Comprehensive Study of Habitat Substrate-Related Variability of Cotinus coggygria Scop. as a Valuable Source of Natural Bioactive Compounds
Abstract
1. Introduction
2. Results and Discussion
2.1. Content of Major and Trace Elements
2.1.1. The Quantity of Elements in the Soil Samples
2.1.2. The Quantity of Elements in Leaves and Bark Samples
2.2. Variability of Leaf Morphology
2.3. Lipid Peroxidation
2.4. Activity of Phenylalanine Ammonia-Lyase (PAL)
2.5. Content of Secondary Metabolites
2.5.1. Determination of Individual Phenolic Compounds
2.5.2. Content of Total Phenolic Compounds and Flavonoids and Total Antioxidant Activity of C. coggygria
2.6. Chemical Analysis of Essential Oils
2.7. Correlation Analysis Between Inorganic Elements in Soil and Active Components in C. coggygria Leaves and Bark
3. Materials and Methods
3.1. Plant Material
3.2. Reagents and Standards
3.3. Soil Sampling
3.4. Content of Major and Trace Elements
3.4.1. Microwave Digestion
3.4.2. Determination of the Content of Elements
3.5. Variations of Leaves
3.6. Determination of Lipid Peroxidation
3.7. Phenylalanine Ammonium Lyase (PAL) Activity
3.8. Secondary Metabolite Extraction and Analyses
3.9. Determination of Individual Phenolic Compounds
3.9.1. Sample Preparation
3.9.2. HPLC Conditions
3.10. Determination of Total Phenolic Content and Flavonoid Content
3.11. Determination of DPPH Free Radical Scavenging Capacity of Samples
3.12. Chemical Analysis of Essential Oil
3.13. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ballabh, B.; Chaurasia, O.P. Traditional medicinal plants of cold desert Ladakh used in treatment of cold, cough and fever. J. Ethnopharmacol. 2007, 112, 341–349. [Google Scholar] [CrossRef]
- Lubbe, A.; Verpoorte, R. Cultivation of medicinal and aromatic plants for specialty industrial materials. Ind. Crop. Prod. 2011, 34, 785–801. [Google Scholar] [CrossRef]
- Stanković, M.; Zlatić, N.; Mašković, J.; Mašković, P.; Jakovljević, D. Teucrium scordium L. and Mentha pulegium L. essential oil importance in adaptive response to salinity stress. Biochem. Syst. Ecol. 2022, 102, 104419. [Google Scholar] [CrossRef]
- Raffo, A.; Aquilanti, L.; Baiamonte, I.; Casavecchia, S.; Melini, V.; Nardo, N.; Nartea, A.; Pacetti, D.; Saggia Civitelli, E.; Sforza, L. An insight into the sea fennel (Crithmum maritimum L.) volatile fraction: Diversity in wild populations of different geographical origin and identification of key odorants. Food Biosci. 2025, 65, 106137. [Google Scholar] [CrossRef]
- Jovanović, B. Genus Cotinus. In The Flora of Serbia; Josifović, M., Ed.; Serbian Academy of Sciences and Arts: Belgrade, Serbia, 1973. [Google Scholar]
- Plants of the World Online (POWO). Plants of the World Online; The Royal Botanic Gardens, Kew: Richmond, UK, 2023; Available online: http://www.plantsoftheworldonline.org/ (accessed on 10 May 2024).
- Shen, Q.; Shang, D.; Ma, F.; Zhang, Z. Pharmacological study on anti-hepatitis effect of Cotinus coggygria Scop. syrup. Zhongguo Zhong Yao Za Zhi 1991, 16, 746–749. [Google Scholar] [PubMed]
- Demirci, B.; Demirci, F.; Başer, K.H.C. Composition of the essential oil of Cotinus coggygria Scop. from Turkey. Flavour Frag. J. 2003, 18, 43–44. [Google Scholar] [CrossRef]
- Bruning, E.; Seiberg, M.; Stone, V.I.; Zhao, Z. Use of Cotinus coggygria Extract Treating Hemorrhoids. No. WO2008055107 A2, 8 May 2008. [Google Scholar]
- Ivanova, D.G.; Pavlov, D.V.; Eftimov, M.; Kalchev, K.; Nashar, M.A.; Tzaneva, M.A.; Valcheva-Kuzmanova, S. Subchronic toxicity study of ethanol infusion from Cotinus coggygria wood in rats. Bulg. J. Agric. Sci. 2013, 19, 182–185. [Google Scholar]
- Marčetić, M.; Božić, D.; Milenković, M.; Malešević, N.; Radulović, S.; Kovačević, N. Antimicrobial, antioxidant and anti-inflammatory activity of young shoots of the smoke tree, Cotinus coggygria Scop. Phytother. Res. 2013, 27, 1658–1663. [Google Scholar] [CrossRef]
- Matić, S.; Stanić, S.; Mihailović, M.; Bogojević, D. Cotinus coggygria Scop.: An overview of its chemical constituents, pharmacological and toxicological potential. Saudi J. Biol. Sci. 2016, 23, 452–461. [Google Scholar] [CrossRef]
- Wang, G.; Wang, J.; Du, L.; Li, F. Effect and mechanism of total flavonoids extracted from Cotinus coggygria against glioblastoma cancer in vitro and in vivo. BioMed Res. Int. 2015, 18, 856349. [Google Scholar] [CrossRef]
- Hänsch, R.; Mendel, R.R. Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr. Opin. Plant Biol. 2009, 12, 259–266. [Google Scholar] [CrossRef]
