Multi-Transcripts and Expressions of Trypsin Inhibitor and α-Amylase Inhibitor Genes of Sengon (Falcataria falcata) Against Xystrocera festiva Stem Borer Infestation
Abstract
1. Introduction
2. Results
2.1. Contigs Exploration and Phylogenetic Analysis
2.2. Comparison of Transcriptomes and Genome Draft
2.3. Differentially Expressed Gene Analysis and Real Time-Polymerase Chain Reaction
3. Discussion
4. Materials and Methods
4.1. Trypsin Inhibitor and α-Amylase Inhibitor Sequences Alignment and Analysis
4.2. Whole Genome Sequencing (WGS) Analysis
4.3. Differentially Expressed Gene (DEG) Analysis
4.4. Primer Design for Gene Expression Analysis Using Real Time-Polymerase Chain Reaction (RT-PCR)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Orwa, C.; Mutua, A.; Kindt, R.; Jamnadass, R.; Anthony, S. Albizia Cinensis. Agroforestree Database: A Tree Reference and Selection Guide, version 4.0. 2009. Available online: https://apps.worldagroforestry.org/treedb2/speciesprofile.php/Spid=618?Spid=1787 (accessed on 7 November 2020).
- Siregar, U.J.; Rachmi, A.; Massijaya, M.Y.; Ishibashi, N.; Ando, K. Economic analysis of sengon (Paraserianthes falcataria) community forest plantation, a fast growing species in East Java, Indonesia. For. Policy Econ. 2007, 9, 822–829. [Google Scholar] [CrossRef]
- Statistics Indonesia. Statistics of Forestry Production 2018; Statistics Indonesia: Jakarta, Indonesia, 2019. [Google Scholar]
- Husaeni, E.A. Xystrocera festiva thoms, (cerambycidae, coleoptera): Biology and Control in Sengon Plantation; IPB Press: Bogor, Indonesia, 2019. [Google Scholar]
- Husaeni, E.A.; Haneda, N.F. Infestation of Xystrocera festiva in Paraserianthes falcataria plantation in East Java, Indonesia. J. Trop. For. Sci. 2010, 22, 397–402. [Google Scholar]
- Supriatna, A.H.; Haneda, N.F.; Wahyudi, I. Population distribution, damage percentage, and damage level due to Boktor in Sengon: Effect of age, diameter, and tree height. J. Silvikultur Trop. 2017, 8, 79–87. [Google Scholar] [CrossRef]
- Karan, M.; Evans, D.S.; Reilly, D.; Schulte, K.; Wright, C.; Innes, D.; Holton, T.A.; Nikles, D.G.; Dickinson, G.R. Rapid microsatellite marker development for African mahogany (Khaya senegalensis, Meliaceae) using next-generation sequencing and assessment of its intra-specific genetic diversity. Mol. Ecol. Resour. 2012, 12, 344–353. [Google Scholar] [CrossRef]
- Haneda, N.F.; Ichtisinii, A.; Siregar, U.; Istikorini, Y.; Lestari, A. Chemical Component of Sengon Tree Digested Xystrocera festiva (Coleoptera: Cerambycidae) Larvae. In Proceedings of the 3rd KOBI Congress, International and National Conferences (KOBICINC 2020), Online, 24–25 November 2021; Volume 14, pp. 292–295. [Google Scholar] [CrossRef]
- Lazarević, J.; Janković-Tomanić, M. Dietary and phylogenetic correlates of digestive trypsin activity in insect pests. Entomol. Exp. Appl. 2015, 157, 123–151. [Google Scholar] [CrossRef]
- Da Lage, J.-L. The Amylases of Insects. Int. J. Insect Sci. 2018, 10, 117954331880478. [Google Scholar] [CrossRef]
- Zverlov, V.V.; Höll, W.; Schwarz, W.H. Enzymes for digestion of cellulose and other polysaccharides in the gut of longhorn beetle larvae, Rhagium inquisitor L. (Col., Cerambycidae). Int. Biodeterior. Biodegrad. 2003, 51, 175–179. [Google Scholar] [CrossRef]
- Lončar, N.; Vujčić, Z.; Božić, N.; Ivanović, J.; Nenadović, V. Purification and properties of trypsin-like enzyme from the midgut of Morimus funereus (coleoptera, cerambycidae) larvae. Arch. Insect Biochem. Physiol. 2010, 74, 232–246. [Google Scholar] [CrossRef]
- Siregar, U.J.; Haneda, N.F.; Flowrensia, L. Correlation of Enzyme Inhibitor Activity in Sengon with Boktor Larval Growth on Artificial Diet. J. Silvikultur Trop. 2011, 3, 101–109. [Google Scholar]
- Sakaguchi, H.; Suzuki, M.G. Drosophila melanogaster larvae control amylase secretion according to the hardness of food. Front. Physiol. 2013, 4, 200. [Google Scholar] [CrossRef]
