Network Pharmacology, Molecular Docking and Molecular Dynamics Studies to Predict the Molecular Targets and Mechanisms of Action of Melissa officinalis Phytoconstituents in Type-2 Diabetes Mellitus
Abstract
1. Introduction
2. Results
2.1. Compound Mining and Ranking
2.2. Compound- and Disease-Associated Targets
2.3. Network Construction and Analyses
2.3.1. Protein–Protein Interaction (PPI) Network
2.3.2. Compound–Target (CT) Network
2.3.3. Target–Pathway (TP) Network
2.4. Gene Ontology and Enrichment Analysis
2.5. Molecular Docking
2.6. Molecular Dynamics (MD) Simulations
3. Discussion
4. Limitation of the Study and Conclusions
5. Materials and Methods
5.1. Compounds Mining
5.2. Ranking of Mined Compounds
5.3. Compound- and Disease-Associated Targets
5.4. Network Construction and Analyses
5.4.1. Protein–Protein Interaction (PPI) Network
5.4.2. Compound–Target (CT) Network
5.4.3. Target–Pathway (TP) Network
5.5. Gene Ontology and KEGG Pathway Enrichment Analysis
5.6. Molecular Docking
5.6.1. Protein Target Preparation
5.6.2. Binding/Docking Site Prediction
5.6.3. Ligand Preparation
5.6.4. Validation of Docking
5.6.5. Docking Simulations
5.7. Molecular Dynamics Studies
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ononamadu, C.J.; Alhassan, A.J.; Imam, A.A.; Ibrahim, A.; Ihegboro, G.O.; Owolarafe, A.T.; Sule, M.S. In Vitro and In Vivo Anti-Diabetic and Antioxidant Activities of Methanolic Leaf Extracts of Ocimum canum. Casp. J. Intern. Med. 2019, 10, 162–175. [Google Scholar]
- American Diabetes Association. Standards of Medical Care in Diabetes—2014. Diabetes Care 2014, 37 (Suppl. 1), S14–S80. [Google Scholar] [CrossRef] [PubMed]
- Zakir, M.; Ahuja, N.; Surksha, M.A.; Sachdev, R.; Kalariya, Y.; Nasir, M.; Kashif, M.; Shahzeen, F.; Tayyab, A.; Khan, M.S.M.; et al. Cardiovascular Complications of Diabetes: From Microvascular to Macrovascular Pathways. Cureus 2023, 15, e45835. [Google Scholar] [CrossRef] [PubMed]
- Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; et al. Global and Regional Diabetes Prevalence Estimates for 2019 and Projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th Edition. Diabetes Res. Clin. Pract. 2019, 157, 107843. [Google Scholar] [CrossRef]
- Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.N.; Mbanya, J.C.; et al. IDF Diabetes Atlas: Global, Regional and Country-Level Diabetes Prevalence Estimates for 2021 and Projections for 2045. Diabetes Res. Clin. Pract. 2022, 183, 109119. [Google Scholar] [CrossRef]
- Dahlén, A.D.; Dashi, G.; Maslov, I.; Attwood, M.M.; Jonsson, J.; Trukhan, V.; Schiöth, H.B. Trends in Antidiabetic Drug Discovery: FDA Approved Drugs, New Drugs in Clinical Trials and Global Sales. Front. Pharmacol. 2022, 12, 807548. [Google Scholar] [CrossRef]
- Ansari, P.; Akther, S.; Hannan, J.M.A.; Seidel, V.; Nujat, N.J.; Abdel-Wahab, Y.H.A. Pharmacologically Active Phytomolecules Isolated from Traditional Antidiabetic Plants and Their Therapeutic Role for the Management of Diabetes Mellitus. Molecules 2022, 27, 4278. [Google Scholar] [CrossRef]
- Ansari, P.; Samia, J.F.; Khan, J.T.; Rafi, M.R.; Rahman, M.S.; Rahman, A.B.; Abdel-Wahab, Y.H.A.; Seidel, V. Protective Effects of Medicinal Plant-Based Foods against Diabetes: A Review on Pharmacology, Phytochemistry, and Molecular Mechanisms. Nutrients 2023, 15, 3266. [Google Scholar] [CrossRef]
- Ansari, P.; Khan, J.T.; Chowdhury, S.; Reberio, A.D.; Kumar, S.; Seidel, V.; Abdel-Wahab, Y.H.A.; Flatt, P.R. Plant-Based Diets and Phytochemicals in the Management of Diabetes Mellitus and Prevention of Its Complications: A Review. Nutrients 2024, 16, 3709. [Google Scholar] [CrossRef]
- Ansari, P.; Reberio, A.D.; Ansari, N.J.; Kumar, S.; Khan, J.T.; Chowdhury, S.; Abd El-Mordy, F.M.; Hannan, J.M.A.; Flatt, P.R.; Abdel-Wahab, Y.H.A.; et al. Therapeutic Potential of Medicinal Plants and Their Phytoconstituents in Diabetes, Cancer, Infections, Cardiovascular Diseases, Inflammation and Gastrointestinal Disorders. Biomedicines 2025, 13, 454. [Google Scholar] [CrossRef]
- Tran, N.; Pham, B.; Le, L. Bioactive Compounds in Anti-Diabetic Plants: From Herbal Medicine to Modern Drug Discovery. Biology 2020, 9, 252. [Google Scholar] [CrossRef]
- Alam, S.; Sarker, M.M.R.; Sultana, T.N.; Chowdhury, M.N.R.; Rashid, M.A.; Chaity, N.I.; Zhao, C.; Xiao, J.; Hafez, E.E.; Khan, S.A.; et al. Antidiabetic Phytochemicals From Medicinal Plants: Prospective Candidates for New Drug Discovery and Development. Front. Endocrinol. 2022, 13, 800714. [Google Scholar] [CrossRef]
- Naseri, M.; Arabi Mianroodi, R.; Pakzad, Z.; Falahati, P.; Borbor, M.; Azizi, H.; Nasri, S. The Effect of Melissa officinalis L. Extract on Learning and Memory: Involvement of Hippocampal Expression of Nitric Oxide Synthase and Brain-Derived Neurotrophic Factor in Diabetic Rats. J. Ethnopharmacol. 2021, 276, 114210. [Google Scholar] [CrossRef]
- Petrisor, G.; Motelica, L.; Craciun, L.N.; Oprea, O.C.; Ficai, D.; Ficai, A. Melissa officinalis: Composition, Pharmacological Effects and Derived Release Systems—A Review. Int. J. Mol. Sci. 2022, 23, 3591. [Google Scholar] [CrossRef]
- Chung, M.J.; Cho, S.Y.; Bhuiyan, M.J.; Kim, K.H.; Lee, S.J. Anti-Diabetic Effects of Lemon Balm (Melissa officinalis) Essential Oil on Glucose- and Lipid-Regulating Enzymes in Type 2 Diabetic Mice. Br. J. Nutr. 2010, 104, 180–188. [Google Scholar] [CrossRef]
- Jandaghi, P.; Noroozi, M.; ArdFalani, H.; Alipour, M. Lemon Balm: A Promising Herbal Therapy for Patients with Borderline Hyperlipidemia—A Randomized Double-Blind Placebo-Controlled Clinical Trial. Complement. Ther. Med. 2016, 26, 136–140. [Google Scholar] [CrossRef] [PubMed]
- Asadi, A.; Shidfar, F.; Safari, M.; Malek, M.; Hosseini, A.F.; Rezazadeh, S.; Rajab, A.; Shidfar, S.; Hosseini, S. Safety and Efficacy of Melissa officinalis (Lemon Balm) on ApoA-I, Apo B, Lipid Ratio and ICAM-1 in Type 2 Diabetes Patients: A Randomized, Double-Blinded Clinical Trial. Complement. Ther. Med. 2018, 40, 83–88. [Google Scholar] [CrossRef]
- Araj-Khodaei, M.; Noorbala, A.A.; Yarani, R.; Emadi, F.; Emaratkar, E.; Faghihzadeh, S.; Parsian, Z.; Alijaniha, F.; Kamalinejad, M.; Naseri, M. A Double-Blind, Randomized Pilot Study for Comparison of Melissa officinalis L. and Lavandula angustifolia Mill. with Fluoxetine for the Treatment of Depression. BMC Complement. Med. Ther. 2020, 20, 207. [Google Scholar] [CrossRef] [PubMed]
- Safari, M.; Asadi, A.; Aryaeian, N.; Huseini, H.F.; Shidfar, F.; Jazayeri, S.; Malek, M.; Hosseini, A.F.; Hamidi, Z. The Effects of Melissa officinalis on Depression and Anxiety in Type 2 Diabetes Patients with Depression: A Randomized Double-Blinded Placebo-Controlled Clinical Trial. BMC Complement. Med. Ther. 2023, 23, 140. [Google Scholar] [CrossRef] [PubMed]
- Akhondzadeh, S.; Noroozian, M.; Mohammadi, M.; Ohadinia, S.; Jamshidi, A.H.; Khani, M. Melissa officinalis Extract in the Treatment of Patients with Mild to Moderate Alzheimer’s Disease: A Double-Blind, Randomised, Placebo-Controlled Trial. J. Neurol. Neurosurg. Psychiatry 2003, 74, 863–866. [Google Scholar] [CrossRef]
- de Sousa, A.C.; Alviano, D.S.; Blank, A.F.; Alves, P.B.; Alviano, C.S.; Gattass, C.R. Melissa officinalis L. Essential Oil: Antitumoral and Antioxidant Activities. J. Pharm. Pharmacol. 2004, 56, 677–681. [Google Scholar] [CrossRef]
- Moacă, E.A.; Farcaş, C.; Ghiţu, A.; Coricovac, D.; Popovici, R.; Cărăba-Meiţă, N.L.; Ardelean, F.; Antal, D.S.; Dehelean, C.; Avram, Ş. A Comparative Study of Melissa officinalis Leaves and Stems Ethanolic Extracts in terms of Antioxidant, Cytotoxic, and Antiproliferative Potential. Evid.-Based Complement. Altern. Med. 2018, 2018, 7860456. [Google Scholar] [CrossRef]
- Abo Hamed, A.; El-Sadaany, S.; Labib, S.; Wahdan, K. Antioxidant, Antibacterial, and Antitumor Properties of Different Extracts of Melissa Leaves and Barberry Roots. Zagazig J. Agric. Res. 2019, 46, 1149–1165. [Google Scholar] [CrossRef]
- Hasanein, P.; Riahi, H. Antinociceptive and Antihyperglycemic Effects of Melissa officinalis Essential Oil in an Experimental Model of Diabetes. Med. Princ. Pract. 2015, 24, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Shakeri, A.; Sahebkar, A.; Javadi, B. Melissa officinalis L.—A Review of Its Traditional Uses, Phytochemistry, and Pharmacology. J. Ethnopharmacol. 2016, 188, 204–228. [Google Scholar] [CrossRef] [PubMed]
- Shin, Y.; Lee, D.; Ahn, J.; Lee, M.; Shin, S.S.; Yoon, M. The Herbal Extract ALS-L1023 from Melissa officinalis Reduces Weight Gain, Elevated Glucose Levels, and β-Cell Loss in Otsuka Long-Evans Tokushima Fatty Rats. J. Ethnopharmacol. 2021, 264, 113360. [Google Scholar] [CrossRef]