- Wei, J.; Wang, Y.; Tang, X.; Du, Y.; Bai, Y.; Deng, Y.; Yu, X.; Xue, X.; Kang, J. Correlation analysis between active components of Cornus officinalis and inorganic elements in rhizosphere soil and rapid analysis of origin quality by near-infrared spectroscopy combined with machine learning. Ind. Crop. Prod. 2024, 210, 118101. [Google Scholar] [CrossRef]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 4th ed.; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Pandey, S.; Nagar, P.K. Leaf surface wetness and morphological characteristics of Valeriana jatamansi grown under open and shade habitats. Biol. Plant. 2002, 45, 291–294. [Google Scholar] [CrossRef]
- Zlatić, N.; Budečević, S.; Stanković, M. Geological substrate effects on Teucrium montanum L. (Lamiaceae) morphological traits: Geometric morphometrics approach. Plants 2023, 12, 2381. [Google Scholar] [CrossRef] [PubMed]
- Davey, M.W.; Stals, E.; Panis, B.; Keulemans, J.; Swennen, R.L. High-throughput determination of malondialdehyde in plant tissues. Anal. Biochem. 2005, 347, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Morales, M.; Munné-Bosch, S. Malondialdehyde: Facts and artifacts. Plant Physiol. 2019, 180, 1246–1250. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, S.; Jiang, W.; Liu, D. Cadmium accumulation, activities of antioxidant enzymes, and malondialdehyde (MDA) content in Pistia stratiotes L. Environ. Sci. Pollut. Res. 2013, 20, 1117–1123. [Google Scholar] [CrossRef]
- Huang, J.; Gu, M.; Lai, Z.; Fan, B.; Shi, K.; Zhou, Y.H.; Chen, Z. Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress. Plant Physiol. 2010, 153, 1526–1538. [Google Scholar] [CrossRef]
- Dong, N.Q.; Lin, H.X. Contribution of phenylpropanoid metabolism to plant development and plant–environment interactions. J. Integr. Plant Biol. 2021, 63, 180–209. [Google Scholar] [CrossRef]
- Jańczak-Pieniążek, M.; Cichoński, J.; Michalik, P.; Chrzanowski, G. Effect of heavy metal stress on phenolic compounds accumulation in winter wheat plants. Molecules 2022, 28, 241. [Google Scholar] [CrossRef]
- Zhang, L.; Ho, C.T.; Zhou, J.; Santos, J.S.; Amstrong, L.; Granato, D. Chemistry and biological activities of processed Camellia sinensis teas: A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1474–1495. [Google Scholar] [CrossRef] [PubMed]
- Rani, A.; Vats, S.K.; Sharma, M.; Kumar, S. Catechin promotes growth of Arabidopsis thaliana with concomitant changes in vascular system, photosynthesis and hormone content. Biol. Plant. 2011, 55, 779–782. [Google Scholar] [CrossRef]
- Bernatoniene, J.; Kopustinskiene, D.M. The role of catechins in cellular responses to oxidative stress. Molecules 2018, 23, 965. [Google Scholar] [CrossRef] [PubMed]
- Zlatić, N.; Stanković, M.; Simić, Z. Secondary metabolites and metal content dynamics in Teucrium montanum L. and Teucrium chamaedrys L. from habitats with serpentine and calcareous substrate. Environ. Monit. Assess. 2017, 189, 110. [Google Scholar] [CrossRef]
- Michalak, A. Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Pol. J. Environ. Stud. 2006, 15, 523–530. [Google Scholar]
- Veličković, M.J.; Dimitrijević, S.D.; Mitić, S.S.; Mitić, N.M.; Kostić, A.D. The determination of the phenolic composition, antioxidative activity and heavy metals in the extracts of Calendula officinalis L. Adv. Technol. 2014, 3, 46–51. [Google Scholar]
- Rivero, R.M.; Ruiz, J.M.; Garcia, P.C.; Lopez-Lefebre, L.R.; Sanchez, E.; Romero, L. Resistance to cold and heat stress: Accumulation of phenolic compounds in tomato and watermelon plants. Plant Sci. 2001, 160, 315–321. [Google Scholar] [CrossRef]
- Khan, M.A.M.; Ulrichs, C.; Mewis, I. Influence of water stress on the glucosinolate profile of Brassica oleracea var. italica and the performance of Brevicoryne brassicae and Myzus persicae. Entomol. Exp. Appl. 2010, 137, 229–236. [Google Scholar]
- Brooks, R.R. Serpentine and Its Vegetation: A Multidisciplinary Approach (Ecology, Phytogeography and Physiology); Dioscorides Press: Portland, OR, USA, 1987. [Google Scholar]
- Dresler, S.; Rutkowska, E.; Bednarek, W.; Stanisławski, G.; Kubrak, T.; Bogucka-Kocka, A.; Wójcik, M. Selected secondary metabolites in Echium vulgare L. populations from nonmetalliferous and metalliferous areas. Phytochemistry 2017, 133, 4–14. [Google Scholar] [CrossRef]
- Pavlova, D.; Karadjova, I.; Stanković, M.; Zlatić, N. Ecology of Teucrium species: Habitat related metal content dynamics. In Teucrium Species: Biology and Applications, 1st ed.; Stanković, M., Ed.; Springer: Cham, Switzerland, 2020; pp. 73–110. [Google Scholar]