- Azad, R.K.; Thakur, D.R. Trypsin and chymotrypsin activity in developmental stages of Acanthoscelides obtectus (SAY) and screening Phaseolus vulgaris cultivars for inhibitory effect on bovine pancreatic proteases. Indian J. Entomol. 2024. [Google Scholar] [CrossRef]
- Sánchez-Hernández, C.; Martínez-Gallardo, N.; Guerrero-Rangel, A.; Valdés-Rodríguez, S.; Délano-Frier, J. Trypsin and α-amylase inhibitors are differentially induced in leaves of amaranth (Amaranthus hypochondriacus) in response to biotic and abiotic stress. Physiol. Plant. 2004, 122, 254–264. [Google Scholar] [CrossRef]
- Siregar, U.J.; Situmorang, I.M.; Pasaribu, F.A.; Lestari, A.; Istikorini, Y.; Haneda, N.F. Trypsin inhibitor activities as defense mechanism of sengon (Falcataria moluccana) against pest attacks. IOP Conf. Ser. Mater. Sci. Eng. 2020, 935, 012034. [Google Scholar] [CrossRef]
- Haneda, N.F.; Nuban, S.R. Development of Boktor (Xystrocera festiva pascoe) Larvae in Artificial Diet by Using Sengon (Paraserianthes falcataria) Powder. J. Silvikultur Trop. 2011, 2, 19–25. [Google Scholar]
- Gatehouse, J.A. Prospects for Using Proteinase Inhibitors to Protect Transgenic Plants Against Attack by Herbivorous Insects. Curr. Protein Pept. Sci. 2011, 12, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Bandani, A. Effect of plant a-amylase inhibitors on sunn pest, Eurygaster integriceps Puton (Hemiptera: Scutelleridae), alpha-amylase activity. Commun. Agric. Appl. Biol. Sci. 2005, 70, 869–873. [Google Scholar]
- Garcia, V.A.; Freire, M.D.G.M.; Novello, J.C.; Marangoni, S.; Macedo, M.L.R. Trypsin inhibitor from Poecilanthe parviflora seeds: Purification, characterization, and activity against pest proteases. Protein J. 2004, 23, 343–350. [Google Scholar] [CrossRef]
- Odhav, B.; Kandasamy, T.; Khumalo, N.; Baijnath, H. Screening of African traditional vegetables for their alpha-amylase inhibitory effect. J. Med. Plants Res. 2010, 4, 1502–1507. [Google Scholar]
- Rathinam, M.; Mishra, P.; Mahato, A.K.; Singh, N.K.; Rao, U.; Sreevathsa, R. Comparative transcriptome analyses provide novel insights into the differential response of Pigeonpea (Cajanus cajan L.) and its wild relative (Cajanus platycarpus (Benth.) Maesen) to herbivory by Helicoverpa armigera (Hübner). Plant Mol. Biol. 2019, 101, 163–182. [Google Scholar] [CrossRef]
- Borah, S.; Singh, S.K.; Bhorali, P.; Bora, D. Seasonal incidence pattern and host preference of Odoiporus longicollis Olivier (Coleoptera: Curculionidae) in certain banana cultivars of Assam. J. Entomol. Res. 2020, 44, 59–66. [Google Scholar] [CrossRef]
- Siregar, U.J.; Nugroho, A.; Shabrina, H.; Indriani, F.; Damayanti, A.; Matra, D.D. De novo transcriptome assembly data for sengon (Falcataria moluccana) trees displaying resistance and susceptibility to boktor stem borers (Xystrocera festiva Pascoe). BMC Res. Notes 2021, 14, 261. [Google Scholar] [CrossRef] [PubMed]
- Planells, B.; Gómez-Redondo, I.; Pericuesta, E.; Lonergan, P.; Gutiérrez-Adán, A. Differential isoform expression and alternative splicing in sex determination in mice. BMC Genom. 2019, 20, 202. [Google Scholar] [CrossRef]
- Sharp, P.A. The discovery of split genes and RNA splicing. Trends Biochem. Sci. 2005, 30, 279–281. [Google Scholar] [CrossRef]
- Fu, X.D.; Ares, M. Context-dependent control of alternative splicing by RNA-binding proteins. Nat. Rev. Genet. 2014, 15, 689–701. [Google Scholar] [CrossRef]
- Fu, X.D. Towards a splicing code. Cell 2004, 119, 736–738. [Google Scholar] [CrossRef]
- Alberts, B.; Johnson, A.; Lewis, J. Molecular Biology of the Cell, 4th ed.; Garland Science: New York, NY, USA, 2002; Volume 347. [Google Scholar]
- Yi, L.; Liu, L.; Melsted, P.; Pachter, L. A direct comparison of genome alignment and transcriptome pseudoalignment. bioRxiv 2018, 444620. Available online: https://www.biorxiv.org/content/10.1101/444620v1.full.pdf (accessed on 6 November 2024). [CrossRef]
- Dornell, J. Alternative Splicing: Importance and Definition. Technology Networks. August 2021. Available online: https://www.technologynetworks.com/genomics/articles/alternative-splicing-importance-and-definition-351813 (accessed on 21 April 2023).