- Weidner, C.; Wowro, S.J.; Freiwald, A.; Kodelja, V.; Abdel-Aziz, H.; Kelber, O.; Sauer, S. Lemon Balm Extract Causes Potent Antihyperglycemic and Antihyperlipidemic Effects in Insulin-Resistant Obese Mice. Mol. Nutr. Food Res. 2014, 58, 903–907. [Google Scholar] [CrossRef] [PubMed]
- Khodsooz, S.; Moshtaghian, J.; Eivani, M. Antihyperglycemic and Antihyperlipidemic Effects of Hydroalcoholic Extract of Melissa officinalis (Lemon Balm) in Alloxan-Induced Diabetic Rats. Physiol. Pharmacol. 2016, 20, 24–30. [Google Scholar]
- Yui, S.; Fujiwara, S.; Harada, K.; Motoike-Hamura, M.; Sakai, M.; Matsubara, S.; Miyazaki, K. Beneficial Effects of Lemon Balm Leaf Extract on In Vitro Glycation of Proteins, Arterial Stiffness, and Skin Elasticity in Healthy Adults. J. Nutr. Sci. Vitaminol. 2017, 63, 59–68. [Google Scholar] [CrossRef]
- Miroliaei, M.; Khazaei, S.; Moshkelgosha, S.; Shirvani, M. Inhibitory Effects of Lemon Balm (Melissa officinalis, L.) Extract on the Formation of Advanced Glycation End Products. Food Chem. 2011, 129, 267–271. [Google Scholar] [CrossRef]
- Kwon, Y.I.I.; Vattem, D.A.; Shetty, K. Evaluation of Clonal Herbs of Lamiaceae Species for Management of Diabetes and Hypertension. Asia Pac. J. Clin. Nutr. 2006, 15, 107. [Google Scholar]
- Nayebi, N.; Esteghamati, A.; Meysamie, A.; Khalili, N.; Kamalinejad, M.; Emtiazy, M.; Hashempur, M.H. The Effects of a Melissa officinalis L.-Based Product on Metabolic Parameters in Patients with Type 2 Diabetes Mellitus: A Randomized Double-Blinded Controlled Clinical Trial. J. Complement. Integr. Med. 2019, 16, 20180088. [Google Scholar] [CrossRef]
- Zięba, A.; Stępnicki, P.; Matosiuk, D.; Kaczor, A.A. What Are the Challenges with Multi-Targeted Drug Design for Complex Diseases? Expert Opin. Drug Discov. 2022, 17, 673–683. [Google Scholar] [CrossRef]
- Khan, S.N.; Khan, A.U. Breaking the Spell: Combating Multidrug Resistant ‘Superbugs’. Front. Microbiol. 2016, 7, 174. [Google Scholar] [CrossRef]
- Nogales, C.; Mamdouh, Z.M.; List, M.; Kiel, C.; Casas, A.I.; Schmidt, H.H.H.W. Network Pharmacology: Curing Causal Mechanisms Instead of Treating Symptoms. Trends Pharmacol. Sci. 2022, 43, 136–150. [Google Scholar] [CrossRef]
- Li, M.H.; Jin, M.H.; Hu, R.Y.; Tang, S.; Li, K.K.; Gong, X.J.; Sun, Y.S.; Wang, Y.P.; Wang, Z.; Li, W. Exploring the Mechanism of Active Components from Ginseng to Manage Diabetes Mellitus Based on Network Pharmacology and Molecular Docking. Sci. Rep. 2023, 13, 793. [Google Scholar] [CrossRef]
- Gao, F.; Niu, Y.; Sun, L.; Li, W.; Xia, H.; Zhang, Y.; Geng, S.; Guo, Z.; Lin, H.; Du, G. Integrating Network Pharmacology and Transcriptomic Validation to Investigate the Efficacy and Mechanism of Mufangji Decoction Preventing Lung Cancer. J. Ethnopharmacol. 2022, 298, 115573. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Yang, S.; Xie, G.; Pan, J.; Zhu, F. Integrating Network Pharmacology and Experimental Verification to Explore the Pharmacological Mechanisms of Aloin Against Gastric Cancer. Drug Des. Dev. Ther. 2022, 16, 1947–1961. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Tian, W.; Wang, Y.; Jin, X.; Guo, H.; Wang, Y.; Tang, Y.; Yao, X. Explore the mechanism and substance basis of Mahuang FuziXixin Decoction for the treatment of lung cancer based on network pharmacology and molecular docking. Comput. Biol. Med. 2022, 151, 106293. [Google Scholar] [CrossRef]
- Shang, L.; Wang, Y.; Li, J.; Zhou, F.; Xiao, K.; Liu, Y.; Zhang, M.; Wang, S.; Yang, S. Mechanism of Sijunzi Decoction in the treatment of colorectal cancer based on network pharmacology and experimental validation. J. Ethnopharmacol. 2023, 302, 115876. [Google Scholar] [CrossRef] [PubMed]
- Ononamadu, C.J.; Seidel, V. Exploring the Antidiabetic Potential of Salvia officinalis Using Network Pharmacology, Molecular Docking and ADME/Drug-Likeness Predictions. Plants 2024, 13, 2892. [Google Scholar] [CrossRef]
- Pan, L.; Li, Z.; Wang, Y.; Zhang, B.; Liu, G.; Liu, J. Network Pharmacology and Metabolomics Study on the Intervention of Traditional Chinese Medicine Huanglian Decoction in Rats with Type 2 Diabetes Mellitus. J. Ethnopharmacol. 2020, 258, 112842. [Google Scholar] [CrossRef]
- Li, W.; Yuan, G.; Pan, Y.; Wang, C.; Chen, H. Network Pharmacology Studies on the Bioactive Compounds and Action Mechanisms of Natural Products for the Treatment of Diabetes Mellitus: A Review. Front. Pharmacol. 2017, 8, 74. [Google Scholar] [CrossRef]
- Yin, B.; Bi, Y.M.; Fan, G.J.; Xia, Y.Q. Molecular Mechanism of the Effect of Huanglian Jiedu Decoction on Type 2 Diabetes Mellitus Based on Network Pharmacology and Molecular Docking. J. Diabetes Res. 2020, 2020, 5273914. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Huang, M.; Lin, H.; Wang, G.; Li, H. Network Pharmacology and Molecular Docking Approach to Elucidate the Mechanisms of Liuwei Dihuang Pill in Diabetic Osteoporosis. J. Orthop. Surg. Res. 2022, 17, 314. [Google Scholar] [CrossRef]
- Zhang, L.; Han, L.; Wang, X.; Wei, Y.; Zheng, J.; Zhao, L.; Tong, X. Exploring the Mechanisms Underlying the Therapeutic Effect of Salvia miltiorrhiza in Diabetic Nephropathy Using Network Pharmacology and Molecular Docking. Biosci. Rep. 2021, 41, BSR20203520. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Yang, Z.; Zhao, W.; Chen, Q.; Bai, H.; Wang, S.; Yang, L.; Bi, C.; Shi, Y.; Liu, Y. Integrated Lipidomics, Transcriptomics, and Network Pharmacology Analysis to Reveal the Mechanisms of Danggui Buxue Decoction in the Treatment of Diabetic Nephropathy in Type 2 Diabetes Mellitus. J. Ethnopharmacol. 2022, 283, 114699. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, A.; Waleed, A.; Al-Khafaji, K.; Abid, M.M.; Kadhom, M.; Alhaydary, E.; Yousif, E. Comprehensive Analysis of Anticancer Activities in Melissa officinalis Extract: Gas Chromatography Profiling, Biological Assessment, Network Pharmacology, and Molecular Docking. Lett. Appl. NanoBioSci. 2024, 14, 12. [Google Scholar]
- Coronell-Tovar, A.; Pardo, J.P.; Rodríguez-Romero, A.; Sosa-Peinado, A.; Vásquez-Bochm, L.; Cano-Sánchez, P.; Álvarez-Añorve, L.I.; González-Andrade, M. Protein tyrosine phosphatase 1B (PTP1B) function, structure, and inhibition strategies to develop antidiabetic drugs. FEBS Lett. 2024, 598, 1811–1838. [Google Scholar] [CrossRef]
- Gervois, P.; Fruchart, J.C.; Staels, B. Inflammation, dyslipidaemia, diabetes and PPARs: Pharmacological interest of dual PPARα and PPARγ agonists. Int. J. Clin. Pract. 2004, 58, 22–29. [Google Scholar] [CrossRef]
- Tan, Y.; Wang, M.; Yang, K.; Chi, T.; Liao, Z.; Wei, P. PPAR-α Modulators as Current and Potential Cancer Treatments. Front. Oncol. 2021, 11, 599995. [Google Scholar] [CrossRef]
- Safari-Alighiarloo, N.; Taghizadeh, M.; Rezaei-Tavirani, M.; Goliaei, B.; Peyvandi, A.A. Protein-protein interaction networks (PPI) and complex diseases. Gastroenterol. Hepatol. Bed Bench 2014, 7, 17–31. [Google Scholar]
- Silverbush, D.; Sharan, R. A systematic approach to orient the human protein-protein interaction network. Nat. Commun. 2019, 10, 3015. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Meher, P.K.; Rai, A.; Bhar, L.M.; Mandal, B.N. Statistical Approaches for Gene Selection, Hub Gene Identification and Module Interaction in Gene Co-Expression Network Analysis: An Application to Aluminum Stress in Soybean (Glycine max L.). PLoS ONE 2017, 12, e0169605. [Google Scholar] [CrossRef] [PubMed]
- Mahapatra, S.; Bhuyan, R.; Das, J.; Swarnkar, T. Integrated multiplex network based approach for hub gene identification in oral cancer. Heliyon 2021, 7, e07418. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Kirsch, R.; Koutrouli, M.; Nastou, K.; Mehryary, F.; Hachilif, R.; Gable, A.L.; Fang, T.; Doncheva, N.T.; Pyysalo, S.; et al. The STRING database in 2023: Protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023, 51, D638–D646. [Google Scholar] [CrossRef]
- Zhai, L.; Yang, W.; Li, D.; Zhou, W.; Cui, M.; Yao, P. Network pharmacology and molecular docking reveal the immunomodulatory mechanism of rhubarb peony decoction for the treatment of ulcerative colitis and irritable bowel syndrome. J. Pharm. Pharm. Sci. 2023, 26, 11225. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, J.; Zhang, H. Integrated bioinformatics and network pharmacology to explore the therapeutic target and molecular mechanisms of Taxus chinensis against non-small cell lung cancer. Medicine 2023, 102, e35826. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Huang, L.; Lai, Y. Network pharmacology and bioinformatics analyses identify the intersection genes and mechanism of Huang Bai for recurrent aphthous stomatitis. Int. J. Immunopathol. Pharmacol. 2022, 36, 3946320221129134. [Google Scholar] [CrossRef]
