12 µM; AGS: 27 µM; HepG2: 68.5 µM; PC3: 55 µM; colon (COL-2): ED50 > 20 µg/mL | [39,42,43,44] |
Royleanone | Caco-2, MCF-7: LC50 > 200 µg/mL | SI < 0.15, inactive | Prostate (LNCaP): 12.5 µM; AGS: 18 µM; breast MDA-MB-231: >250 µM; colon HCT116: variable | [45,46,47] |
Combretastatin A-1 | Vero: 15.3 µg/mL; MCF-7: 72.0 µg/mL | Moderately cytotoxic to MCF-7, highly toxic to Vero | Potent tubulin inhibitor IC50: 1.1 µM; BXPC-3: GI50 = 4.4 µg/mL; DU-145: GI50 = 0.017 µg/mL; P388: GI50 = 0.3 µg/mL; KM20L2: GI50 = 0.061 µg/mL; NCI-H460: GI50 = 0.74 µg/mL | [48,49,50] |
Stigmasterol | Caco-2, MCF-7: >200 µg/mL; Vero: 137 µg/mL | Low SI, inactive | SW620: IC50 = 2.79 µM; Caco-2: 132.5 ± 33.3 µM; MCF-7 and HCC70: >500 µM | [51] |
Combretastatin A-1-2′-O-β-D-glucopyranoside 5a and Combretastatin B-1-2′-O-β-D-glucopyranoside 5b | MCF-7: 44.1 µg/mL; Vero: 83.8 µg/mL | SI = 1.90, selectively toxic to cancer cells | Moderate cytotoxicity; promising for selective activity in breast cancer therapy | This study |
C. glabrum DCM extract | MCF-7: 2790 µg/mL; Caco-2: 1300 µg/mL | SI: 1.54 (MCF-7), 3.31 (Caco-2) Selectively toxic to cancer cells | No prior report on MCF-7; C. villosum & C. indicum active against SW620: IC50 > 200 µg/mL | [40] |
C. nelsonii EtOAc | MCF-7: 252 µg/mL | SI = 0.46, weak cytotoxicity | C. rupicola leaf extract: IC50 = 65.9 µg/mL (MCF-7) | [41] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mabunda, K.V.; Kemboi, D.; Famuyide, I.M.; McGaw, L.J.; Mokgalaka-Fleischmann, N.S.; Tembu, V.J. Cytotoxic Activity of Chemical Constituents of Clerodendrum glabrum and Combretum nelsonii Root Extracts Against Selected Cancer Cell Lines. Plants 2025, 14, 2832. https://doi.org/10.3390/plants14182832
Mabunda KV, Kemboi D, Famuyide IM, McGaw LJ, Mokgalaka-Fleischmann NS, Tembu VJ. Cytotoxic Activity of Chemical Constituents of Clerodendrum glabrum and Combretum nelsonii Root Extracts Against Selected Cancer Cell Lines. Plants. 2025; 14(18):2832. https://doi.org/10.3390/plants14182832
Chicago/Turabian StyleMabunda, Kopelo V., Douglas Kemboi, Ibukun M. Famuyide, Lyndy J. McGaw, Ntebogeng S. Mokgalaka-Fleischmann, and Vuyelwa Jacqueline Tembu. 2025. "Cytotoxic Activity of Chemical Constituents of Clerodendrum glabrum and Combretum nelsonii Root Extracts Against Selected Cancer Cell Lines" Plants 14, no. 18: 2832. https://doi.org/10.3390/plants14182832
APA StyleMabunda, K. V., Kemboi, D., Famuyide, I. M., McGaw, L. J., Mokgalaka-Fleischmann, N. S., & Tembu, V. J. (2025). Cytotoxic Activity of Chemical Constituents of Clerodendrum glabrum and Combretum nelsonii Root Extracts Against Selected Cancer Cell Lines. Plants, 14(18), 2832. https://doi.org/10.3390/plants14182832