- Hethelyi, I.; Domokos, J.; Lemberkovics, E.; Verzar-Petri, G. Essential oils of Hungarian flora. Herba Hung. 1986, 25, 135. [Google Scholar]
- Novaković, M.; Vučković, I.; Janaćković, P.; Soković, M.; Filipović, A.; Tešević, V.; Milosavljević, S. Chemical composition, antibacterial and antifungal activity of the essential oils of Cotinus coggygria from Serbia. J. Serb. Chem. Soc. 2007, 72, 1045–1051. [Google Scholar] [CrossRef]
- Tsankova, E.T.; Dyulgerov, A.S.; Milenkov, B.K. Essential oils research. J. Essent. Oil Res. 1993, 5, 205. [Google Scholar] [CrossRef]
- Tzakou, O.; Bazos, I.; Yannitsaros, A. Composition of the essential oil of Greek plants. Flavour Frag. J. 2005, 20, 531. [Google Scholar] [CrossRef]
- Barra, A. Factors affecting chemical variability of essential oils: A review of recent developments. Nat. Prod. Commun. 2009, 4, 1147–1154. [Google Scholar] [CrossRef] [PubMed]
- Zlatić, N.; Mihailović, V.; Lješević, M.; Beškoski, V.; Stanković, M. Geological substrate-related variability of Teucrium montanum L. (Lamiaceae) essential oil. Biochem. Syst. Ecol. 2022, 100, 104372. [Google Scholar] [CrossRef]
- Nogués, I.; Muzzini, V.; Loreto, F.; Bustamante, M.A. Drought and soil amendment effects on monoterpene emission in rosemary plants. Sci. Total Environ. 2015, 538, 768–778. [Google Scholar] [CrossRef] [PubMed]
- Marčetić, M.; Kovačević, N.; Lakušić, B.; Lakušić, B. Habitat-related variation in composition of the essential oil of Seseli rigidum Waldst. & Kit. (Apiaceae). Phytochemistry 2017, 135, 80–92. [Google Scholar] [CrossRef]
- Marschner, P. Mineral Nutrition of Higher Plants, 3rd ed.; Academic Press: London, UK, 2012. [Google Scholar]
- Zlatić, N.; Stanković, M. Effects of calcareous and serpentinite parent material on the mineral characteristics of soils and plant material of Teucrium montanum L. (Lamiaceae). Environ. Monit. Assess. 2019, 191, 564. [Google Scholar] [CrossRef]
- Mittler, R. ROS are good. Trends Plant Sci. 2017, 22, 11–19. [Google Scholar] [CrossRef]
- Gershenzon, J.; Dudareva, N. The function of terpene natural products in the natural world. Nat. Chem. Biol. 2007, 3, 408–414. [Google Scholar] [CrossRef]
- Schwab, W.; Davidovich-Rikanati, R.; Lewinsohn, E. Biosynthesis of plant-derived flavor compounds. Plant J. 2008, 54, 712–732. [Google Scholar] [CrossRef] [PubMed]
- Dudareva, N.; Klempien, A.; Muhlemann, J.K.; Kaplan, I. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol. 2013, 198, 16–32. [Google Scholar] [CrossRef] [PubMed]
- Grace, S.C. Phenolics as antioxidants. In Antioxidants and Reactive Oxygen Species in Plants; Smirnoff, N., Ed.; Blackwell Publishing: Oxford, UK, 2005. [Google Scholar]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1 km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Kastori, R.; Bogdanović, D.; Kádár, I.; Milošević, N.; Sekulić, P.; Pucarević, M. Uzorkovanje Zemljišta i Biljaka Nezagađenih i Zagađenih Staništa; Naučni Institut za Ratarstvo i Povrtarstvo: Novi Sad, Serbia, 2006. [Google Scholar]
- Heath, R.L.; Packer, L. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 1968, 125, 189–198. [Google Scholar] [CrossRef]
- Hu, L.; Bi, A.; Hu, Z.; Amombo, E.; Li, H.; Fu, J. Antioxidant metabolism, photosystem II and fatty acid composition of two tall fescue genotypes with different heat tolerance under high temperature stress. Front. Plant Sci. 2018, 9, 1242. [Google Scholar] [CrossRef]
- He, X.; Gao, S. Changes of antioxidant enzyme and phenylalanine ammonia-lyase activities during Chimonanthus praecox seed maturation. Z. Naturforsch. C 2008, 63, 569–573. [Google Scholar] [CrossRef]
- Baque, M.A.; Lee, E.J.; Paek, K.Y. Medium salt strength induced changes in growth, physiology and secondary metabolite content in adventitious roots of Morinda citrifolia: The role of antioxidant enzymes and phenylalanine ammonia lyase. Plant Cell Rep. 2010, 29, 685–694. [Google Scholar] [CrossRef]
- Locatelli, M.; Zengin, G.; Uysal, A.; Carradori, S.; De Luca, E.; Bellagamba, G.; Aktumsek, A.; Lazarova, I. Multicomponent pattern and biological activities of seven Asphodeline taxa: Potential sources of natural-functional ingredients for bioactive formulations. J. Enzym. Inhib. Med. Chem. 2016, 32, 60–67. [Google Scholar] [CrossRef]
- Ferrante, C.; Recinella, L.; Locatelli, M.; Guglielmi, P.; Secci, D.; Leporini, L.; Chiavaroli, A.; Leone, S.; Martinotti, S.; Brunetti, L.; et al. Protective effects induced by microwave-assisted aqueous Harpagophytum extract on rat cortex synaptosomes challenged with amyloid β-peptide. Phytother. Res. 2017, 31, 1257–1264. [Google Scholar] [CrossRef]