- Zhuang, Z.; Wen, J.; Zhang, L.; Zhang, M.; Zhong, X.; Chen, H.; Luo, C. Can network pharmacology identify the anti-virus and anti-inflammatory activities of Shuanghuanglian oral liquid used in Chinese medicine for respiratory tract infection? Eur. J. Integr. Med. 2020, 37, 101139. [Google Scholar] [CrossRef]
- Zhang, M.Z.; Wang, Y.; Paueksakon, P.; Harris, R.C. Epidermal growth factor receptor inhibition slows progression of diabetic nephropathy in association with a decrease in endoplasmic reticulum stress and an increase in autophagy. Diabetes 2014, 63, 2063–2072. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y. Targeting Epidermal Growth Factor Receptor for Cancer Treatment: Abolishing Both Kinase-Dependent and Kinase-Independent Functions of the Receptor. Pharmacol. Rev. 2023, 75, 1218–1232. [Google Scholar] [CrossRef]
- Taniguchi, K.; Xia, L.; Goldberg, H.J.; Lee, K.W.; Shah, A.; Stavar, L.; Masson, E.A.; Momen, A.; Shikatani, E.A.; John, R.; et al. Inhibition of Src kinase blocks high glucose-induced EGFR transactivation and collagen synthesis in mesangial cells and prevents diabetic nephropathy in mice. Diabetes 2013, 62, 3874–3886. [Google Scholar] [CrossRef]
- Dorotea, D.; Jiang, S.; Pak, E.S.; Son, J.B.; Choi, H.G.; Ahn, S.M.; Ha, H. Pan-Src kinase inhibitor treatment attenuates diabetic kidney injury via inhibition of Fyn kinase-mediated endoplasmic reticulum stress. Exp. Mol. Med. 2022, 54, 1086–1097. [Google Scholar] [CrossRef]
- Camaya, I.; Donnelly, S.; O’Brien, B. Targeting the PI3K/Akt Signaling Pathway in Pancreatic β-Cells to Enhance Their Survival and Function: An Emerging Therapeutic Strategy for Type 1 Diabetes. J. Diabetes 2022, 14, 247–260. [Google Scholar] [CrossRef] [PubMed]
- Miao, R.; Fang, X.; Wei, J.; Wu, H.; Wang, X.; Tian, J. Akt: A Potential Drug Target for Metabolic Syndrome. Front. Physiol. 2022, 13, 822333. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, H.; Liu, J. Akt activation: A potential strategy to ameliorate insulin resistance. Diabetes Res. Clin. Pract. 2019, 156, 107092. [Google Scholar] [CrossRef] [PubMed]
- Alzamil, H. Elevated Serum TNF-α Is Related to Obesity in Type 2 Diabetes Mellitus and Is Associated with Glycemic Control and Insulin Resistance. J. Obes. 2020, 2020, 5076858. [Google Scholar] [CrossRef]
- Ben-Baruch, A. Tumor Necrosis Factor α: Taking a Personalized Road in Cancer Therapy. Front. Immunol. 2022, 13, 903679. [Google Scholar] [CrossRef]
- Cooreman, M.P.; Vonghia, L.; Francque, S.M. MASLD/MASH and Type 2 Diabetes: Two Sides of the Same Coin? From Single PPAR to Pan-PPAR Agonists. Diabetes Res. Clin. Pract. 2024, 212, 111688. [Google Scholar] [CrossRef]
- Frkic, R.L.; Richter, K.; Bruning, J.B. The therapeutic potential of inhibiting PPARγ phosphorylation to treat type 2 diabetes. J. Biol. Chem. 2021, 297, 101030. [Google Scholar] [CrossRef] [PubMed]
- Karadoğan, A.H.; Arikoglu, H.; Göktürk, F.; İşçioğlu, F.; İpekçi, S.H. PIK3R1 gene polymorphisms are associated with type 2 diabetes and related features in the Turkish population. Adv. Clin. Exp. Med. 2018, 27, 921–927. [Google Scholar] [CrossRef] [PubMed]
- Tsay, A.; Wang, J.C. The Role of PIK3R1 in Metabolic Function and Insulin Sensitivity. Int. J. Mol. Sci. 2023, 24, 12665. [Google Scholar] [CrossRef] [PubMed]
- Sethi, A.; Foulds, N.; Ehtisham, S.; Ahmed, S.H.; Houghton, J.; Colclough, K.; Didi, M.; Flanagan, S.E.; Senniappan, S. Heterozygous Insulin Receptor (INSR) Mutation Associated with Neonatal Hyperinsulinemic Hypoglycaemia and Familial Diabetes Mellitus: Case Series. J. Clin. Res. Pediatr. Endocrinol. 2020, 12, 420–426. [Google Scholar] [CrossRef]
- Ke, B.; Zhao, Z.; Ye, X.; Gao, Z.; Manganiello, V.; Wu, B.; Ye, J. Inactivation of NF-κB p65 (RelA) in Liver Improves Insulin Sensitivity and Inhibits cAMP/PKA Pathway. Diabetes 2015, 64, 3355–3362. [Google Scholar] [CrossRef]
- Zammit, N.W.; Wong, Y.Y.; Walters, S.N.; Warren, J.; Barry, S.C.; Grey, S.T. RELA governs a network of islet-specific metabolic genes necessary for beta cell function. Diabetologia 2023, 66, 1516–1531. [Google Scholar] [CrossRef]
- Maqbool, M.; Hoda, N. GSK3 Inhibitors in the Therapeutic Development of Diabetes, Cancer and Neurodegeneration: Past, Present and Future. Curr. Pharm. Des. 2017, 23, 4332–4350. [Google Scholar] [CrossRef]
- Teli, D.M.; Gajjar, A.K. Glycogen synthase kinase-3: A potential target for diabetes. Bioorg. Med. Chem. 2023, 92, 117406. [Google Scholar] [CrossRef]
- Sirico, M.; D’Angelo, A.; Gianni, C.; Casadei, C.; Merloni, F.; De Giorgi, U. Current State and Future Challenges for PI3K Inhibitors in Cancer Therapy. Cancers 2023, 15, 703. [Google Scholar] [CrossRef]
- Maffei, A.; Lembo, G.; Carnevale, D. PI3Kinases in Diabetes Mellitus and Its Related Complications. Int. J. Mol. Sci. 2018, 19, 4098. [Google Scholar] [CrossRef]
- Li, S.; Lin, Z.; Xiao, H.; Xu, Z.; Li, C.; Zeng, J.; Xie, X.; Deng, L.; Huang, H. Fyn deficiency inhibits oxidative stress by decreasing c-Cbl-mediated ubiquitination of Sirt1 to attenuate diabetic renal fibrosis. Metabolism 2023, 139, 155378. [Google Scholar] [CrossRef]
- Huang, X.; Liu, G.; Guo, J.; Su, Z. The PI3K/AKT pathway in obesity and type 2 diabetes. Int. J. Biol. Sci. 2018, 14, 1483–1496. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Chi, X.; Wang, Y.; Setrerrahmane, S.; Xie, W.; Xu, H. Trends in insulin resistance: Insights into mechanisms and therapeutic strategy. Signal Transduct. Target. Ther. 2022, 7, 216. [Google Scholar] [CrossRef]
- Pessin, J.E.; Saltiel, A.R. Signaling Pathways in Insulin Action: Molecular Targets of Insulin Resistance. J. Clin. Investig. 2000, 106, 165–169. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.; Sun, X.; Lin, Z.; Yang, Y.; Zhang, M.; Xu, Z.; Liu, P.; Liu, Z.; Huang, H. Gentiopicroside targets PAQR3 to activate the PI3K/AKT signaling pathway and ameliorate disordered glucose and lipid metabolism. Acta Pharm. Sin. B 2022, 12, 2887–2904. [Google Scholar] [CrossRef]
- Zhao, X.; An, X.; Yang, C.; Sun, W.; Ji, H.; Lian, F. The crucial role and mechanism of insulin resistance in metabolic disease. Front. Endocrinol. 2023, 14, 1149239. [Google Scholar] [CrossRef]
- Yan, J.; Wang, C.; Jin, Y.; Meng, Q.; Liu, Q.; Liu, Z.; Liu, K.; Sun, H. Catalpol ameliorates hepatic insulin resistance in type 2 diabetes through acting on AMPK/NOX4/PI3K/AKT pathway. Pharmacol. Res. 2018, 130, 466–480. [Google Scholar] [CrossRef]
- Chen, Y.; Qian, Q.; Yu, J. Carbenoxolone ameliorates insulin sensitivity in obese mice induced by high fat diet via regulating the IκB-α/NF-κB pathway and NLRP3 inflammasome. Biomed. Pharmacother. 2019, 115, 108868. [Google Scholar] [CrossRef]
- Yap, K.H.; Yee, G.S.; Candasamy, M.; Tan, S.C.; Md, S.; Abdul Majeed, A.B.; Bhattamisra, S.K. Catalpol ameliorates insulin sensitivity and mitochondrial respiration in skeletal muscle of type-2 diabetic mice through insulin signaling pathway and AMPK/SIRT1/PGC-1α/PPAR-γ activation. Biomolecules 2020, 10, 1360. [Google Scholar] [CrossRef]
- Kobayashi, N.; Ueki, K.; Okazaki, Y.; Iwane, A.; Kubota, N.; Ohsugi, M.; Awazawa, M.; Kobayashi, M.; Sasako, T.; Kaneko, K.; et al. Blockade of class IB phosphoinositide-3 kinase ameliorates obesity-induced inflammation and insulin resistance. Proc. Natl. Acad. Sci. USA 2011, 108, 5753–5758. [Google Scholar] [CrossRef] [PubMed]
- Zatterale, F.; Longo, M.; Naderi, J.; Raciti, G.A.; Desiderio, A.; Miele, C.; Beguinot, F. Chronic adipose tissue inflammation linking obesity to insulin resistance and type 2 diabetes. Front. Physiol. 2020, 10, 505887. [Google Scholar] [CrossRef]
- Okdahl, T.; Wegeberg, A.M.; Pociot, F.; Brock, B.; Størling, J.; Brock, C. Low-grade inflammation in type 2 diabetes: A cross-sectional study from a Danish diabetes outpatient clinic. BMJ Open 2022, 12, e062188. [Google Scholar] [CrossRef]
- Kim, J.K. Endothelial nuclear factor κB in obesity and aging: Is endothelial nuclear factor κB a master regulator of inflammation and insulin resistance? Circulation 2012, 125, 1081–1083. [Google Scholar] [CrossRef]
- Cheng, H.C.; Tsai, S.H.; Liu, H.W. Activation of inflammatory pathways in PBMCs linking type 2 diabetes in older adults without obesity. Exp. Gerontol. 2022, 163, 111779. [Google Scholar] [CrossRef] [PubMed]