- Mandadi, K.K.; Scholthof, K.B.G. Genome-wide analysis of alternative splicing landscapes modulated during plant-virus interactions in Brachypodium distachyon. Plant Cell 2015, 27, 71–85. [Google Scholar] [CrossRef]
- Tao, Y.; Zhang, Q.; Wang, H.; Yang, X.; Mu, H. Alternative splicing and related RNA binding proteins in human health and disease. Signal Transduct. Target. Ther. 2024, 9, 26. [Google Scholar] [CrossRef] [PubMed]
- Shabrina, H.; Siregar, U.J.; Matra, D.D.; Siregar, I.Z. The dataset of de novo transcriptome assembly of Falcataria moluccana cambium from gall-rust (Uromycladium falcatarium) infected and non- infected tree. Data Br. 2019, 26, 4–7. [Google Scholar] [CrossRef]
- Akhter, S.; Kretzschmar, W.W.; Nordal, V.; Delhomme, N.; Street, N.R.; Nilsson, O.; Emanuelsson, O.; Sundström, J.F. Integrative analysis of three RNA sequencing methods identifies mutually exclusive exons of MADS-box isoforms during early bud development in picea abies. Front. Plant Sci. 2018, 871, 1625. [Google Scholar] [CrossRef]
- Voshall, A.; Moriyama, E.N. Next-generation transcriptome assembly and analysis: Impact of ploidy. Methods 2020, 176, 14–24. [Google Scholar] [CrossRef] [PubMed]
- Jamal, F.; Pandey, P.K.; Singh, D.; Khan, M.Y. Serine protease inhibitors in plants: Nature’s arsenal crafted for insect predators. Phytochem. Rev. 2013, 12, 1–34. [Google Scholar] [CrossRef]
- Terada, S.; Fujimura, S.; Kino, S.; Kimoto, E. Purification and Characterization of Three Proteinase Inhibitors from Canavalia lineata Seeds. Biosci. Biotechnol. Biochem. 1994, 58, 371–375. [Google Scholar] [CrossRef] [PubMed]
- Amaral, M.D.; Freitas, A.C.O.; Santos, A.S.; dos Santos, E.C.; Ferreira, M.M.; Gesteira, A.d.S.; Gramacho, K.P.; Marinho-Prado, J.S.; Pirovani, C.P. TcTI, a Kunitz-type trypsin inhibitor from cocoa associated with defense against pathogens. Sci. Rep. 2022, 12, 1–16. [Google Scholar] [CrossRef]
- Schneider, F.; Houseman, J.G.; Morrison, P. Activity cycles and the regulation of digestive proteases in the posterior midgut of Stomoxys calcitrans (L.) (Diptera: Muscidae). Insect Biochem. 1987, 17, 859–862. [Google Scholar] [CrossRef]
- Huang, H.; Qi, S.D.; Qi, F.; Wu, C.A.; Yang, G.D.; Zheng, C.C. NtKTI1, a Kunitz trypsin inhibitor with antifungal activity from Nicotiana tabacum, plays an important role in tobacco’s defense response. FEBS J. 2010, 277, 4076–4088. [Google Scholar] [CrossRef]
- Lucy, A.P.; Guo, H.S.; Li, W.X.; Ding, S.W. Suppression of post-transcriptional gene silencing by a plant viral protein localized in the nucleus. EMBO J. 2000, 19, 1672–1680. [Google Scholar] [CrossRef]
- Li, H.; Zhou, H.; Zhang, J.; Fu, X.; Ying, Z.; Liu, X. Proteinaceous α-amylase inhibitors: Purification, detection methods, types and mechanisms. Int. J. Food Prop. 2021, 24, 277–290. [Google Scholar] [CrossRef]
- Hao, X.; Li, J.; Shi, Q.; Zhang, J.; He, X.; Ma, H. Characterization of a novel legumin α-amylase inhibitor from chickpea (Cicer arietinum L.) seeds. Biosci. Biotechnol. Biochem. 2009, 73, 1200–1202. [Google Scholar] [CrossRef]
- Morton, R.L.; Schroeder, H.E.; Bateman, K.S.; Chrispeels, M.J.; Armstrong, E.; Higgins, T.J.V. Bean α-amylase inhibitor 1 in transgenic peas (Pisum sativum) provides complete protection from pea weevil (Bruchus pisorum) under field conditions. Proc. Natl. Acad. Sci. USA 2000, 97, 3820–3825. [Google Scholar] [CrossRef]