- Mihailović, V.; Mišić, D.; Matić, S.; Mihailović, M.; Stanić, S.; Vrvić, M.; Katanić, J.; Mladenović, M.; Stanković, N.; Boroja, T.; et al. Comparative phytochemical analysis of Gentiana cruciata L. roots and aerial parts and their biological activities. Ind. Crop. Prod. 2015, 73, 49–62. [Google Scholar] [CrossRef]
- Stanković, M.; Petrović, M.; Godjevac, D.; Stevanović, Z. Screening inland halophytes from the central Balkan for their antioxidant activity in relation to total phenolic compounds and flavonoids: Are there any prospective medicinal plants? J. Arid Environ. 2015, 120, 26–32. [Google Scholar] [CrossRef]
- Pharmacopoeia Europaea. European Pharmacopoeia, 11th ed.; Council of Europe: Strasbourg, France, 2023. [Google Scholar]
- Adams, R.P. Identification of Essential Oil Compounds by Gas Chromatography and Mass Spectrometry, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2009. [Google Scholar]
- Cañas, R.A.; Amiour, N.; Quilleré, I.; Hirel, B. An integrated statistical analysis of the genetic variability of nitrogen metabolism in the ear of three maize inbred lines (Zea mays L.). J. Exp. Bot. 2011, 62, 2309–2318. [Google Scholar] [CrossRef]
Element | Sample | BG * | IG | OKG | GRG | DG | DSD |
---|---|---|---|---|---|---|---|
Al | Soil | 8890.15 ± 36.0 b | 5284.07 ± 4.3 c | 12,062.67 ± 18.0 a | 12,650.60 ± 13.0 a | 328.32 ± 20.0 d | 5369.29 ± 8.0 c |
Leaves | 7.10 ± 1.8 bc | 17.30 ± 2.6 a | 5.26 ± 0.2 c | 9.76 ± 1.4 b | 11.79 ± 2.8 ab | 11.79 ± 2.9 ab | |
Bark | 17.39 ± 1.9 b | 20.89 ± 0.8 b | 8.52 ± 1.20 c | 29.35 ± 2.9 a | 14.91 ± 2.2 b | 15.04 ± 3.1 b | |
As | Soil | 1.48 ± 1.15 c | 1.93 ± 0.19 c | 19.37 ± 1.0 a | 5.04 ± 0.20 b | 18.42 ± 1.7 a | 3.73 ± 0.06 c |
Leaves | n.d. ** | n.d. | n.d. | n.d. | n.d. | n.d. | |
Bark | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | |
B | Soil | 6.46 ± 0.40 a | 6.88 ± 1.6 a | 2.44 ± 0.46 bc | 3.94 ± 0.62 b | 0.88 ± 0.08 cd | 1.46 ± 0.12 c |
Leaves | 13.01 ± 2.4 c | 16.40 ± 0.3 b | 13.50 ± 0.3 c | 14.68 ± 2.0 c | 20.88 ± 0.8 a | 12.40 ± 0.9 c | |
Bark | 12.75 ± 1.2 b | 13.44 ± 1.6 b | 13.74 ± 0.1 b | 13.90 ± 1.3 b | 15.29 ± 0.8 ab | 16.69 ± 0.5 a | |
Ba | Soil | 22.35 ± 10.6 c | 42.83 ± 5.3 b | 53.13 ± 3.0 a | 45.65 ± 2.90 ab | 2.18 ± 0.12 d | 21.82 ± 3.1 c |
Leaves | 1.33 ± 0.39 e | 6.65 ± 1.1 d | 23.88 ± 3.5 a | 12.99 ± 2.7 c | 16.05 ± 1.8 b | 7.61 ± 1.3 cd | |
Bark | 9.66 ± 0.5 c | 39.63 ± 2.1 a | 43.25 ± 3.6 a | 25.32 ± 3.3 b | 27.01 ± 1.7 b | 30.74 ± 2.5 b | |
Ca | Soil | 6912.99 ± 291.0 e | 4553.54 ± 182.0 f | 64,405.99 ± 581.0 c | 151,449.55 ± 90.0 b | 365,118.77 ± 1081.0 a | 11,831.88 ± 483.0 d |
Leaves | 5022.17 ± 78.0 d | 4369.37 ± 69.0 d | 13,165.68 ± 80.0 b | 12,116.14 ± 74.0 bc | 16,562.80 ± 81.0 a | 9911.79 ± 69.0 c | |
Bark | 6092.84 ± 174.0 d | 5624.63 ± 127.0 d | 14,163.57 ± 147.0 a | 13,038.63 ± 136.0 b | 13,945.09 ± 125.0 a | 12,301.82 ± 122.0 bc | |
Cd | Soil | 4.28 ± 0.41 a | 4.29 ± 0.19 a | 2.05 ± 0.07 b | 1.35 ± 0.11 bc | 0.37 ± 0.06 d | 1.09 ± 0.05 c |
Leaves | n.d. | 0.02 ± 0.01 a | 0.01 ± 0.01 a | 0.01 ± 0.01 a | 0.01 ± 0.01 a | 0.010 ± 0.01 a | |
Bark | 0.03 ± 0.01 b | 0.03 ± 0.01 b | 0.02 ± 0.01 b | 0.05 ± 0.01 a | 0.03 ± 0.01 b | 0.04 ± 0.01 ab | |
Co | Soil | 96.36 ± 10.0 a | 63.96 ± 3.0 b | 10.30 ± 0.5 c | 5.53 ± 0.1 c | 2.36 ± 0.28 c | 5.55 ± 0.6 c |
Leaves | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | |
Bark | 0.17 ± 0.03 a | 0.15 ± 0.02 a | n.d. | n.d. | 0.02 ± 0.01 b | n.d. | |
Cr | Soil | 551.15 ± 53.0 a | 567.64 ± 131.0 a | 37.02 ± 2.7 b | 24.83 ± 2.1 b | 6.59 ± 0.20 c | 20.04 ± 3.4 b |
Leaves | 0.36 ± 0.05 b | 2.61 ± 0.08 a | 0.92 ± 0.18 c | n.d. | 0.05 ± 0.01 d | 0.41 ± 0.04 b | |
Bark | 0.75 ± 0.10 c | 1.12 ± 0.22 b | 0.63 ± 0.08 c | 0.79 ± 0.09 c | 1.45 ± 0.02 a | 0.53 ± 0.04 c | |
Cu | Soil | 30.14 ± 2.40 b | 40.67 ± 0.70 a | 26.01 ± 1.2 c | 25.57 ± 1.5 c | 4.86 ± 0.38 e | 13.69 ± 0.1 d |
Leaves | 2.11 ± 0.20 c | 3.26 ± 0.03 b | 2.42 ± 0.19 c | 7.19 ± 0.2 a | 2.85 ± 0.19 b | 2.77 ± 0.33 bc | |
Bark | 3.02 ± 0.66 b | 3.35 ± 0.31 b | 2.65 ± 0.43 b | 6.43 ± 0.5 a | 3.12 ± 0.12 b | 3.71 ± 0.82 b | |
Fe | Soil | 60,683.28 ± 104.0 a | 55,621.77 ± 104.0 b | 23,423.76 ± 178.0 c | 15,352.03 ± 60.0 d | 1807.83 ± 18.0 f | 10,937.80 ± 15.0 e |
Leaves | 30.20 ± 2.4 c | 56.26 ± 11.0 a | 22.82 ± 2.3 c | 45.88 ± 5.3 b | 38.00 ± 2.8 b | 40.30 ± 0.1 b | |
Bark | 47.27 ± 8.9 b | 70.60 ± 3.0 a | 21.31 ± 2.4 c | 62.65 ± 13.0 a | 32.99 ± 4.6 b | 40.85 ± 4.9 b | |