- Mantravadi, S.; George, M.; Brensinger, C.; Du, M.; Baker, J.F.; Ogdie, A. Impact of tumor necrosis factor inhibitors and methotrexate on diabetes mellitus among patients with inflammatory arthritis. BMC Rheumatol. 2020, 4, 39. [Google Scholar] [CrossRef]
- Lillegraven, S.; Greenberg, J.D.; Reed, G.W.; Saunders, K.; Curtis, J.R.; Harrold, L.; Hochberg, M.C.; Pappas, D.A.; Kremer, J.M.; Solomon, D.H. Immunosuppressive treatment and the risk of diabetes in rheumatoid arthritis. PLoS ONE 2019, 14, e0210459. [Google Scholar] [CrossRef]
- Nabben, M.; Neumann, D. GSK-3 Inhibitors: Anti-Diabetic Treatment Associated with Cardiac Risk? Editorial to: “The Impact of Chronic Glycogen Synthase Kinase-3 Inhibition on Remodeling of Normal and Pre-Diabetic Rat Hearts.” by Barbara Huisamen et al. Cardiovasc Drugs Ther. 2016, 30, 233–235. [Google Scholar] [CrossRef] [PubMed]
- Kaidanovich-Beilin, O.; Eldar-Finkelman, H. Long-term treatment with novel glycogen synthase kinase-3 inhibitor improves glucose homeostasis in ob/ob mice: Molecular characterization in liver and muscle. J. Pharmacol. Exp. Ther. 2006, 316, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Sato, H.; Nagashima, K.; Ogura, M.; Sato, Y.; Tahara, Y.; Ogura, K.; Yamano, G.; Sugizaki, K.; Fujita, N.; Tatsuoka, H.; et al. Src Regulates Insulin Secretion and Glucose Metabolism by Influencing Subcellular Localization of Glucokinase in Pancreatic β-Cells. J. Diabetes Investig. 2016, 7, 171–178. [Google Scholar] [CrossRef]
- Lv, Z.; Hu, M.; Ren, X.; Fan, M.; Zhen, J.; Chen, L.; Lin, J.; Ding, N.; Wang, Q.; Wang, R. Fyn Mediates High Glucose-Induced Actin Cytoskeleton Reorganization of Podocytes via Promoting ROCK Activation In Vitro. J. Diabetes Res. 2016, 2016, 5671803. [Google Scholar] [CrossRef]
- Wang, J.; Zhuang, S. Src Family Kinases in Chronic Kidney Disease. Am. J. Physiol. Renal Physiol. 2017, 313, F721–F728. [Google Scholar] [CrossRef]
- Song, Z.; Fusco, J.; Zimmerman, R.; Fischbach, S.; Chen, C.; Ricks, D.M.; Prasadan, K.; Shiota, C.; Xiao, X.; Gittes, G.K. Epidermal Growth Factor Receptor Signaling Regulates β Cell Proliferation in Adult Mice. J. Biol. Chem. 2016, 291, 22630–22637. [Google Scholar] [CrossRef]
- Tawengi, M.; Al-Dali, Y.; Tawengi, A.; Benter, I.F.; Akhtar, S. Targeting the Epidermal Growth Factor Receptor (EGFR/ErbB) for the Potential Treatment of Renal Pathologies. Front. Pharmacol. 2024, 15, 1394997. [Google Scholar] [CrossRef]
- Li, Z.; Li, Y.; Overstreet, J.M.; Chung, S.; Niu, A.; Fan, X.; Wang, S.; Wang, Y.; Zhang, M.Z.; Harris, R.C. Inhibition of Epidermal Growth Factor Receptor Activation Is Associated with Improved Diabetic Nephropathy and Insulin Resistance in Type 2 Diabetes. Diabetes 2018, 67, 1847–1857. [Google Scholar] [CrossRef]
- Balakumar, P.; Mahadevan, N.; Sambathkumar, R. A Contemporary Overview of PPARα/γ Dual Agonists for the Management of Diabetic Dyslipidemia. Curr. Mol. Pharmacol. 2019, 12, 195–201. [Google Scholar] [CrossRef]
- Małodobra-Mazur, M.; Ołdakowska, M.; Dobosz, T. Exploring PPAR Gamma and PPAR Alpha’s Regulation Role in Metabolism via Epigenetics Mechanism. Biomolecules 2024, 14, 1445. [Google Scholar] [CrossRef]
- Alnuaimi, S.; Reljic, T.; Abdulla, F.S.; Memon, H.; Al-Ali, S.; Smith, T.; Serdarevic, F.; Velija Asimi, Z.; Kumar, A.; Semiz, S. PPAR Agonists as Add-On Treatment with Metformin in Management of Type 2 Diabetes: A Systematic Review and Meta-Analysis. Sci. Rep. 2024, 14, 8809. [Google Scholar] [CrossRef]
- Liu, H.; Guan, H.; Tan, X.; Jiang, Y.; Li, F.; Sun-Waterhouse, D.; Li, D. Enhanced alleviation of insulin resistance via the IRS-1/Akt/FOXO1 pathway by combining quercetin and EGCG and involving miR-27a-3p and miR-96-5p. Free Radic. Biol. Med. 2022, 181, 105–117. [Google Scholar] [CrossRef] [PubMed]
- Abdelsalam, S.S.; Korashy, H.M.; Zeidan, A.; Agouni, A. The role of protein tyrosine phosphatase (PTP)-1B in cardiovascular disease and its interplay with insulin resistance. Biomolecules 2019, 9, 286. [Google Scholar] [CrossRef] [PubMed]
- Galic, S.; Hauser, C.; Kahn, B.B.; Haj, F.G.; Neel, B.G.; Tonks, N.K.; Tiganis, T. Coordinated regulation of insulin signaling by the protein tyrosine phosphatases PTP1B and TCPTP. Mol. Cell. Biol. 2005, 25, 819–829. [Google Scholar] [CrossRef] [PubMed]
- Hartsock, A.; Nelson, W.J. Adherens and tight junctions: Structure, function and connections to the actin cytoskeleton. Biochim. Biophys. Acta 2008, 1778, 660–669. [Google Scholar] [CrossRef]
- Haidari, M.; Zhang, W.; Willerson, J.T.; Dixon, R.A. Disruption of endothelial adherens junctions by high glucose is mediated by protein kinase C-β-dependent vascular endothelial cadherin tyrosine phosphorylation. Cardiovasc. Diabetol. 2014, 13, 105. [Google Scholar] [CrossRef]
- Collares-Buzato, C.B.; Carvalho, C.P. Is type 2 diabetes mellitus another intercellular junction-related disorder? Exp. Biol. Med. 2022, 247, 743–755. [Google Scholar] [CrossRef]
- Bertocchi, C.; Vaman Rao, M.; Zaidel-Bar, R. Regulation of adherens junction dynamics by phosphorylation switches. J. Signal Transduct. 2012, 125295. [Google Scholar] [CrossRef]
- Morigny, P.; Houssier, M.; Mouisel, E.; Langin, D. Adipocyte lipolysis and insulin resistance. Biochimie 2016, 125, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Sagar, R.C.; Ajjan, R.A.; Naseem, K.M. Non-Traditional Pathways for Platelet Pathophysiology in Diabetes: Implications for Future Therapeutic Targets. Int. J. Mol. Sci. 2022, 23, 4973. [Google Scholar] [CrossRef] [PubMed]
- Theofilis, P.; Sagris, M.; Oikonomou, E.; Antonopoulos, A.S.; Tsioufis, K.; Tousoulis, D. Factors Associated with Platelet Activation-Recent Pharmaceutical Approaches. Int. J. Mol. Sci. 2022, 23, 3301. [Google Scholar] [CrossRef]
- Tenconi, P.E.; Bermúdez, V.; Oresti, G.M.; Giusto, N.M.; Salvador, G.A.; Mateos, M.V. High glucose-induced phospholipase D activity in retinal pigment epithelium cells: New insights into the molecular mechanisms of diabetic retinopathy. Exp. Eye Res. 2019, 184, 243–257. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.N.; Park, S.Y.; Han, J.S. Role of phospholipase D1 in glucose-induced insulin secretion in pancreatic beta cells. Exp. Mol. Med. 2010, 42, 456–464. [Google Scholar] [CrossRef]
- Babenko, N.A.; Kharchenko, V.S. Modulation of Insulin Sensitivity of Hepatocytes by the Pharmacological Downregulation of Phospholipase D. Int. J. Endocrinol. 2015, 2015, 794838. [Google Scholar] [CrossRef]
- Park, S.H.; Kang, J.H.; Bae, Y.S. The role and regulation of phospholipase D in metabolic disorders. Adv. Biol. Regul. 2024, 91, 100988. [Google Scholar] [CrossRef]
- Kim, J.H.; Park, J.M.; Yea, K.; Kim, H.W.; Suh, P.G.; Ryu, S.H. Phospholipase D1 mediates AMP-activated protein kinase signalling for glucose uptake. PLoS ONE 2010, 5, e9600. [Google Scholar]
- McLarty, R.P.; Alloyce, J.P.; Chitema, G.G.; Msuya, L.J. Glycemic Control, Associated Factors, Acute Complications of Type 1 Diabetes Mellitus in Children, Adolescents and Young Adults in Tanzania. Endocrinol. Diabetes Metab. 2020, 4, e00200. [Google Scholar] [CrossRef]
- Khalid, M.; Petroianu, G.; Adem, A. Advanced glycation end products and diabetes mellitus: Mechanisms and perspectives. Biomolecules 2022, 12, 542. [Google Scholar] [CrossRef] [PubMed]
- Rhee, S.Y.; Kim, Y.S. The role of advanced glycation end products in diabetic vascular complications. Diabetes Metab. J. 2018, 42, 188–195. [Google Scholar] [CrossRef]
- Taguchi, K.; Fukami, K. RAGE signaling regulates the progression of diabetic complications. Front. Pharmacol. 2023, 14, 1128872. [Google Scholar] [CrossRef] [PubMed]
- Rogacka, D.; Rachubik, P.; Audzeyenka, I.; Szrejder, M.; Kulesza, T.; Myślińska, D.; Angielski, S.; Piwkowska, A. Enhancement of cGMP-dependent pathway activity ameliorates hyperglycemia-induced decrease in SIRT1-AMPK activity in podocytes: Impact on glucose uptake and podocyte function. Biochim. Biophys. Acta Mol. Cell Res. 2022, 1869, 119362. [Google Scholar] [CrossRef]
- Bergandi, L.; Silvagno, F.; Russo, I.; Riganti, C.; Anfossi, G.; Aldieri, E.; Ghigo, D.; Trovati, M.; Bosia, A. Insulin stimulates glucose transport via nitric oxide/cyclic GMP pathway in human vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 2003, 23, 2215–2221. [Google Scholar] [CrossRef]
- Frigolet, M.E.; Thomas, G.; Beard, K.; Lu, H.; Liu, L.; Fantus, I.G. The bradykinin-cGMP-PKG pathway augments insulin sensitivity via upregulation of MAPK phosphatase-5 and inhibition of JNK. Am. J. Physiol. Endocrinol. Metab. 2017, 313, E321–E334. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Wang, Y.; Jiang, Y.; Zhang, C.; Wang, H.; Sha, W.; Chen, L.; Lei, T.; Liu, L. Berberine inhibits gluconeogenesis in spontaneous diabetic rats by regulating the AKT/MAPK/NO/cGMP/PKG signaling pathway. Mol. Cell. Biochem. 2023, 478, 2013–2027. [Google Scholar] [CrossRef]