- Franco, O.L.; Rigden, D.J.; Melo, F.R.; Grossi-de-Sá, M.F. Plant α-amylase inhibitors and their interaction with insect α-amylases. Eur. J. Biochem. 2002, 269, 397–412. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Liu, X.; Zhang, S.; Zhu, Y.C.; Whitworth, R.J.; Chen, M.S. Differential responses of wheat inhibitor-like genes to Hessian fly, Mayetiola destructor, attacks during compatible and incompatible interactions. J. Chem. Ecol. 2008, 34, 1005–1012. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Yao, F.; Du, J.; Deng, X.; Li, C. Persimmon Tannin Decreased the Glycemic Response through Decreasing the Digestibility of Starch and Inhibiting α-Amylase, α-Glucosidase, and Intestinal Glucose Uptake. J. Agric. Food Chem. 2018, 66, 1629–1637. [Google Scholar] [CrossRef] [PubMed]
- Bruce, T.J.A. Interplay between insects and plants: Dynamic and complex interactions that have coevolved over millions of years but act in milliseconds. J. Exp. Bot. 2015, 66, 455–465. [Google Scholar] [CrossRef]
- Major, I.T.; Constabel, C.P. Functional analysis of the kunitz trypsin inhibitor family in poplar reveals biochemical diversity and multiplicity in defense against herbivores. Plant Physiol. 2008, 146, 888–903. [Google Scholar] [CrossRef]
- Yin, M.; Song, N.; Chen, S.; Wu, J. NaKTI2, a Kunitz trypsin inhibitor transcriptionally regulated by NaWRKY3 and NaWRKY6, is required for herbivore resistance in Nicotiana attenuata. Plant Cell Rep. 2021, 40, 97–109. [Google Scholar] [CrossRef]
- Tekale, S.S.; Padul, M.V. Effect of Mechanical Wounding on Level of Secondary Metabolites in Cajanus cajan and Defense Against Helicoverpa armigera. Trends Biotechnol. Res. 2017, 6, 4–8. [Google Scholar]
- Cipollini, D.F.; Busch, J.W.; Stowe, K.A.; Simms, E.L.; Bergelson, J. Genetic variation and relationships of constitutive and herbivore-induced glucosinolates, trypsin inhibitors, and herbivore resistance in Brassica rapa. J. Chem. Ecol. 2003, 29, 285–302. [Google Scholar] [CrossRef]
- Jongsma, M.A. The Resistance of Insects to Plant Proteinase Inhibitors Centrale; Wageningen University Research: Wageningen, The Netherlands, 1995; Available online: https://edepot.wur.nl/200061 (accessed on 25 April 2023).
- Eberl, F.; Fabisch, T.; Luck, K.; Köllner, T.G.; Vogel, H.; Gershenzon, J.; Unsicker, S.B. Poplar protease inhibitor expression differs in an herbivore specific manner. BMC Plant Biol. 2021, 21, 170. [Google Scholar] [CrossRef]
- Barrett, M.L.; Udani, J.K. A proprietary alpha-amylase inhibitor from white bean (Phaseolus vulgaris): A review of clinical studies on weight loss and glycemic control. Nutr. J. 2011, 10, 24. [Google Scholar] [CrossRef]
- Andrews, S. FASTQC: A Quality Control Tool for High Throughput Sequence Data. 2010. Google Scholar. 2019. Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 16 December 2021).
- Boisvert, S.; Laviolette, F.; Corbeil, J. Ray: Simultaneous assembly of reads from a mix of high-throughput sequencing technologies. J. Comput. Biol. 2010, 17, 1401–1415. [Google Scholar] [CrossRef]
- Kinjo, S.; Monma, N.; Misu, S.; Kitamura, N.; Imoto, J.; Yoshitake, K.; Gojobori, T.; Ikeo, K. Maser: One-stop platform for NGS big data from analysis to visualization. Database 2018, 2018, bay027. [Google Scholar] [CrossRef]