K | Soil | 1041.90 ± 21.0 bc | 553.73 ± 6.0 d | 1077.17 ± 1.0 b | 2083.49 ± 10.0 a | 184.04 ± 6.40 e | 609.81 ± 11.0 d |
Leaves | 1987.18 ± 160.0 d | 2373.01 ± 210.0 cd | 3143.0 ± 186.0 b | 2489.76 ± 166.0 c | 3484.91 ± 153.0 a | 2918.76 ± 199.0 bc | |
Bark | 2867.99 ± 84.0 c | 3112.29 ± 116.0 bc | 2765.29 ± 178.0 c | 3592.78 ± 114.0 b | 4647.88 ± 150.0 a | 3659.33 ± 108.0 b | |
Li | Soil | 14.54 ± 0.68 e | 9.62 ± 0.17 f | 78.11 ± 0.3 c | 131.21 ± 0.7 b | 221.86 ± 3.70 a | 21.03 ± 0.37 d |
Leaves | 3.24 ± 0.56 cd | 2.88 ± 0.26 d | 6.30 ± 0.5 ab | 5.68 ± 0.6 b | 8.05 ± 1.2 a | 4.65 ± 0.8 bc | |
Bark | 3.79 ± 1.01 c | 3.56 ± 0.40 c | 6.44 ± 0.6 a | 5.69 ± 0.5 ab | 6.45 ± 0.1 a | 5.42 ± 0.2 b | |
Mg | Soil | 1428.84 ± 149.0 a | 1484.41 ± 117.0 a | 856.88 ± 124.0 c | 900.32 ± 93.0 bc | 661.99 ± 60.0 d | 1119.05 ± 60.0 b |
Leaves | 790.92 ± 66.0 a | 1008.24 ± 136.0 a | 835.31 ±87.0 a | 793.32 ± 74.0 a | 917.23 ± 72.0 a | 825.44 ± 82.0 a | |
Bark | 570.12 ± 85.0 bc | 897.47 ± 62.0 a | 508.11 ± 78.3 c | 626.94 ± 91.0 b | 630.54 ± 96.0 b | 662.90 ± 95.0 b | |
Mn | Soil | 887.60 ± 8.1 a | 893.92 ± 8.2 a | 446.77 ± 10.2 b | 289.63 ± 3.0 c | 215.59 ± 0.80 c | 258.65 ± 4.2 c |
Leaves | 6.80 ± 1.4 cd | 4.61 ± 1.34 d | 8.09 ± 0.6 c | 30.58 ± 2.8 a | 15.26 ± 2.1 b | 11.84 ± 1.2 b | |
Bark | 7.10 ± 0.1 cd | 6.51 ± 0.85 d | 4.54 ± 0.80 e | 8.77 ± 1.2 bc | 10.14 ± 2.2 b | 12.90 ± 1.0 a | |
Na | Soil | 108.58 ± 23.0 a | 112.48 ± 49.0 a | n.d. | n.d. | n.d. | 41.53 ± 8.80 b |
Leaves | 8.74 ± 1.9 c | 13.11 ± 2.0 b | 10.80 ± 1.9 bc | 22.66 ± 2.6 a | 8.91 ± 1.1 c | 7.75 ± 1.6 d | |
Bark | 88.35 ± 9.0 b | 71.15 ± 7.0 b | 24.03 ± 4.6 c | 187.69 ± 16.0 a | 20.78 ± 3.2 c | 28.36 ± 4.1 c | |
Ni | Soil | 850.32 ± 99.0 a | 887.96 ± 2.0 a | 75.58 ± 4.0 b | 15.08 ± 0.1 c | 5.15 ± 0.4 d | 19.73 ± 0.1 c |
Leaves | 1.58 ± 0.61 b | 2.18 ± 0.15 a | 0.26 ± 0.04 c | 0.26 ± 0.03 c | 0.29 ± 0.03 c | 0.20 ± 0.04 c | |
Bark | 2.18 ± 0.35 a | 2.13 ± 0.59 a | 0.76 ± 0.07 b | 0.58 ± 0.06 b | 0.45 ± 0.09 bc | 0.37 ± 0.02 c | |
P | Soil | 323.28 ± 37.0 d | 1988.97 ± 38.0 a | 915.34 ± 25.0 b | 522.87 ± 27.0 c | 458.28 ± 3.0 cd | 864.43 ± 60.0 b |
Leaves | 1712.45 ± 49.0 c | 1897.64 ± 53.0 bc | 1738.66 ± 45.0 c | 1530.34 ± 33.0 d | 2407.98 ± 69.0 a | 1508.36 ± 48.0 d | |
Bark | 1250.48 ± 85.0 a | 1298.60 ± 53.0 a | 856.46 ± 51.0 b | 1346.08 ± 45.0 a | 1486.51 ± 42.0 a | 1353.05 ± 21.0 a | |
Pb | Soil | 14.67 ± 3.2 b | 63.02 ± 3.0 a | 17.37 ± 2.0 b | 8.33 ± 0.1 c | 1.74 ± 0.21 d | 8.29 ± 0.3 c |
Leaves | 0.05 ± 0.01 a | 0.06 ± 0.01 a | n.d. | 0.10 ± 0.02 a | 0.01 ± 0.01 a | 0.01 ± 0.01 a | |
Bark | 0.64 ± 0.12 b | 0.61 ± 0.12 b | 0.41 ± 0.06 c | 0.90 ± 0.04 a | 0.25 ± 0.01 cd | 0.05 ± 0.01 d | |
S | Soil | 247.36 ± 25.0 c | 703.71 ± 31.0 a | 386.86 ± 34.0 b | 394.95 ± 23.0 b | 183.95 ± 24.0 c | 231.05 ± 5.0 c |
Leaves | 961.54 ± 10.0 a | 1052.81 ± 9.0 a | 1095.66 ± 19.0 a | 921.27 ± 11.0 a | 1067.67 ± 10.0 a | 972.61 ± 18.0 a | |
Bark | 448.31 ± 64.0 a | 423.28 ± 11.0 a | 363.54 ± 4.0 b | 403.68 ± 6.0 a | 406.36 ± 17.0 a | 433.96 ± 26.0 a | |
Se | Soil | n.d. * | n.d. | n.d. | n.d. | n.d. | n.d. |
Leaves | 0.46 ± 0.1 a | 0.46 ± 0.11 a | 0.42 ± 0.10 a | 0.51 ± 0.09 a | 0.40 ± 0.08 a | 0.52 ± 0.10 a | |
Bark | 0.51 ± 0.04 b | 0.73 ± 0.03 a | 0.80 ± 0.11 a | 0.60 ± 0.02 b | 0.82 ± 0.10 a | 0.62 ± 0.10 b | |
Zn | Soil | 89.89 ± 9.0 a | 86.96 ± 1.0 a | 61.46 ± 3.0 b | 47.49 ± 2.0 c | 27.22 ± 0.4 d | 35.14 ± 0.1 cd |
Leaves | 13.49 ± 0.8 b | 15.40 ± 0.1 a | 12.72 ± 0.7 b | 16.20 ± 0.2 a | 10.07 ± 0.1 bc | 9.59 ± 0.4 c | |
Bark | 31.95 ± 4.5 b | 39.05 ± 1.1 a | 21.70 ± 0.3 c | 28.58 ± 1.8 b | 17.79 ± 1.4 c | 34.15 ± 0.2 ab |
Sample | Leaf Blade Length (mm) | Leaf Plate Width (mm) | The Surface of the Leaf Plate (mm2) | Petiole Length (mm) |
---|---|---|---|---|
BG | 71.21 ± 6.27 b | 46.24 ± 4.32 c | 2075.99 ± 382.27 c | 32.47 ± 11.89 a |
IG | 67.56 ± 7.57 cd | 45.18 ± 7.56 c | 2479.35 ± 534.35 b | 23.43 ± 6.86 b |
OKG | 65.54 ± 9.69 d | 45.45 ± 5.79 c | 2453.22 ± 578.44 b | 15.95 ± 5.83 c |
GRG | 76.71 ± 8.00 a | 57.76 ± 6.78 a | 3550.65 ± 653.07 a | 23.29 ± 5.59 b |
DG | 64.37 ± 5.59 d | 48.93 ± 5.10 b | 2552.70 ± 452.22 b | 20.99 ± 8.01 b |
DSD | 70.89 ± 8.15 bc | 46.22 ± 5.88 bc | 2374.44 ± 509.65 b | 22.52 ± 8.72 b |
BG * | IG | OKG | GRG | DG | DSD | ||
---|---|---|---|---|---|---|---|
Leaves | |||||||
Gallic acid | 26.99 ± 1.35 a | 6.77 ± 0.41 d | 22.60 ±1.13 b | 18.70 ±1.87 c | 17.01 ± 1.02 c | 26.20 ± 1.57 a | |
Catechin | 390.29 ± 23.41 f | 444.00 ± 22.20 d | 1699.44 ± 84.97 c | 420.21 ± 25.21 e | 2268.73 ± 113.41 a | 2200.10 ± 110.01 b | |