- Huang, X.L.; He, Y.; Ji, L.L.; Wang, K.Y.; Wang, Y.L.; Chen, D.F.; Geng, Y.; OuYang, P.; Lai, W.M. Hepatoprotective potential of isoquercitrin against type 2 diabetes-induced hepatic injury in rats. Oncotarget 2017, 8, 101545–101559. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, S.T.; Yin, Y.C.; Xing, S.; Li, W.N.; Fu, X.Q. Hypoglycemic effect and mechanism of isoquercitrin as an inhibitor of dipeptidyl peptidase-4 in type 2 diabetic mice. RSC Adv. 2018, 8, 14967–14974. [Google Scholar] [CrossRef]
- Resham, K.; Khare, P.; Bishnoi, M.; Sharma, S.S. Neuroprotective effects of isoquercitrin in diabetic neuropathy via Wnt/β-catenin signaling pathway inhibition. BioFactors 2020, 46, 411–420. [Google Scholar] [CrossRef]
- Ansari, P.; Flatt, P.R.; Harriott, P.; Abdel-Wahab, Y.H.A. Anti-hyperglycaemic and Insulin-Releasing Effects of Camellia sinensis Leaves and Isolation and Characterisation of Active Compounds. Br. J. Nutr. 2021, 126, 1149–1163. [Google Scholar] [CrossRef] [PubMed]
- Ansari, P.; Choudhury, S.T.; Seidel, V.; Rahman, A.B.; Aziz, M.A.; Richi, A.E.; Rahman, A.; Jafrin, U.H.; Hannan, J.M.A.; Abdel-Wahab, Y.H.A. Therapeutic Potential of Quercetin in the Management of Type-2 Diabetes Mellitus. Life 2022, 12, 1146. [Google Scholar] [CrossRef] [PubMed]
- Bule, M.; Abdurahman, A.; Nikfar, S.; Abdollahi, M.; Amini, M. Antidiabetic effect of quercetin: A systematic review and meta-analysis of animal studies. Food Chem. Toxicol. 2019, 125, 494–502. [Google Scholar] [CrossRef]
- Dhanya, R. Quercetin for Managing Type 2 Diabetes and Its Complications: An Insight into Multitarget Therapy. Biomed. Pharmacother. 2022, 146, 112560. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Jin, D.; Chen, X. Luteolin enhances insulin sensitivity via activation of PPARγ transcriptional activity in adipocytes. J. Nutr. Biochem. 2010, 21, 941–947. [Google Scholar] [CrossRef]
- Zang, Y.; Igarashi, K.; Li, Y. Anti-diabetic effects of luteolin and luteolin-7-O-glucoside on KK-A(y) mice. Biosci. Biotechnol. Biochem. 2016, 80, 1580–1586. [Google Scholar] [CrossRef]
- Zhou, J.; Yoshitomi, H.; Liu, T.; Zhou, B.; Sun, W.; Qin, L.; Guo, X.; Huang, L.; Wu, L.; Gao, M. Isoquercitrin activates the AMP-activated protein kinase (AMPK) signal pathway in rat H4IIE cells. BMC Complement. Altern. Med. 2014, 14, 42. [Google Scholar]
- Kim, S.H.; Yun, C.; Kwon, D.; Lee, Y.H.; Kwak, J.H.; Jung, Y.S. Effect of Isoquercitrin on Free Fatty Acid-Induced Lipid Accumulation in HepG2 Cells. Molecules 2023, 28, 1476. [Google Scholar] [CrossRef]
- Jin, H.L.; Feng, X.Y.; Feng, S.L.; Dai, L.; Zhu, W.T.; Yuan, Z.W. Isoquercitrin attenuates the progression of non-alcoholic steatohepatitis in mice by modulating galectin-3-mediated insulin resistance and lipid metabolism. Phytomedicine 2024, 123, 155188. [Google Scholar] [CrossRef]
- Li, Y.; Lu, S.; Meng, J.; Hu, C.; Huang, G. Study on Isoquercitrin Relieving Insulin Resistance of RNF6 Overexpressing db/db Mice. Front. Med. Sci. Res. 2024, 6, 6–12. [Google Scholar]
- Li, L.; Zhang, X.H.; Liu, G.R.; Liu, C.; Dong, Y.M. Isoquercitrin suppresses the expression of histamine and pro-inflammatory cytokines by inhibiting the activation of MAP Kinases and NF-κB in human KU812 cells. Chin. J. Nat. Med. 2016, 14, 407–412. [Google Scholar] [CrossRef]
- Kim, E.H.; Shim, Y.Y.; Lee, H.I.; Lee, S.; Reaney, M.J.T.; Chung, M.J. Astragalin and Isoquercitrin Isolated from Aster scaber Suppress LPS-Induced Neuroinflammatory Responses in Microglia and Mice. Foods 2022, 11, 1505. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.H.; Park, H.J.; Jung, H.Y.; Kang, I.K.; Kim, B.O.; Cho, Y.J. Isoquercitrin isolated from newly bred Green ball apple peel in lipopolysaccharide-stimulated macrophage regulates NF-κB inflammatory pathways and cytokines. 3 Biotech 2022, 12, 100. [Google Scholar] [CrossRef] [PubMed]
- Salinas-Arellano, E.; Pérez-Vásquez, A.; Rivero-Cruz, I.; Torres-Colin, R.; González-Andrade, M.; Rangel-Grimaldo, M.; Mata, R. Flavonoids and Terpenoids with PTP-1B Inhibitory Properties from the Infusion of Salvia amarissima Ortega. Molecules 2020, 25, 3530. [Google Scholar] [CrossRef]
- Eid, H.M.; Martineau, L.C.; Saleem, A.; Muhammad, A.; Vallerand, D.; Benhaddou-Andaloussi, A.; Nistor, L.; Afshar, A.; Arnason, J.T.; Haddad, P.S. Stimulation of AMP-activated protein kinase and enhancement of basal glucose uptake in muscle cells by quercetin and quercetin glycosides, active principles of the antidiabetic medicinal plant Vaccinium vitis-idaea. Mol. Nutr. Food Res. 2010, 54, 991–1003. [Google Scholar] [CrossRef] [PubMed]
- Deqiu, Z.; Kang, L.; Jiali, Y.; Baolin, L.; Gaolin, L. Luteolin inhibits inflammatory response and improves insulin sensitivity in the endothelium. Biochimie 2011, 93, 506–512. [Google Scholar] [CrossRef]
- Dhanya, R.; Arya, A.D.; Nisha, P.; Jayamurthy, P. Quercetin, a Lead Compound against Type 2 Diabetes Ameliorates Glucose Uptake via AMPK Pathway in Skeletal Muscle Cell Line. Front. Pharmacol. 2017, 8, 336. [Google Scholar] [CrossRef]
- Baek, Y.; Lee, M.N.; Wu, D.; Pae, M. Luteolin reduces adipose tissue macrophage inflammation and insulin resistance in postmenopausal obese mice. J. Nutr. Biochem. 2019, 71, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.L.; Rupasinghe, S.G.; Stefani, F.; Schuler, M.A.; Gonzalez de Mejia, E. Citrus flavonoids luteolin, apigenin, and quercetin inhibit glycogen synthase kinase-3β enzymatic activity by lowering the interaction energy within the binding cavity. J. Med. Food 2011, 14, 325–333. [Google Scholar] [CrossRef]
- Predes, D.; Maia, L.A.; Matias, I.; Araujo, H.P.M.; Soares, C.; Barros-Aragão, F.G.Q.; Oliveira, L.F.S.; Reis, R.R.; Amado, N.G.; Simas, A.B.C.; et al. The Flavonol Quercitrin Hinders GSK3 Activity and Potentiates the Wnt/β-Catenin Signaling Pathway. Int. J. Mol. Sci. 2022, 23, 12078. [Google Scholar] [CrossRef]
- Suh, K.S.; Chon, S.; Choi, E.M. Luteolin alleviates methylglyoxal-induced cytotoxicity in osteoblastic MC3T3-E1 cells. Cytotechnology 2016, 68, 2539–2552. [Google Scholar] [CrossRef]
- Bhuiyan, M.N.; Mitsuhashi, S.; Sigetomi, K.; Ubukata, M. Quercetin inhibits advanced glycation end product formation via chelating metal ions, trapping methylglyoxal, and trapping reactive oxygen species. Biosci. Biotechnol. Biochem. 2017, 81, 882–890. [Google Scholar] [CrossRef]
- Chekalina, N.; Burmak, Y.; Petrov, Y.; Borisova, Z.; Manusha, Y.; Kazakov, Y.; Kaidashev, I. Quercetin reduces the transcriptional activity of NF-κB in stable coronary artery disease. Indian Heart J. 2018, 70, 593–597. [Google Scholar] [CrossRef]
- Castro, A.J.; Frederico, M.J.; Cazarolli, L.H.; Mendes, C.P.; Bretanha, L.C.; Schmidt, É.C.; Bouzon, Z.L.; de Medeiros Pinto, V.A.; da Fonte Ramos, C.; Pizzolatti, M.G.; et al. The mechanism of action of ursolic acid as insulin secretagogue and insulinomimetic is mediated by cross-talk between calcium and kinases to regulate glucose balance. Biochim. Biophys. Acta 2015, 1850, 51–61. [Google Scholar] [CrossRef]
- Wu, P.P.; Zhang, K.; Lu, Y.J.; He, P.; Zhao, S.Q. In vitro and in vivo evaluation of the antidiabetic activity of ursolic acid derivatives. Eur. J. Med. Chem. 2014, 80, 502–508. [Google Scholar] [CrossRef]
- Jung, S.H.; Ha, Y.J.; Shim, E.K.; Choi, S.Y.; Jin, J.L.; Yun-Choi, H.S.; Lee, J.R. Insulin-mimetic and insulin-sensitizing activities of a pentacyclic triterpenoid insulin receptor activator. Biochem. J. 2007, 403, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Castellano, J.M.; Guinda, A.; Delgado, T.; Rada, M.; Cayuela, J.A. Biochemical basis of the antidiabetic activity of oleanolic acid and related pentacyclic triterpenes. Diabetes 2013, 62, 1791–1799. [Google Scholar] [CrossRef] [PubMed]
- Indu, S.; Vijayalakshmi, P.; Selvaraj, J.; Rajalakshmi, M. Novel Triterpenoids from Cassia fistula Stem Bark Depreciates STZ-Induced Detrimental Changes in IRS-1/Akt-Mediated Insulin Signaling Mechanisms in Type-1 Diabetic Rats. Molecules 2021, 26, 6812. [Google Scholar] [CrossRef]
- He, Y.; Li, W.; Li, Y.; Zhang, S.; Wang, Y.; Sun, C. Ursolic acid increases glucose uptake through the PI3K signaling pathway in adipocytes. PLoS ONE 2014, 9, e110711. [Google Scholar] [CrossRef]