- Seppey, M.; Manni, M.; Zdobnov, E.M. BUSCO: Assessing genome assembly and annotation completeness. Methods Mol. Biol. 2019, 1962, 227–245. [Google Scholar] [CrossRef] [PubMed]
- Danecek, P.; Bonfield, J.K.; Liddle, J.; Marshall, J.; Ohan, V.; Pollard, M.O.; Whitwham, A.; Keane, T.; McCarthy, S.A.; Davies, R.M.; et al. Twelve years of SAMtools and BCFtools. Gigascience 2021, 10, giab008. [Google Scholar] [CrossRef] [PubMed]
- Geisslitz, S.; Weegels, P.; Shewry, P.; Zevallos, V.; Masci, S.; Sorrells, M.; Gregorini, A.; Colomba, M.; Jonkers, D.; Huang, X.; et al. Wheat amylase/trypsin inhibitors (ATIs): Occurrence, function and health aspects. Eur. J. Nutr. 2022, 61, 2873–2880. [Google Scholar] [CrossRef] [PubMed]
- Roberts, A.; Pachter, L. Streaming fragment assignment for real-time analysis of sequencing experiments. Nat. Methods 2013, 10, 71–73. [Google Scholar] [CrossRef]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2009, 26, 139–140. [Google Scholar] [CrossRef]
- Kõressaar, T.; Lepamets, M.; Kaplinski, L.; Raime, K.; Andreson, R.; Remm, M. Primer3-masker: Integrating masking of template sequence with primer design software. Bioinformatics 2018, 34, 1937–1938. [Google Scholar] [CrossRef]
- Schmittgen, T.D.; Livak, K.J. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 2008, 3, 1101–1108. [Google Scholar] [CrossRef]
No. | Contig Name | Hits | Accession Number |
---|---|---|---|
Trypsin Inhibitor | |||
1 | Cluster-42052.303167_TRINITY_DN172546_c1_g2_i2 | 1023–778 | P32733.1 |
2 | Cluster-42052.306924_TRINITY_DN178415_c6_g1_i1 | 569–63 | 4J2Y_A |
3 | Cluster-42052.247290_TRINITY_DN178415_c6_g6_i1 | 2–454 | P24924.2 |
4 | Cluster-42052.206862_TRINITY_DN181734_c1_g2_i3 | 1006–575 | P83036.2 |
5 | Cluster-42052.195413_TRINITY_DN177358_c0_g2_i2 | 1218–697 | AFG28551.1 |
6 | Cluster-42052.169979_Contig18349 | 2423–1929 | AFG28551.1 |
7 | Cluster-42052.253142_TRINITY_DN169753_c0_g1_i1 | 690–346 | P83036.2 |
8 | Cluster-42052.207278_TRINITY_DN191341_c4_g2_i4 | 722–186 | AFG28551.1 |
9 | Cluster-42052.155280_TRINITY_DN182112_c0_g2_i2 | 704–312 | AFG28551.1 |
10 | Cluster-42052.175330_Contig18348 | 1857–1363 | AFG28551.1 |
11 | Cluster-42052.266424_TRINITY_DN160773_c0_g1_i1 | 443–994 | P24924.2 |
12 | Cluster-42052.180501_TRINITY_DN171608_c0_g1_i1 | 703–197 | P83036.2 |
13 | Cluster-42052.15862_TRINITY_DN183193_c0_g1_i6 | 585–869 | P09941.1 |
14 | Cluster-42052.179981_TRINITY_DN168277_c1_g1_i2 | 507–683 | AAB26177.1 |
15 | Cluster-42052.61489_Contig29962 | 430–978 | P83036.2 |
16 | Cluster-42052.228242_TRINITY_DN169156_c0_g1_i1 | 426–884 | P24924.2 |
17 | Cluster-42052.208643_TRINITY_DN175236_c0_g1_i2 | 238–101 | P32733.1 |
18 | Cluster-42052.77508_TRINITY_DN181117_c0_g1_i2 | 380–93 | AFG28551.1 |
19 | Cluster-42052.264216_TRINITY_DN129174_c0_g1_i1 | 768–643 | AFG28551.1 |
α-amylase Inhibitor | |||
1 | Cluster-42052.208011_TRINITY_DN177772_c6_g3_i6 | 869–1558 | 1VIW_B |
2 | Cluster-42052.237331_TRINITY_DN186379_c1_g2_i1 | 615–1154 | 1VIW_B |
3 | Cluster-42052.144807_TRINITY_DN174608_c1_g1_i1 | 345–1019 | 1VIW_B |
4 | Cluster-42052.138754_TRINITY_DN181383_c6_g1_i1 | 551–1126 | P02873 |
5 | Cluster-42052.162634_TRINITY_DN181383_c6_g1_i2 | 551–1126 | P02873 |
6 | Cluster-42052.188408_TRINITY_DN182603_c3_g1_i1 | 436–1053 | 1VIW_B |
7 | Cluster-42052.155248_Contig10939 | 1–210 | 1VIW_B |