Chlorogenic acid | 13.18 ± 0.79 a | BLQ ** | 9.17 ±0.46 b | / | 6.01 ± 0.36 c | 2.33 ± 0.14 d | |
Epicatechin | 19.69 ± 1.18 a | / | 11.04 ± 0.66 b | 5.99 ± 0.30 c | 5.83 ± 0.29 c | / | |
Syringic acid | / | / | / | / | / | / | |
Rutin | 60.49 ± 3.63 cd | 37.12 ± 2.23 e | 56.88 ± 3.41 d | 145.25 ± 8.72 a | 72.73 ± 4.37 bc | 84.46 ± 5.07 b | |
o-coumaric acid | 49.03 ± 2.45 a | 27.72 ± 1.66 bc | 24.62 ± 1.48 cd | 30.58 ± 1.83 b | 22.39 ± 1.34 d | 50.98 ± 3.06 a | |
Total | 559.67 ± 27.98 d | 515.86 ± 30.95 d | 1823.75 ± 109.43 b | 620.74 ± 31.04 c | 2392.69 ± 119.63 a | 2364.07 ± 118.20 a | |
Bark | |||||||
Gallic acid | 13.18 ± 0.79 a | 7.07 ± 0.42 b | 6.22 ± 0.44 b | 4.77 ± 0.29 b | 11.41 ± 1.03 a | 12.84 ± 1.03 a | |
Catechin | 308.69 ± 15.43 a | 164.64 ± 9.88 c | 183.56 ± 11.01 b | 113.26 ± 6.80 e | 299.63 ± 14.98 a | 145.71 ± 11.66 d | |
Chlorogenic acid | / | / | / | / | / | / | |
Epicatechin | / | 64.98 ± 3.90 b | 113.91 ± 6.83 a | / | 114.51 ± 6.87 a | 108.10 ± 6.49 a | |
Syringic acid | 58.58 (±3.51) a | / | / | 34.65 (±2.08) b | / | / | |
Rutin | 8.91 ± 0.53 a | 2.90 ± 0.17 b | 7.20 ± 0.43 a | 3.43 ± 0.21 b | 3.94 ± 0.24 b | 1.63 ± 0.10 b | |
o-coumaric acid | / | / | / | / | / | / | |
Total | 389.36 ± 19.47 b | 239.58 ± 14.37 e | 310.89 ± 18.65 c | 156.10 ± 9.37 f | 429.50 ± 21.48 a | 268.29 ± 13.41 d |
Sample | TPC (mg GAE g−1 of Sample) | TFC (mg RUE g−1 of Sample) | TAA/e (µg mL−1) | TAA/eo (%) | |
---|---|---|---|---|---|
BG * | Leaves | 472.96 ± 3.42 b | 57.84 ± 0.33 ab | 1219.76 ± 6.52 d | 3.89 ± 0.40 a |
IG | 526.47 ± 5.12 a | 60.56 ± 0.00 ab | 548.50 ± 5.14 b | 2.69 ± 0.25 b | |
OKG | 454.45 ± 2.85 b | 54.99 ± 0.27 b | 622.59 ± 4.82 b | 3.84 ± 0.13 a | |
GRG | 452.56 ± 4.35 b | 72.43 ± 0.40 a | 210.56 ± 2.16 a | 0.70 ± 0.06 c | |
DG | 473.05 ± 6.69 b | 64.42 ± 0.20 ab | 801.24 ± 5.81 c | 2.72 ± 0.28 b | |
DSD | 510.53 ± 6.80 a | 63.90 ± 0.36 ab | 897.11 ± 6.32 c | 1.43 ± 0.15 c | |
BG | Bark | 218.99 ± 4.09 a | 41.30 ± 0.49 a | 143.07 ± 5.62 d | 4.42 ± 0.56 d |
IG | 195.07 ± 3.44 b | 37.33 ± 0.13 ab | 105.89 ± 3.18 c | 5.61 ± 0.21 abc | |
OKG | 187.86 ± 1.88 b | 22.85 ± 0.10 c | 106.78 ± 4.56 c | 5.90 ± 0.45 ab | |
GRG | 203.26 ± 4.71 a | 37.39 ± 0.27 ab | 86.24 ± 3.62 b | 6.31 ± 0.63 a | |
DG | 186.32 ± 7.43 b | 26.91 ± 0.16 c | 116.35 ± 2.85 c | 4.83 ± 0.23 cd | |
DSD | 190.82 ± 1.03 b | 33.42 ± 0.08 b | 31.48 ± 1.52 a | 4.98 ± 0.41 bcd |
EO Constituents | KI * | RI ** | BG *** | IG | OKG | GRG | DG | DSD | |
---|---|---|---|---|---|---|---|---|---|
1 | (E)-2-Hexanal | 846 | 853.1 | 0.07 | 0.10 | / | 0.06 | / | / |
2 | (Z)-3-Hexanol | 850 | 856.9 | 0.15 | 0.17 | / | 0.03 | / | 0.07 |
3 | α-Pinene | 932 | 938.6 | 1.81 | 2.09 | 2.77 | 8.62 | 3.93 | 6.33 |
4 | Camphene | 946 | 954.4 | 0.10 | / | / | 0.14 | 0.14 | 0.20 |
5 | β-Pinene | 974 | 982.8 | 0.36 | 0.19 | 0.37 | 1.83 | 0.65 | 0.89 |
6 | Myrcene | 988 | 991.9 | 1.23 | 1.16 | 2.33 | 10.98 | 1.22 | 9.46 |
7 | (E)-3-Hexenyl acetate | 1001 | 1005.9 | 0.50 | 0.37 | 0.30 | 0.35 | 1.64 | 0.40 |
8 | α-Phellandrene | 1002 | 1009.0 | 0.07 | / | 0.07 | 0.07 | 0.08 | 0.07 |
9 | δ-3-Carene | 1008 | 1015.3 | 0.20 | 0.18 | 0.30 | 0.13 | 0.26 | 0.11 |
10 | α-Terpinene | 1014 | 1021.2 | 0.07 | / | 0.09 | 0.31 | 0.08 | / |
11 | Limonene | 1024 | 1036.5 | 59.17 | 61.86 | 68.73 | 31.74 | 56.01 | 37.15 |
12 | cis-β-Ocimene | 1032 | 1040.3 | 22.30 | 20.28 | 10.16 | 27.98 | 19.41 | 31.85 |
13 | trans-β-Ocimene | 1044 | 1050.0 | 5.22 | 5.05 | 2.93 | 6.19 | 4.70 | 6.53 |
14 | Terpinolene | 1086 | 1093.8 | 5.56 | 4.74 | 8.51 | 3.86 | 6.54 | 2.43 |
15 | Linalool | 1095 | 1101.0 | 0.10 | 0.09 | 0.09 | 0.02 | 0.14 | 0.12 |
16 | n-Nonanal | 1100 | 1103.9 | 0.10 | 0.09 | 0.14 | 0.08 | 0.16 | 0.07 |
17 | allo-Ocimene | 1128 | 1130.6 | 0.32 | 0.31 | 0.16 | 0.45 | 0.27 | 0.46 |
18 | (Z)-3-Hexenyl butanoate | 1184 | 1185.0 | 0.08 | / | / | 0.09 | 0.08 | 0.08 |
19 | p-Cymen-8-ol | 1179 | 1190.8 | 0.21 | 0.20 | 0.36 | 0.13 | 0.18 | 0.07 |
20 | α-Terpineol | 1186 | 1197.6 | 0.15 | 0.14 | 0.14 | 0.14 | 0.13 | 0.15 |
21 | (Z)-3-Hexenyl 2-methyl butanoate | 1229 | 1232.0 | / | / | / | 0.05 | 0.07 | / |
22 | Isobornyl acetate | 1283 | 1293.3 | 0.10 | 0.12 | 0.21 | 0.10 | 0.11 | / |
23 | α-Terpinyl acetate | 1346 | 1355.7 | 0.24 | 0.26 | 0.47 | 0.15 | 0.36 | 0.15 |
24 | α-Copaene | 1374 | 1390.4 | / | / | / | 0.17 | 0.07 | 0.07 |
25 | trans-β-Caryophyllene | 1417 | 1439.5 | 0.67 | 1.74 | 0.77 | 1.96 | 2.73 | 0.92 |
26 | allo-Aromadendrene | 1458 | 1459.0 | 0.10 | 0.10 | 0.12 | 0.08 | / | 0.07 |