- Li, Y.; Wang, J.; Gu, T.; Yamahara, J.; Li, Y. Oleanolic acid supplement attenuates liquid fructose-induced adipose tissue insulin resistance through the insulin receptor substrate-1/phosphatidylinositol 3-kinase/Akt signaling pathway in rats. Toxicol. Appl. Pharmacol. 2014, 277, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Chen, Y.; Abdelkader, D.; Hassan, W.; Sun, H.; Liu, J. Combination therapy with oleanolic acid and metformin as a synergistic treatment for diabetes. J. Diabetes Res. 2015, 2015, 973287. [Google Scholar] [CrossRef]
- Savova, M.S.; Vasileva, L.V.; Mladenova, S.G.; Amirova, K.M.; Ferrante, C.; Orlando, G.; Wabitsch, M.; Georgiev, M.I. Ziziphus jujuba Mill. leaf extract restrains adipogenesis by targeting PI3K/AKT signaling pathway. Biomed. Pharmacother. 2021, 141, 111934. [Google Scholar] [CrossRef]
- Nazaruk, J.; Borzym-Kluczyk, M. The role of triterpenes in the management of diabetes mellitus and its complications. Phytochem. Rev. 2015, 14, 675–690. [Google Scholar] [CrossRef]
- Zhao, B.T.; Nguyen, D.H.; Le, D.D.; Choi, J.S.; Min, B.S.; Woo, M.H. Protein tyrosine phosphatase 1B inhibitors from natural sources. Arch. Pharm. Res. 2018, 41, 130–161. [Google Scholar] [CrossRef]
- Meng, X.Y.; Zhang, H.X.; Mezei, M.; Cui, M. Molecular docking: A powerful approach for structure-based drug discovery. Curr. Comput. Aided Drug Des. 2011, 7, 146–157. [Google Scholar] [CrossRef] [PubMed]
- Pinzi, L.; Rastelli, G. Molecular docking: Shifting paradigms in drug discovery. Int. J. Mol. Sci. 2019, 20, 4331. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, N.; Krishnan, K.; Connors, C.R.; Choy, M.S.; Page, R.; Peti, W.; Van Aelst, L.; Shea, S.D.; Tonks, N.K. PTP1B inhibition suggests a therapeutic strategy for Rett syndrome. J. Clin. Investig. 2015, 125, 3163–3177. [Google Scholar] [CrossRef]
- Liu, R.; Mathieu, C.; Berthelet, J.; Zhang, W.; Dupret, J.M.; Rodrigues Lima, F. Human Protein Tyrosine Phosphatase 1B (PTP1B): From structure to clinical inhibitor perspectives. Int. J. Mol. Sci. 2022, 23, 7027. [Google Scholar] [CrossRef]
- Escalante, C.R.; Shen, L.; Thanos, D.; Aggarwal, A.K. Structure of NF-kappaB p50/p65 heterodimer bound to the PRDII DNA element from the interferon-beta promoter. Structure 2002, 10, 383–391. [Google Scholar] [CrossRef]
- Kamata, S.; Oyama, T.; Saito, K.; Honda, A.; Yamamoto, Y.; Suda, K.; Ishikawa, R.; Itoh, T.; Watanabe, Y.; Shibata, T.; et al. PPARα ligand-binding domain structures with endogenous fatty acids and fibrates. iScience 2020, 23, 101727. [Google Scholar] [CrossRef]
- De Meyts, P.; Gu, J.L.; Shymko, R.M.; Kaplan, B.E.; Bell, G.I.; Whittaker, J. Identification of a ligand-binding region of the human insulin receptor encoded by the second exon of the gene. Mol. Endocrinol. 1990, 4, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Clackson, T.; Wells, J.A. A hot spot of binding energy in a hormone-receptor interface. Science 1995, 267, 383–386. [Google Scholar] [CrossRef] [PubMed]
- Kumar, H.B.; Manandhar, S.; Rathi, E.; Kabekkodu, S.P.; Mehta, C.H.; Nayak, U.Y.; Kini, S.G.; Pai, K.S.R. Identification of potential Akt activators: A ligand and structure-based computational approach. Mol. Divers. 2024, 28, 1485–1503. [Google Scholar] [CrossRef] [PubMed]
- Guerguer, F.Z.; Bouribab, A.; Karim, E.M.; Khedraoui, M.; Amegrissi, F.; Raouf, Y.S.; Samadi, A.; Chtita, S.; Singh, P. Moroccan natural products for multitarget-based treatment of Alzheimer’s disease: A computational study. PLoS ONE 2025, 20, e0313411. [Google Scholar] [CrossRef] [PubMed]
- Cheung, L.W.; Mills, G.B. Targeting therapeutic liabilities engendered by PIK3R1 mutations for cancer treatment. Pharmacogenomics 2016, 17, 297–307. [Google Scholar] [CrossRef]
- Ito, Y.; Vogt, P.K.; Hart, J.R. Domain analysis reveals striking functional differences between the regulatory subunits of phosphatidylinositol 3-kinase (PI3K), p85α and p85β. Oncotarget 2017, 8, 55863–55876. [Google Scholar] [CrossRef]
- Durrant, J.D.; McCammon, J.A. Molecular dynamics simulations and drug discovery. BMC Biol. 2011, 9, 71. [Google Scholar] [CrossRef]
- Sargsyan, K.; Grauffel, C.; Lim, C. How Molecular Size Impacts RMSD Applications in Molecular Dynamics Simulations. J. Chem. Theory Comput. 2017, 13, 1518–1524. [Google Scholar] [CrossRef]
- Zaki, A.A.; Ashour, A.; Elhady, S.S.; Darwish, K.M.; Al-Karmalawy, A.A. Calendulaglycoside A showing potential activity against SARS-CoV-2 main protease: Molecular docking, molecular dynamics, and SAR studies. J. Tradit. Complement. Med. 2022, 12, 16–34. [Google Scholar] [CrossRef]
- Lobanov, M.I.; Bogatyreva, N.S.; Galzitskaia, O.V. Radius of gyration is indicator of compactness of protein structure. Mol. Biol. 2008, 42, 701–706. [Google Scholar] [CrossRef]
- Sarker, D.K.; Ray, P.R.; Rouf, R.; Shilpi, J.A.; Uddin, S.J. In Silico Molecular Docking and Dynamic Investigations of Bioactive Phytoconstituents from Fenugreek Seeds as a Potent Drug against DPP-IV Enzyme. ACS Food Sci. Technol. 2023, 3, 1423–1439. [Google Scholar] [CrossRef]
- Wang, E.; Sun, H.; Wang, J.; Wang, Z.; Liu, H.; Zhang, J.Z.H.; Hou, T. End-point binding free energy calculation with MM/PBSA and MM/GBSA: Strategies and applications in drug design. Chem. Rev. 2019, 119, 9478–9508. [Google Scholar] [CrossRef]
- Homeyer, N.; Gohlke, H. Free Energy Calculations by the Molecular Mechanics Poisson-Boltzmann Surface Area Method. Mol. Inform. 2012, 31, 114–122. [Google Scholar] [CrossRef]
- Sakuludomkan, C.; Khowsathit, J.; Thippraphan, P.; Koonrungsesomboon, N.; Takuathung, M.N.; Taychaworaditsakul, W. Network Pharmacology and Molecular Docking-Based Approach to Explore Potential Bioactive Compounds from Kaempferia parviflora on Chemokine Signaling Pathways in the Treatment of Psoriasis Disease. Int. J. Mol. Sci. 2025, 26, 5243. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wu, F.; Yang, N.; Zhan, X.; Liao, J.; Mai, S.; Huang, Z. In silico Methods for Identification of Potential Therapeutic Targets. Interdiscip Sci. 2022, 14, 285–310. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [PubMed]
- Ugwor, E.I.; James, A.S.; Amuzat, A.I.; Ezenandu, E.O.; Ugbaja, V.C.; Ugbaja, R.N. Network pharmacology-based elucidation of bioactive compounds in propolis and putative underlying mechanisms against type-2 diabetes mellitus. Pharmacol. Res. Mod. Chin. Med. 2022, 5, 100183. [Google Scholar] [CrossRef]
- Zhang, J.; Li, L. Network Pharmacology Prediction and Molecular Docking-Based Strategy to Explore the Potential Mechanism of Radix Astragali Against Hypopharyngeal Carcinoma. Sci. Rep. 2024, 14, 516. [Google Scholar] [CrossRef]
- Zhang, W.Y.; Shi, J.Y.; Chen, Y. Molecular mechanism prediction analysis of Xiaozheng decoction in the treatment of bladder cancer based on network pharmacology. Drug Comb. Ther. 2020, 2, 185–197. [Google Scholar] [CrossRef]
- Patil, V.S.; Harish, D.R.; Vetrivel, U.; Roy, S.; Deshpande, S.H.; Hegde, H.V. Hepatitis C Virus NS3/4A Inhibition and Host Immunomodulation by Tannins from Terminalia chebula: A Structural Perspective. Molecules 2022, 27, 1076. [Google Scholar] [CrossRef]
- Sun, J.; Liu, B.; Wang, R.; Yuan, Y.; Wang, J.; Zhang, L. Computation-Based Discovery of Potential Targets for Rheumatoid Arthritis and Related Molecular Screening and Mechanism Analysis of Traditional Chinese Medicine. Dis. Markers 2022, 2022, 1905077. [Google Scholar] [CrossRef]
- Alamri, M.A. Bioinformatics and network pharmacology-based study to elucidate the multi-target pharmacological mechanism of the indigenous plants of Medina valley in treating HCV-related hepatocellular carcinoma. Saudi Pharm. J. 2023, 31, 1125–1138. [Google Scholar] [CrossRef] [PubMed]
- El-Atawneh, S.; Goldblum, A. Activity Models of Key GPCR Families in the Central Nervous System: A Tool for Many Purposes. J. Chem. Inf. Model. 2023, 63, 3248–3262. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Chen, B.; Chen, S.; Lin, M.; Chen, Y.; Jin, S.; Zhang, Y. Applications of network pharmacology in traditional Chinese medicine research. Evid. Based Complement. Alternat. Med. 2020, 2020, 1646905. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, A.; Yadav, P.H.; Mukunthan, K.S. Unveiling Potential Targeted Therapeutic Opportunities for Co-Overexpressed Targeting Protein for Xklp2 and Aurora-A Kinase in Lung Adenocarcinoma. Mol. Biotechnol. 2023, 66, 2792–2803. [Google Scholar] [CrossRef]
- Miltonprabu, S.; Tomczyk, M.; Skalicka-Woźniak, K.; Rastrelli, L.; Daglia, M.; Nabavi, S.F.; Alavian, S.M.; Nabavi, S.M. Hepatoprotective Effect of Quercetin: From Chemistry to Medicine. Food Chem. Toxicol. 2017, 108 Pt B, 365–374. [Google Scholar] [CrossRef]