8 | Cluster-42052.100030_TRINITY_DN177479_c0_g1_i1 | 1899–1267 | P02873 |
9 | Cluster-42052.216188_TRINITY_DN186223_c4_g4_i5 | 3177–3377 | 1VIW_B |
10 | Cluster-42052.319012_TRINITY_DN172082_c0_g1_i3 | 738–1442 | 1VIW_B |
11 | Cluster-42052.201855_Contig18100 | 104–808 | P02873 |
12 | Cluster-42052.195476_TRINITY_DN164741_c0_g2_i1 | 498–1067 | 1VIW_B |
13 | Cluster-42052.177708_TRINITY_DN172458_c0_g1_i1 | 543–55 | Q9SMJ4 |
14 | Cluster-42052.235439_TRINITY_DN180890_c2_g1_i2 | 320–655 | Q9SMJ4 |
15 | Cluster-42052.341257_TRINITY_DN180890_c2_g1_i1 | 492–869 | Q9SMJ4 |
16 | Cluster-42052.245145_TRINITY_DN180307_c1_g4_i3 | 478–1164 | 1VIW_B |
17 | Cluster-42052.216103_TRINITY_DN186574_c0_g1_i2 | 638–1312 | 1VIW_B |
18 | Cluster-42052.420818_TRINITY_DN182603_c3_g1_i4 | 490–1107 | 1VIW_B |
19 | Cluster-42052.179748_TRINITY_DN185634_c1_g3_i3 | 571–1143 | P02873 |
20 | Cluster-42052.245310_TRINITY_DN185634_c1_g3_i4 | 511–1086 | Q41114 |
21 | Cluster-42052.169697_Contig9179 | 754–53 | P02873 |
22 | Cluster-42052.182397_TRINITY_DN175336_c0_g1_i2 | 677–1312 | P02873 |
23 | Cluster-42052.207959_TRINITY_DN183003_c2_g5_i3 | 293–541 | P02873 |
24 | Cluster-42052.189890_TRINITY_DN184034_c1_g5_i1 | 167–562 | P02873 |
25 | Cluster-42052.218695_Contig38867 | 1279–551 | Q9SMJ4 |
26 | Cluster-42052.207925_TRINITY_DN173791_c0_g1_i3 | 1–402 | P02873 |
27 | Cluster-42052.24436_Contig7754 | 570–770 | 1VIW_B |
28 | Cluster-42052.123152_TRINITY_DN184034_c1_g3_i1 | 245–36 | 1VIW_B |
29 | Cluster-42052.292956_TRINITY_DN176191_c0_g1_i1 | 457–110 | P02873 |
TI | Sequence | logFC | p-Value | Name |
---|---|---|---|---|
Cluster-42052.169979_Contig18349 | −11.472 | 1.15 × 10−25 | AFG28551.1 Kunitz trypsin inhibitor | |
Cluster-42052.15862_TRINITY_DN183193_c0_g1_i6 | −10.1102 | 8.55 × 10−17 | sp|P09941.1| trypsin inhibitor DE5 alpha chain | |
Cluster-42052.179981_TRINITY_DN168277_c1_g1_i2 | −9.64578 | 4.26 × 10−14 | AAB26177.1 Kunitz-type trypsin inhibitor A chain, | |
Cluster-42052.146119_TRINITY_DN173153_c0_g3_i1 | −9.58357 | 9.45 × 10−14 | AFG28551.1 Kunitz trypsin inhibitor, partial | |
Cluster-42052.231745_TRINITY_DN191341_c4_g2_i3 | −9.27791 | 3.82 × 10−12 | sp|C0HKQ3.1| Kunitz-type trypsin inhibitor IVTI | |
Cluster-42052.155280_TRINITY_DN182112_c0_g2_i2 | −8.10613 | 3.57 × 10−22 | AFG28551.1 Kunitz trypsin inhibitor, | |
Cluster-42052.175330_Contig18348 | −7.14287 | 9.21 × 10−22 | AFG28551.1 Kunitz trypsin inhibitor, | |
Cluster-42052.208643_TRINITY_DN175236_c0_g1_i2 | −5.77413 | 1.75 × 10−13 | sp|P32733.1|Kunitz-type trypsin inhibitor alpha chain | |
Cluster-42052.61489_Contig29962 | −5.41235 | 2.84 × 10−13 | sp|P83036.2| trypsin inhibitor | |
Cluster-42052.206862_TRINITY_DN181734_c1_g2_i3 | −5.18019 | 9.31 × 10−22 | sp|P83036.2| Full = trypsin inhibitor; | |
Cluster-42052.195413_TRINITY_DN177358_c0_g2_i2 | −4.90233 | 6.39 × 10−20 | AFG28551.1 Kunitz trypsin inhibitor, partial | |
Cluster-42052.228242_TRINITY_DN169156_c0_g1_i1 | −4.81848 | 3.13 × 10−10 | sp|P24924.2| trypsin inhibitor | |
Cluster-42052.180501_TRINITY_DN171608_c0_g1_i1 | −4.17532 | 8.19 × 10−12 | sp|P83036.2|trypsin inhibitor | |
Cluster-42052.207278_TRINITY_DN191341_c4_g2_i4 | −3.68564 | 3.05 × 10−12 | AFG28551.1 Kunitz trypsin inhibitor | |
Cluster-42052.77508_TRINITY_DN181117_c0_g1_i2 | −3.32757 | 6.14 × 10−7 | AFG28551.1 Kunitz trypsin inhibitor | |