27 | α-Humulene | 1452 | 1474.0 | 0.08 | 0.12 | 0.08 | 0.25 | 0.19 | 0.15 |
28 | trans-9-epi-Caryophyllene | 1464 | 1481.8 | / | / | / | 0.10 | / | 0.08 |
29 | γ-Muurolene | 1478 | 1491.8 | 0.13 | 0.07 | 0.08 | 0.21 | 0.08 | 0.17 |
30 | Germacrene-D | 1484 | 1500.4 | 0.09 | 0.09 | 0.09 | 2.25 | 0.23 | 1.01 |
31 | γ-Amorphene | 1483 | 1495.9 | / | / | / | 0.06 | / | / |
32 | α-Muurolene | 1500 | 1514.9 | 0.17 | 0.12 | 0.14 | 0.30 | / | 0.23 |
33 | γ-Cadinene | 1513 | 1532.0 | 0.09 | / | / | 0.10 | / | 0.11 |
34 | δ-Cadinene | 1522 | 1537.9 | 0.23 | 0.10 | 0.14 | 0.39 | 0.16 | 0.36 |
35 | Spathulenol | 1577 | 1601.1 | / | / | / | 0.15 | / | 0.07 |
36 | Cariophyllene oxide | 1582 | 1609.0 | 0.07 | 0.15 | 0.07 | 0.17 | 0.10 | 0.09 |
Monoterpene hydrocarbons (MH) | 96.9 | 96.2 | 96.7 | 92.6 | 94.9 | 95.9 | |||
Oxygenated monoterpenes (OM) | 1.2 | 1.2 | 1.4 | 0.9 | 1.2 | 0.7 | |||
Sesquiterpene hydrocarbons (SH) | 1.6 | 2.3 | 1.4 | 5.9 | 3.5 | 3.2 | |||
Oxygenated sesquiterpenes (OS) | 0.1 | 0.2 | 0.1 | 0.3 | 0.1 | 0.2 | |||
Total identified | 99.75 | 99.88 | 99.63 | 99.69 | 99.73 | 99.90 | |||
Yields (V/m) | 0.25 | 0.25 | 0.20 | 0.175 | 0.20 | 0.15 |
Components | KI * | RI ** | BG *** | IG | OKG | GRG | DG | DSD | |
---|---|---|---|---|---|---|---|---|---|
1 | Tricyclene | 921 | 927.2 | 0.25 | 0.10 | 0.06 | / | 0.14 | 0.16 |
2 | α-Thujene | 924 | 930.5 | 0.42 | 0.10 | 9.70 | 0.86 | 1.14 | 0.97 |
3 | α-Pinene | 932 | 940.5 | 51.71 | 54.52 | 43.23 | 47.29 | 48.76 | 45.09 |
4 | Camphene | 946 | 954.6 | 1.80 | 0.80 | 0.70 | 0.50 | 1.19 | 1.33 |
5 | Sabinene | 969 | 978.1 | 0.40 | 0.45 | 1.73 | 0.51 | 0.54 | 0.47 |
6 | β-Pinene | 974 | 983.8 | 16.00 | 16.48 | 13.07 | 12.37 | 14.52 | 13.03 |
7 | Myrcene | 988 | 991.8 | 1.15 | 1.03 | 8.66 | 9.59 | 1.35 | 2.10 |
8 | α-Phellandrene | 1002 | 1008.8 | 0.18 | 0.13 | 0.52 | 0.25 | 0.38 | 0.68 |
9 | δ-3-Carene | 1008 | 1015.1 | 0.06 | / | 0.09 | 0.08 | / | 0.07 |
10 | α-Terpinene | 1014 | 1020.9 | / | / | 0.22 | 0.07 | 0.09 | 0.10 |
11 | p-Cymene | 1020 | 1028.7 | 0.32 | 0.23 | 0.24 | 0.25 | 0.06 | 0.14 |
12 | Limonene | 1024 | 1034.8 | 12.00 | 6.55 | 8.57 | 3.40 | 13.51 | 7.62 |
13 | β-Phellandrene | 1025 | 1035.7 | / | 3.09 | 3.51 | 3.79 | / | 4.38 |
14 | cis-β-Ocimene | 1032 | 1038.2 | 1.91 | 1.40 | 0.97 | 0.46 | 2.60 | 2.85 |
15 | trans-β-Ocimene | 1044 | 1048.9 | 0.36 | 0.28 | 0.36 | 0.11 | 0.70 | 0.66 |
16 | γ-Terpinene | 1054 | 1062.6 | / | / | 0.79 | 0.07 | 0.19 | 0.16 |
17 | Terpinolene | 1086 | 1092.9 | 0.75 | 0.26 | 0.97 | 1.41 | 1.07 | 1.51 |
18 | Linalool | 1095 | 1100.9 | / | / | 0.08 | / | / | / |
19 | α-Pinene oxide | 1099 | 1105.7 | 0.04 | 0.08 | / | / | / | / |
20 | allo-Ocimene | 1128 | 1130.6 | / | / | / | / | 0.06 | 0.08 |
21 | trans-Pinocarveol | 1135 | 1148.5 | 0.10 | 0.07 | / | / | / | / |
22 | Terpinne-4-ol | 1174 | 1185.2 | 0.20 | 0.10 | 0.40 | 0.08 | 0.14 | 0.22 |
23 | p-Cymen-8-ol | 1179 | 1190.9 | 0.08 | 0.15 | / | 0.07 | / | / |
24 | Cryptone | 1183 | 1194.1 | 0.14 | / | / | 0.09 | / | / |
25 | α-Terpineol | 1186 | 1197.7 | 0.38 | 0.14 | 0.14 | 0.10 | 0.15 | 0.31 |
26 | Myrtenal | 1195 | 1204.9 | 0.11 | 0.10 | / | / | / | 0.06 |
27 | Linalool acetate | 1254 | 1255.7 | / | / | 0.14 | 0.07 | 0.08 | 0.11 |
28 | Bornyl acetate | 1287 | 1293.4 | 0.36 | 0.09 | / | 0.07 | 0.59 | 0.65 |
29 | Pinocarvyl acetate | 1298 | 1309.5 | 0.07 | / | / | / | / | / |
30 | cis-Pinocarvyl acetate | 1311 | 1319.2 | 0.08 | / | / | 0.08 | / | / |
31 | Terpinyl acetate | 1346 | 1356.0 | 0.62 | 0.09 | 0.12 | 0.12 | 0.13 | 0.23 |
32 | α-Copaene | 1374 | 1390.8 | 0.32 | 0.35 | 0.13 | 0.48 | 0.17 | 0.15 |
33 | β-Longipinene | 1400 | 1404.0 | 0.14 | 0.17 | / | 0.24 | 0.10 | 0.22 |
34 | α-Gurjunene | 1409 | 1427.6 | / | 0.11 | / | 0.08 | / | 0.15 |
35 | trans-β-Caryophyllene | 1417 | 1439.4 | 0.46 | 0.58 | 0.31 | 0.42 | 0.75 | 0.42 |
36 | α-neo-Clovene | 1452 | 1461.3 | 0.56 | 0.09 | 1.24 | / | / | / |
37 | α-Humulene | 1452 | 1474.2 | 0.33 | 0.41 | 0.14 | 0.46 | 0.32 | 0.37 |
38 | allo-Aromadendrene | 1458 | 1481.8 | 0.10 | 0.20 | / | 0.18 | 0.06 | 0.22 |
39 | Cadinene | 1513 | 1492.6 | 0.60 | 0.60 | 0.20 | 0.48 | 0.58 | 0.54 |
40 | Germacrene D | 1484 | 1501.5 | 4.69 | 6.95 | 3.00 | 12.64 | 8.62 | 9.58 |
41 | β-Selinene | 1489 | 1507.8 | 0.07 | 0.10 | / | / | / | 0.11 |
42 | γ-Amorphene | 1495 | 1511.0 | 0.13 | 0.13 | / | / | 0.07 | 0.14 |
43 | α-Muurolene | 1500 | 1515.1 | 0.44 | 0.54 | 0.17 | 0.47 | 0.24 | 0.66 |
44 | δ-Cadinene | 1522 | 1538.3 | 0.92 | 1.06 | 0.27 | 0.79 | 0.79 | 1.22 |