- Patora, J.; Klimek, B. Flavonoids from Lemon Balm (Melissa officinalis L., Lamiaceae). Acta Pol. Pharm. 2002, 59, 139–143. [Google Scholar] [PubMed]
- Mulkens, A.; Kapetanidis, I. Flavonoids from Leaves of Melissa officinalis L. (Lamiaceae). Pharm. Acta Helv. 1987, 62, 19–22. [Google Scholar]
- Dimitris, D.; Ekaterina-Michaela, T.; Christina, K.; Ioannis, S.; Ioanna, S.K.; Aggeliki, L.; Sophia, H.; Michael, R.; Helen, S. Melissa officinalis ssp. altissima Extracts: A Therapeutic Approach Targeting Psoriasis in Mice. J. Ethnopharmacol. 2020, 246, 112208. [Google Scholar] [CrossRef]
- Ramírez, D.; Caballero, J. Is It Reliable to Take the Molecular Docking Top Scoring Position as the Best Solution without Considering Available Structural Data? Molecules 2018, 23, 1038. [Google Scholar] [CrossRef]
- Zieniuk, B.; Ononamadu, C.J.; Jasińska, K.; Wierzchowska, K.; Fabiszewska, A. Lipase-Catalyzed Synthesis, Antioxidant Activity, Antimicrobial Properties and Molecular Docking Studies of Butyl Dihydrocaffeate. Molecules 2022, 27, 5024. [Google Scholar] [CrossRef]
- Angelova, M.; Alov, P.; Tsakovska, I.; Jereva, D.; Lessigiarska, I.; Atanassov, K.; Pajeva, I.; Pencheva, T. Pairwise Performance Comparison of Docking Scoring Functions: Computational Approach Using InterCriteria Analysis. Molecules 2025, 30, 2777. [Google Scholar] [CrossRef]
- Nissink, J.W. Simple size-independent measure of ligand efficiency. J. Chem. Inf. Model. 2009, 49, 1617–1622. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Rauscher, S.; Nawrocki, G.; Ran, T.; Feig, M.; de Groot, B.L.; Grubmüller, H.; MacKerell, A.D. CHARMM36: An improved force field for folded and intrinsically disordered proteins. Biophys. J. 2017, 112, 175a–176a. [Google Scholar] [CrossRef]
- Bugnon, M.; Goullieux, M.; Rohrig, U.F.; Perez, M.A.; Daina, A.; Michielin, O.; Zoete, V. SwissParam 2023: A modern web-based tool for efficient small molecule parametrization. J. Chem Inform. Model. 2023, 63, 6469–6475. [Google Scholar] [CrossRef] [PubMed]
- Bussi, G.; Donadio, D.; Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007, 126, 014101. [Google Scholar] [CrossRef]
- Bourougaa, L.; Ouassaf, M.; Alhatlani, B.Y. Clinical informatics and molecular hybridization of established clinical DPP-4 inhibitors to generate next-level diabetes type 2 drugs. Chem. Pap. 2024, 78, 8485–8503. [Google Scholar] [CrossRef]
Pathways Enriched | Gene Count | Fold Enrichment |
---|---|---|
Metabolic pathways | 45 | 1.79 |
Pathways in cancer | 26 | 3.00 |
Alzheimer disease | 16 | 2.56 |
Chemical carcinogenesis—receptor activation | 15 | 4.34 |
Chemical carcinogenesis—reactive oxygen species | 15 | 4.13 |
Steroid hormone biosynthesis | 13 | 12.86 |
Insulin resistance | 13 | 7.38 * |
Neutrophil extracellular trap formation | 13 | 4.17 |
Proteoglycans in cancer | 13 | 3.89 |
Lipid and atherosclerosis | 13 | 3.71 |
Adherens junction | 12 | 7.91 * |
Phospholipase D signaling pathway | 12 | 4.97 |
Platelet activation | 11 | 5.44 |
Diabetic cardiomyopathy | 11 | 3.32 |
Focal adhesion | 11 | 3.32 |
Viral carcinogenesis | 11 | 3.31 |
Prostate cancer | 10 | 6.32 |
Relaxin signaling pathway | 10 | 4.75 |
Hepatitis C | 10 | 3.88 |
cGMP-PKG signaling pathway | 10 | 3.67 |
Ovarian steroidogenesis | 9 | 10.82 |
EGFR tyrosine kinase inhibitor resistance | 9 | 6.99 |
Endocrine resistance | 9 | 5.63 |
Thyroid hormone signaling pathway | 9 | 4.56 |
Yersinia infection | 9 | 4.03 |
Fluid shear stress and atherosclerosis | 9 | 3.97 |
Prolactin signaling pathway | 8 | 7.01 |
PD-L1 expression and PD-1 checkpoint pathway in cancer | 8 | 5.51 |
AGE-RAGE signaling pathway in diabetic complications | 8 | 4.91 |
Progesterone-mediated oocyte maturation | 8 | 4.81 |
C-type lectin receptor signaling pathway | 8 | 4.72 |
HIF-1 signaling pathway | 8 | 4.50 |
Regulation of lipolysis in adipocytes | 7 | 7.40 * |
Arachidonic acid metabolism | 7 | 7.04 |
Fc epsilon RI signaling pathway | 7 | 6.31 |
Nitrogen metabolism | 6 | 21.65 |
Linoleic acid metabolism | 6 | 12.27 |
Antifolate resistance | 5 | 10.22 |
Compound | Docking Score | SILE Value | Interacting Amino Acid Residues |
---|---|---|---|
Isoquercitrin | −8.5301 | 2.99 | (TYR272, GLN79, SER205, THR211, ILE290)a, (GLY294, TYR272, THR82)b, TRP80g, (LEU264, LYS268, VAL270, LEU210, LEU264)e |
Luteolin | −6.3282 | 2.54 | (SER205, THR211)a, ASP292c, (LEU264, TRP80)g, (LEU210, LYS268, VAL270)e |
Quercetin | −6.6767 | 2.64 | (THR211, ILE290)a, ASP292c, TRP80g, (LEU264, LYS268, VAL270, LEU210)e |
Ursolic acid | −6.8246 | 2.39 | ARG273a, (LEU264, VAL270, ILE84, TRP80)e |
2β-hydroxy-ursolic acid | −6.6854 | 2.32 | TRP80g, (VAL270, TRP80)e |
Oleanolic acid | −6.7658 | 2.37 | TYR272b, (VAL270, ILE84)e |
PubChem ID: 10196499 (Control) | −10.1961 | 3.32 | SER205a, (ASP274, ARG273, ASP292)c, (ILE84, TRP80)g, (LEU264, VAL270, LYS268, LEU210)e |
Compound | Docking Score | SILE Value | Interacting Amino Acid Residues |
---|---|---|---|
Isoquercitrin | −6.538 | 2.29 | (ARG19, THR48, ASP16)a, (SER18, SER40, THR48)b, GLU20c, (SER18, ARG19)g |
Luteolin | −5.2333 | 2.10 | (ARG19, HIS44)a, (ARG37, SER40)d, ARG19e |
Quercetin | −4.7769 | 1.89 | (ARG19, THR48)a,(ARG37, SER40)d, ARG19e |
Ursolic acid | −4.8283 | 1.69 | LYS61B, HIS44g, (LEU59, HIS44)e |
2β-hydroxy-ursolic acid | −5.3987 | 1.87 | (ARG37, THR48)a, LEU59e |
Oleanolic acid | −4.9497 | 1.73 | (SER40, THR41)a, (ARG19, LEU59, HIS44)e |
PubChem ID: 312145 (Control) | −5.4397 | 1.94 | SER40a, (SER40, THR48)b, HIS44g |
Compound | Docking Score | SILE Value | Interacting Amino Acid Residues |
---|---|---|---|
Isoquercitrin | −6.868 | 2.41 | (SER85, ARG114, GLN249, ARG331, ASP250, GLN328, CYS284)a, ARG86c, PRO286e |
Luteolin | −5.913 | 2.37 | (GLN249, CYS284, SER85)a, PRO286b, ARG331c |
Quercetin | −5.928 | 2.35 | (GLN249, ASP250, CYS284, SER85)a, PRO286b, ARG331c |
Ursolic acid | −6.543 | 2.29 | LYS283, ARG331)a, (PRO286, ARG331 ILE285, LYS283)e |
2β-hydroxy-ursolic acid | −6.941 | 2.41 | (LYS283, PRO286, ARG331, ILE285)e |
Oleanolic acid | −6.441 | 2.26 | (ARG86, GLN328)a, (PRO286, HIS275)e |
PubChem ID: 445421 (Control) | −4.521 | 2.34 | (CYS284, HIS247)a |
Compound | Docking Score | Sile Value | Interacting Amino Acid Residues |
---|---|---|---|
Isoquercitrin | −8.1937 | 2.87 | (LYS745, MET793, ASN842, ASP855, MET793)a, THR854b, LEU844g, (VAL726, LEU718, VAL726, ALA743)e |
Luteolin | −6.1340 | 2.46 | (MET793, MET1002, ASP855, ASN842)a, LEU718g, MET1002g, (LEU844, VAL726, LEU844)e. |
Quercetin | −6.6886 | 2.65 | (MET793, ASP855)a, THR854d, (LEU718, LEU844)g, (LEU718, VAL726, ALA743, LEU844, VAL726, ALA743, LYS745)e |
Ursolic acid | −6.2386 | 2.19 | ASN842a, ARG841b, (CYS797, ARG841, CYS797, VAL726)e |
2β-hydroxy-ursolic acid | −5.5089 | 1.91 | ASP800a, ASP800b, (VAL726, VAL726, ALA743, ALA743, ARG841, LEU844, LEU799, ARG841, LEU718, LEU844, LEU792, MET793, LEU844)e. |
Oleanolic acid | −6.0885 | 2.13 | (ASN842, LEU718)a, ARG841b, (CYS797, ARG841, CYS797, VAL726)e. |
PubChem ID: 24880017 (Control) | −10.1349 | 3.55 | (THR790, MET793)a, (ALA743, LEU788, GLN791)b, (CYS775, ARG776)h, LYS745c, (THR854, ASP855)d, (THR790, LEU844, PHE856)g, (VAL726, MET766, LEU777, LYS745, LEU788,VAL726, ALA743, LYS745, ALA743)e |
Compound | Docking Score | Sile Value | Interacting Amino Acid Residues |
---|---|---|---|
Isoquercitrin | −6.778 | 2.37 | (LYS37, TYR36, GLY44)a, (ARG41, GLN119, ARG41, GLN119, SER42)b |
Luteolin | −5.168 | 2.07 | (CYS120, LYS122, ASP185)a, TYR36d, (CYS120, LYS123, LEU154)e |
Quercetin | −5.322 | 2.11 | GLU89a, ARG124c, GLN119d, (LYS37, LYS122)e |
Ursolic acid | −4.913 | 1.72 | TYR36a, (LYS123, ALA188, PRO189, LYS122, LYS123)e |
2β-hydroxy-ursolic acid | −4.514 | 1.57 | LYS123e |
Oleanolic acid | −4.758 | 1.67 | (ALA188, PRO189, LYS123)e |
PubChem ID: 9881652 (Control) | −5.715 | 2.36 | (TYR36, LYS122)a, (LYS123, ASP185, LEU154)b, LYS123e |
Compound | Docking Score | Sile Value | Interacting Amino Acid Residues |
---|---|---|---|
Isoquercitrin | −6.830 | 2.39 | VAL135a, PRO136a, ILE62e |
Luteolin | −5.900 | 2.37 | (VAL135, ARG141, ASP133)a, LEU188g, (ALA83, VAL110, CYS199)e |
Quercetin | −5.875 | 2.32 | (VAL135, GLU97)a, (CYS199, ASP200)d, (LEU132, LEU188, MET101)g, (VAL70, CYS199, ALA83, LYS85, VAL110)e |
Ursolic acid | −6.616 | 2.32 | PRO136a, PRO136b, (VAL70, CYS199, ILE62, ARG141, VAL70, LYS85, PHE67)e |
2β-hydroxy-ursolic acid | −6.540 | 2.27 | (VAL70, ALA83, LEU188, CYS199, LEU132)e |
Oleanolic acid | −5.917 | 2.07 | (VAL70, ALA83, LEU188, CYS199, LYS85, LEU132)e |
PubChem ID: 56643097 (Control) | −8.139 | 2.61 | VAL135a, ASP133b, CYS199d, (LEU188, PHE67)g, (VAL70, LYS85, ILE62, ALA83, VAL110)e |