Cluster-42052.264216_TRINITY_DN129174_c0_g1_i1 | −1.20859 | 0.033664 | AFG28551.1 Kunitz trypsin inhibitor | |
Cluster-42052.266424_TRINITY_DN160773_c0_g1_i1 | −0.54328 | 0.279542 | sp|P24924.2| trypsin inhibitor | |
Cluster-42052.253142_TRINITY_DN169753_c0_g1_i1 | −0.14329 | 0.76744 | sp|P83036.2| trypsin inhibitor | |
Cluster-42052.247290_TRINITY_DN178415_c6_g6_i1 | 1.764728 | 0.00016 | sp|P24924.2|trypsin inhibitor | |
Cluster-42052.306924_TRINITY_DN178415_c6_g1_i1 | 3.478816 | 1.12 × 10−13 | pdb|4J2Y|A Chain A, trypsin inhibitor | |
Cluster-42052.303167_TRINITY_DN172546_c1_g2_i2 | 4.027332 | 9.26 × 10−18 | sp|P32733.1| Kunitz-type trypsin inhibitor alpha chain | |
AAI | Sequence | logFC | p-Value | Name |
Cluster-42052.100030_TRINITY_DN177479_c0_g1_i1 | 2.01585 | 3.416676 | sp|P02873.1| Alpha-amylase inhibitor 1 | |
Cluster-42052.235439_TRINITY_DN180890_c2_g1_i2 | 1.47664 | 1.707336 | sp|Q9SMJ4.1| Alpha-amylase inhibitor | |
Cluster-42052.341257_TRINITY_DN180890_c2_g1_i1 | 1.04942 | 1.408281 | sp|Q9SMJ4.1| Alpha-amylase inhibitor | |
Cluster-42052.216188_TRINITY_DN186223_c4_g4_i5 | 1.02626 | 3.460806 | pdb|1VIW|B Chain B, ALPHA-AMYLASE-INHIBITOR | |
Cluster-42052.155248_Contig10939 | 0.97774 | 3.686339 | pdb|1VIW|B Chain B, ALPHA-AMYLASE-INHIBITOR | |
Cluster-42052.144807_TRINITY_DN174608_c1_g1_i1 | 0.76538 | 4.318647 | pdb|1VIW|B Chain B, ALPHA-AMYLASE-INHIBITOR | |
Cluster-42052.208011_TRINITY_DN177772_c6_g3_i6 | 0.50414 | 4.926196 | pdb|1VIW|B Chain B, ALPHA-AMYLASE-INHIBITOR | |
Cluster-42052.162634_TRINITY_DN181383_c6_g1_i2 | 0.37354 | 4.001451 | sp|P02873.1| Alpha-amylase inhibitor 1; Short = Alpha-AI-1; | |
Cluster-42052.420818_TRINITY_DN182603_c3_g1_i4 | 0.31528 | 1.416495 | pdb|1VIW|B Chain B, ALPHA-AMYLASE-INHIBITOR | |
Cluster-42052.138754_TRINITY_DN181383_c6_g1_i1 | 0.22861 | 4.274507 | sp|P02873.1| Alpha-amylase inhibitor 1 | |
Cluster-42052.237331_TRINITY_DN186379_c1_g2_i1 | 0.09506 | 4.693314 | pdb|1VIW|B Chain B, ALPHA-AMYLASE-INHIBITOR | |
Cluster-42052.177708_TRINITY_DN172458_c0_g1_i1 | −0.17696 | 2.1322 | sp|Q9SMJ4.1| Alpha-amylase inhibitor | |
Cluster-42052.319012_TRINITY_DN172082_c0_g1_i3 | −0.21007 | 3.530725 | pdb|1VIW|B Chain B, ALPHA-AMYLASE-INHIBITOR | |
Cluster-42052.147883_Contig6928 | −0.25073 | 4.212243 | sp|P02873.1| Alpha-amylase inhibitor 1 | |
Cluster-42052.189890_TRINITY_DN184034_c1_g5_i1 | −0.38222 | 0.493207 | sp|P02873.1| Alpha-amylase inhibitor 1 | |
Cluster-42052.188408_TRINITY_DN182603_c3_g1_i1 | −0.60056 | 3.938534 | pdb|1VIW|B Chain B, ALPHA-AMYLASE-INHIBITOR | |
Cluster-42052.209935_TRINITY_DN185927_c2_g3_i1 | −0.60486 | 3.325443 | sp|P84708.1| Chitinolytic alpha-amylase inhibitor | |
Cluster-42052.24436_Contig7754 | −0.79325 | −0.016 | pdb|1VIW|B Chain B, ALPHA-AMYLASE-INHIBITOR | |
Cluster-42052.123152_TRINITY_DN184034_c1_g3_i1 | −0.8583 | 0.428841 | pdb|1VIW|B Chain B, ALPHA-AMYLASE-INHIBITOR | |
Cluster-42052.169697_Contig9179 | −1.38486 | 1.437683 | sp|P02873.1| Alpha-amylase inhibitor 1 | |
Cluster-42052.216103_TRINITY_DN186574_c0_g1_i2 | −1.64042 | 2.126177 | pdb|1VIW|B Chain B, ALPHA-AMYLASE-INHIBITOR | |
Cluster-42052.195476_TRINITY_DN164741_c0_g2_i1 | −1.72911 | 2.658958 | pdb|1VIW|B Chain B, ALPHA-AMYLASE-INHIBITOR | |
Cluster-42052.201855_Contig18100 | −2.01150 | 2.602573 | sp|P02873.1| Alpha-amylase inhibitor 1 | |
Cluster-42052.182397_TRINITY_DN175336_c0_g1_i2 | −2.11116 | 1.290499 | sp|P02873.1| Alpha-amylase inhibitor 1 | |
Cluster-42052.359247_TRINITY_DN178532_c0_g1_i2 | −2.11682 | 1.589345 | sp|P84708.1| Chitinolytic alpha-amylase inhibitor | |
Cluster-42052.206287_TRINITY_DN186880_c2_g2_i2 | −3.26811 | 7.775568 | sp|P84708.1| Chitinolytic alpha-amylase inhibitor PvCAI | |
Cluster-42052.218695_Contig38867 | −3.79574 | 0.394497 | sp|Q9SMJ4.1| Alpha-amylase inhibitor | |
Cluster-42052.207925_TRINITY_DN173791_c0_g1_i3 | −3.85575 | 0.450129 | sp|P02873.1| Alpha-amylase inhibitor 1 | |
Cluster-42052.238154_Contig19707 | −5.90505 | 3.19328 | pdb|1VIW|B Chain B, ALPHA-AMYLASE-INHIBITOR | |
Cluster-42052.292956_TRINITY_DN176191_c0_g1_i1 | −9.35441 | 0.579165 | sp|P02873.1| Alpha-amylase inhibitor 1 | |
Cluster-42052.207959_TRINITY_DN183003_c2_g5_i3 | −9.54055 | 0.769758 | sp|P02873.1| Alpha-amylase inhibitor 1 | |
Cluster-42052.245310_TRINITY_DN185634_c1_g3_i4 | −10.2767 | 1.526612 | sp|Q41114.1| Alpha-amylase inhibitor 2 | |
Cluster-42052.179748_TRINITY_DN185634_c1_g3_i3 | −10.4377 | 1.69216 | sp|P02873.1| Alpha-amylase inhibitor 1 | |
Cluster-42052.245145_TRINITY_DN180307_c1_g4_i3 | −10.7524 | 2.015186 | pdb|1VIW|B Chain B, ALPHA-AMYLASE-INHIBITOR |
Primer | Sequence | Tm (°C) | Tm (°C) |
---|---|---|---|
TI | |||
Forward | GACAGGAAACGAAACTTGCCC | GACAGGAAACGAAACTTGCCC | 61.3 |
Reverse | ACGAAATTTTCCATGGCAAGCC | ACGAAATTTTCCATGGCAAGCC | 60.3 |
AAI | |||
Forward | AGGAAACGAAGGAAAG CGCGG | AGGAAACGAAGGAAAG CGCGG | 61.3 |
Reverse | TTGCCGTTTCCTCCGAT TCC | TTGCCGTTTCCTCCGAT TCC | 60.5 |
Actin | |||
Forward | TTGACTGCGCTTCATCACCC | TTGACTGCGCTTCATCACCC | 60.5 |
Reverse | GGCTGGTTTTGCTGGTGATG | GGCTGGTTTTGCTGGTGATG | 60.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siregar, U.J.; Shabrina, H.; Nurianti, E.; Dwiyuni, F.; Lestari, A.I.; Sihombing, J.K.; Larosa, B.; Anita, V.P.D.; Matra, D.D. Multi-Transcripts and Expressions of Trypsin Inhibitor and α-Amylase Inhibitor Genes of Sengon (Falcataria falcata) Against Xystrocera festiva Stem Borer Infestation. Plants 2025, 14, 2750. https://doi.org/10.3390/plants14172750
Siregar UJ, Shabrina H, Nurianti E, Dwiyuni F, Lestari AI, Sihombing JK, Larosa B, Anita VPD, Matra DD. Multi-Transcripts and Expressions of Trypsin Inhibitor and α-Amylase Inhibitor Genes of Sengon (Falcataria falcata) Against Xystrocera festiva Stem Borer Infestation. Plants. 2025; 14(17):2750. https://doi.org/10.3390/plants14172750
Chicago/Turabian StyleSiregar, Ulfah Juniarti, Hasyyati Shabrina, Esti Nurianti, Fahirah Dwiyuni, Ayu Indah Lestari, Januard Kristian Sihombing, Buma Larosa, Vilda Puji Dini Anita, and Deden Derajat Matra. 2025. "Multi-Transcripts and Expressions of Trypsin Inhibitor and α-Amylase Inhibitor Genes of Sengon (Falcataria falcata) Against Xystrocera festiva Stem Borer Infestation" Plants 14, no. 17: 2750. https://doi.org/10.3390/plants14172750
APA StyleSiregar, U. J., Shabrina, H., Nurianti, E., Dwiyuni, F., Lestari, A. I., Sihombing, J. K., Larosa, B., Anita, V. P. D., & Matra, D. D. (2025). Multi-Transcripts and Expressions of Trypsin Inhibitor and α-Amylase Inhibitor Genes of Sengon (Falcataria falcata) Against Xystrocera festiva Stem Borer Infestation. Plants, 14(17), 2750. https://doi.org/10.3390/plants14172750