Compound | Docking Score | Sile Value | Interacting Amino Acid Residues |
---|---|---|---|
Isoquercitrin | −7.123 | 2.50 | ASP48a, ASP48b, LYS120c, TYR46d, (TYR46, PHE182)g, (ALA217, LYS120)e |
Luteolin | −5.370 | 2.15 | ARG221a, (LYS120, TYR46)d, (PHE182, ALA217, LYS120)g |
Quercetin | −5.955 | 2.36 | ARG221a, LYS120c, TYR46d, PHE182g, (ALA217, LYS120)e |
Ursolic acid | −4.246 | 1.49 | (TYR20, TYR46)e |
2β-hydroxy-ursolic acid | −4.613 | 1.60 | ARG24a, GLY259b, MET258e |
Oleanolic acid | −4.095 | 1.43 | LYS120b, (TYR46, PHE182)e |
PubChem ID: 91826021 (Control) | −9.003 | 3.43 | (ARG221, ARG221, ASP181)c, (PHE182, SER216, ALA217, ILE219, GLY220, ARG221, ARG221, ASP48)a, (ALA217, PHE182)e |
Compound | Docking Score | Sile Value | Interacting Amino Acid Residues |
---|---|---|---|
Isoquercitrin | −7.805 | 2.73 | CYS275a, (CYS276, THR279, TYR334)b, (VAL332, TYR334)g, (CYS275, CYS276, ILE339, ALA333)e |
Luteolin | −5.935 | 2.38 | THR279a, ILE272b, (CYS275, CYS276)d, VAL332g, (ILE272, VAL332, ILE241, ALA250, CYS275, VAL332, ALA333)e |
Quercetin | −6.136 | 2.43 | (CYS276, CYS276, THR279)a, (THR279, TYR334, TYR334)b, (VAL332, TYR334, CYS275)g, (CYS276, CYS275, CYS276, VAL332, ILE339, VAL332)e |
Ursolic acid | −4.570 | 1.60 | (THR279, CYS275)a, (LEU254, CYS275, CYS275, CYS275, VAL332, ALA333, TYR334, LEU254, LEU254, CYS275, ILE241, VAL332)e |
2β-hydroxy-ursolic acid | −4.108 | 1.43 | (CYS275, CYS278, VAL332, ALA333, CYS278)e |
Oleanolic acid | −3.365 | 1.18 | GLU251a, (ALA250, LEU254, CYS275, CYS276, VAL332, ALA333, ILE339, MET330, CYS276, MET330, MET355, CYS276, LEU254)e |
PubChem ID: 60151560 (Control) | −8.173 | 2.92 | (SER280, TYR314, TYR464)a, SER280b, CYS276d, (VAL332, MET355)g, (CYS276, MET330, LEU344, MET355, VAL444, CYS278, PHE273, TYR334, HIS440, VAL332, ILE339, CYS275, ALA333)e |
Target Protein | Interacting Residues | Distance (Å) | Category | Type |
---|---|---|---|---|
ATK1 (PDBID:3O69) | TYR272 | 2.03 | Hydrogen bond | Conventional hydrogen bond |
GLN79 | 2.35 | Hydrogen bond | Conventional hydrogen bond | |
SER205 | 2.05 | Hydrogen bond | Conventional hydrogen bond | |
THR211 | 2.94 | Hydrogen bond | Conventional hydrogen bond | |
ILE290 | 2.20 | Hydrogen bond | Conventional hydrogen bond | |
GLY294 | 3.77 | Hydrogen bond | Carbon hydrogen bond | |
TYR272 | 2.85 | Hydrogen bond | Carbon hydrogen bond | |
TYR272 | 2.86 | Hydrogen bond | Carbon hydrogen bond | |
THR82 | 2.67 | Hydrogen bond | Carbon hydrogen bond | |
TRP80 | 3.94 | Hydrophobic | Pi-Pi stacked | |
TRP80 | 4.28 | Hydrophobic | Pi-Pi stacked | |
TRP80 | 4.81 | Hydrophobic | Pi-Pi stacked | |
TRP80 | 3.97 | Hydrophobic | Pi-Pi stacked | |
LEU264 | 5.41 | Hydrophobic | Pi-Alkyl | |
VAL270 | 4.68 | Hydrophobic | Pi-Alkyl | |
LYS268 | 4.40 | Hydrophobic | Pi-Alkyl | |
VAL270 | 4.97 | Hydrophobic | Pi-Alkyl | |
LEU210 | 4.73 | Hydrophobic | Pi-Alkyl | |
LEU264 | 5.03 | Hydrophobic | Pi-Alkyl | |
PIK3R1 (PDBID:2IUG) | ARG19 | 3.01 | Hydrogen bond | Conventional hydrogen bond |
ARG19 | 3.11 | Hydrogen bond | Conventional hydrogen bond | |
THR48 | 2.54 | Hydrogen bond | Conventional hydrogen bond | |
ASP16 | 2.20 | Hydrogen bond | Conventional hydrogen bond | |
ASP16 | 1.72 | Hydrogen bond | Conventional hydrogen bond | |
SER18 | 3.44 | Hydrogen bond | Carbon hydrogen bond | |
SER40 | 2.48 | Hydrogen bond | Carbon hydrogen bond | |
SER40 | 2.67 | Hydrogen bond | Carbon hydrogen bond | |
THR48 | 3.02 | Hydrogen bond | Carbon hydrogen bond | |
THR48 | 3.08 | Hydrogen bond | Carbon hydrogen bond | |
GLU20 | 3.81 | Electrostatic | Pi-Anion | |
SER18 | 3.82 | Hydrophobic | Pi-Sigma | |
ARG19 | 4.50 | Hydrophobic | Pi-Alkyl | |
INSR (PDBID:6PXW) | SER85 | 2.99 | Hydrogen bond | Conventional hydrogen bond |
ARG114 | 3.02 | Hydrogen bond | Conventional hydrogen bond | |
GLN249 | 2.99 | Hydrogen bond | Conventional hydrogen bond | |
ARG331 | 2.73 | Hydrogen bond | Conventional hydrogen bond | |
ARG331 | 2.97 | Hydrogen bond | Conventional hydrogen bond | |
ASP250 | 1.94 | Hydrogen bond | Conventional hydrogen bond | |
ASP250 | 1.93 | Hydrogen bond | Conventional hydrogen bond | |
GLN328 | 2.53 | Hydrogen bond | Conventional hydrogen bond | |
CYS284 | 1.93 | Hydrogen bond | Conventional hydrogen bond | |
CYS284 | 2.24 | Hydrogen bond | Conventional hydrogen bond | |
SER85 | 2.86 | Hydrogen bond | Carbon hydrogen bond | |
ASP250 | 2.64 | Hydrogen bond | Carbon hydrogen bond | |
ARG86 | 3.50 | Electrostatic | Pi-Cation | |
ARG86 | 3.84 | Electrostatic | Pi-Cation | |
PRO286 | 5.17 | Hydrophobic | Pi-Alkyl |
Target Protein | Interacting Residues | Distance (Å) | Category | Type |
---|---|---|---|---|
EGFR (PDBID:2RGP) | LYS745 | 3.31 | Hydrogen bond | Conventional hydrogen bond |
MET793 | 3.07 | Hydrogen bond | Conventional hydrogen bond | |
ASN842 | 2.73 | Hydrogen bond | Conventional hydrogen bond | |
ASP855 | 2.48 | Hydrogen bond | Conventional hydrogen bond | |
MET793 | 2.31 | Hydrogen bond | Conventional hydrogen bond | |
THR854 | 2.81 | Hydrogen bond | Carbon hydrogen bond | |
LEU844 | 3.73 | Hydrophobic | Pi-Sigma | |
LEU844 | 4.00 | Hydrophobic | Pi-Sigma | |
VAL726 | 4.73 | Hydrophobic | Pi-Alkyl | |
LEU718 | 5.23 | Hydrophobic | Pi-Alkyl | |
VAL726 | 5.23 | Hydrophobic | Pi-Alkyl | |
ALA743 | 4.53 | Hydrophobic | Pi-Alkyl | |
NF-κB p65 (PDBID:1NFI) | LYS37 | 2.23 | Hydrogen bond | Conventional hydrogen bond |
TYR36 | 2.17 | Hydrogen bond | Conventional hydrogen bond | |
GLY44 | 2.71 | Hydrogen bond | Conventional hydrogen bond | |
GLY44 | 2.17 | Hydrogen bond | Conventional hydrogen bond | |
ARG41 | 2.31 | Hydrogen bond | Carbon hydrogen bond | |
GLN119 | 2.38 | Hydrogen bond | Carbon hydrogen bond | |
ARG41 | 2.60 | Hydrogen bond | Carbon hydrogen bond | |
GLN119 | 2.67 | Hydrogen bond | Carbon hydrogen bond | |
SER42 | 2.83 | Hydrogen bond | Carbon hydrogen bond | |
GSK3B (PDBID:4AFJ) | VAL135 | 2.70 | Hydrogen bond | Conventional hydrogen bond |
PRO136 | 1.77 | Hydrogen bond | Conventional hydrogen bond | |
ILE62 | 4.76 | Hydrophobic | Pi-Alkyl | |
PTP1B (PDBID:4Y14I) | ASP48 | 3.03 | Hydrogen bond | Conventional hydrogen bond |
ASP48 | 2.62 | Hydrogen bond | Carbon hydrogen bond | |
ASP48 | 2.31 | Hydrogen bond | Carbon hydrogen bond | |
LYS120 | 3.67 | Electrostatic | Pi-cation | |
TYR46 | 4.03 | Hydrogen bond | Pi-donor hydrogen bond | |
TYR46 | 4.78 | Hydrophobic | Pi-Pi stacked | |
PHE182 | 4.41 | Hydrophobic | Pi-Pi stacked | |
PHE182 | 4.00 | Hydrophobic | Pi-Pi stacked | |
ALA217 | 4.58 | Hydrophobic | Pi-alkyl | |
ALA217 | 4.14 | Hydrophobic | Pi-alkyl | |
LYS120 | 5.44 | Hydrophobic | Pi-alkyl | |
PPARα (PDBID:6LXC) | CYS275 | 2.57 | Hydrogen bond | Conventional hydrogen bond |
CYS276 | 3.48 | Hydrogen bond; other | Pi-donor hydrogen bond; Pi-Sulfur | |
THR279 | 2.98 | Hydrogen bond | Pi-donor hydrogen bond | |
TYR334 | 3.97 | Hydrogen bond | Pi-donor hydrogen bond | |
VAL332 | 3.68 | Hydrophobic | Pi-Sigma | |
VAL332 | 3.92 | Hydrophobic | Pi-Sigma | |
TYR334 | 4.93 | Hydrophobic | Pi-Pi T-shaped | |
CYS275 | 4.81 | Hydrophobic | Pi-Alkyl | |
CYS276 | 5.12 | Hydrophobic | Pi-Alkyl | |
ILE339 | 5.13 | Hydrophobic | Pi-Alkyl | |
VAL332 | 5.04 | Hydrophobic | Pi-Alkyl | |
ALA333 | 4.87 | Hydrophobic | Pi-Alkyl |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ononamadu, C.J.; Ahmed, Z.B.; Seidel, V. Network Pharmacology, Molecular Docking and Molecular Dynamics Studies to Predict the Molecular Targets and Mechanisms of Action of Melissa officinalis Phytoconstituents in Type-2 Diabetes Mellitus. Plants 2025, 14, 2828. https://doi.org/10.3390/plants14182828
Ononamadu CJ, Ahmed ZB, Seidel V. Network Pharmacology, Molecular Docking and Molecular Dynamics Studies to Predict the Molecular Targets and Mechanisms of Action of Melissa officinalis Phytoconstituents in Type-2 Diabetes Mellitus. Plants. 2025; 14(18):2828. https://doi.org/10.3390/plants14182828
Chicago/Turabian StyleOnonamadu, Chimaobi J., Ziyad Ben Ahmed, and Veronique Seidel. 2025. "Network Pharmacology, Molecular Docking and Molecular Dynamics Studies to Predict the Molecular Targets and Mechanisms of Action of Melissa officinalis Phytoconstituents in Type-2 Diabetes Mellitus" Plants 14, no. 18: 2828. https://doi.org/10.3390/plants14182828
APA StyleOnonamadu, C. J., Ahmed, Z. B., & Seidel, V. (2025). Network Pharmacology, Molecular Docking and Molecular Dynamics Studies to Predict the Molecular Targets and Mechanisms of Action of Melissa officinalis Phytoconstituents in Type-2 Diabetes Mellitus. Plants, 14(18), 2828. https://doi.org/10.3390/plants14182828