45 | Spathulenol | 1577 | 1601.1 | 0.20 | 0.15 | 0.08 | 0.15 | 0.06 | 0.14 |
46 | Viridiflorol | 1592 | 1609.1 | 0.11 | 0.10 | / | 0.09 | / | 0.09 |
47 | Ledol | 1602 | 1618.0 | 0.10 | / | 0.09 | / | / | 0.11 |
48 | β-Oplopenone | 1607 | 1632 | / | / | / | / | 0.12 | 0.16 |
49 | Cubenol | 1645 | 1650.2 | / | / | / | 0.11 | / | 0.06 |
50 | τ-Cadinol | 1638 | 1661.7 | 0.31 | 0.46 | / | 0.39 | 0.11 | 0.55 |
51 | α-Muurolol | 1644 | 1666.1 | / | / | / | / | / | 0.15 |
52 | α-Cadinol | 1652 | 1676.5 | 0.29 | 0.54 | / | 0.55 | 0.18 | 1.10 |
53 | Caryophylla-4(12),8(13)-dien5-β-ol | 1639 | 1701.7 | 0.10 | 0.17 | / | 0.17 | / | / |
54 | Amorpha-4,9-dien-2-ol | 1700 | 1711.2 | 0.08 | 0.07 | / | 0.08 | 0.06 | 0.08 |
55 | ethylhexyl -2-Salicylat | 1807 | 1819.9 | 0.07 | 0.07 | / | / | / | / |
56 | Longifolol acetate | 1819 | 1893.3 | 0.07 | 0.09 | / | / | / | / |
Monoterpene hydrocarbons (MH) | 87.32 | 85.44 | 93.40 | 81.02 | 86.31 | 81.41 | |||
Oxygenated monoterpenes (OM) | 2.18 | 0.82 | 0.88 | 0.68 | 1.09 | 1.60 | |||
Sesquiterpene hydrocarbons (SH) | 8.75 | 1 1.29 | 5.46 | 16.23 | 11.71 | 13.79 | |||
Oxygenated sesquiterpenes (OS) | 1.34 | 1.65 | 0.17 | 1.54 | 0.53 | 2.44 | |||
Total identified | 99.59 | 99.21 | 99.92 | 99.47 | 99.64 | 99.24 | |||
Yields (V/m) | 0.75 | 0.60 | 1.00 | 0.80 | 0.60 | 0.55 |
Climatic Conditions | BG * | IG | OKG | GRG | DG | DSD |
---|---|---|---|---|---|---|
Annual mean temperature (bio1) | 10.6 | 10.0 | 9.8 | 9.8 | 10.0 | 11.5 |
Mean monthly temperature range (bio2) | 9.9 | 9.8 | 9.5 | 9.8 | 9.3 | 9.7 |
Isothermality (bio2/bio7) (×100) (bio3) | 32.7 | 32.5 | 32.1 | 32.5 | 30.9 | 31.9 |
Temperature seasonality (STD × 100) (bio4) | 749.2 | 749.3 | 737.9 | 758.3 | 782.1 | 778.8 |
Max temperature of warmest month (bio5) | 26.3 | 25.8 | 25.0 | 25.9 | 26.4 | 27.9 |
Min temperature of coldest month (bio6) | −3.9 | −4.4 | −4.5 | −4.2 | −3.7 | −2.5 |
Temperature annual range (bio5–bio6) (bio7) | 30.2 | 30.2 | 29.5 | 30.1 | 30.1 | 30.4 |
Mean temperature of wettest quarter (bio8) | 17.8 | 17.1 | 16.8 | 17.2 | 17.5 | 19.0 |
Mean temperature of driest quarter (bio9) | 2.6 | 1.9 | 1.9 | 1.8 | 1.6 | 3.1 |
Mean temperature of warmest quarter (bio10) | 19.5 | 18.9 | 18.6 | 18.8 | 19.2 | 20.6 |
Mean temperature of coldest quarter (bio11) | 1.0 | 0.4 | 0.4 | 0.2 | 0.0 | 1.4 |
Annual precipitation (bio12) | 793 | 829 | 851 | 693 | 697 | 639 |
Precipitation of wettest month (bio13) | 89 | 94 | 93 | 83 | 94 | 84 |
Precipitation of driest month (bio14) | 50 | 52 | 54 | 44 | 43 | 41 |
Precipitation seasonality (CV) (bio15) | 19.7 | 18.0 | 18.4 | 22.7 | 27.8 | 25.8 |
Precipitation of wettest quarter (bio16) | 256 | 259 | 269 | 231 | 247 | 221 |
Precipitation of driest quarter (bio17) | 158 | 167 | 170 | 136 | 132 | 124 |
Precipitation of warmest quarter (bio18) | 229 | 230 | 242 | 205 | 226 | 201 |
Precipitation of coldest quarter (bio19) | 172 | 177 | 185 | 147 | 144 | 138 |
Locality/Abbreviation | Type of Habitat | Latitude and Longitude | Altitude |
---|---|---|---|
Brdjani Gorge/BG | Serpentinite rocky habitat | N 43.988121° E 20.417711° | 305 m |
Ibar Gorge/IG | Edge of pine forest, serpentinite substrate | N 43.607878° E 20.553707° | 277 m |
Ovčarsko-Kablarska Gorge/OKG | Edge of oak forest, limestone substrate | N 43.899992° E 20.190301° | 286 m |
Grza Gorge/GRG | Thermophilous rocky habitat, limestone substrate | N 43.858200° E 21.614274° | 357 m |
Djerdap Gorge/DG | Thermophilous rocky habitat, limestone substrate | N 44.841213° E 21.259362° | 90 m |
Deliblato Sands/DSD | Thermophilous sandy habitat, silicate/carbonate substrate | N 44.659712° E 21.671853° | 81 m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stanković, M.; Zlatić, N.; Locatelli, M.; Perrucci, M.; Marković, T.; Jakovljević, D. Comprehensive Study of Habitat Substrate-Related Variability of Cotinus coggygria Scop. as a Valuable Source of Natural Bioactive Compounds. Plants 2025, 14, 2695. https://doi.org/10.3390/plants14172695
Stanković M, Zlatić N, Locatelli M, Perrucci M, Marković T, Jakovljević D. Comprehensive Study of Habitat Substrate-Related Variability of Cotinus coggygria Scop. as a Valuable Source of Natural Bioactive Compounds. Plants. 2025; 14(17):2695. https://doi.org/10.3390/plants14172695
Chicago/Turabian StyleStanković, Milan, Nenad Zlatić, Marcello Locatelli, Miryam Perrucci, Tatjana Marković, and Dragana Jakovljević. 2025. "Comprehensive Study of Habitat Substrate-Related Variability of Cotinus coggygria Scop. as a Valuable Source of Natural Bioactive Compounds" Plants 14, no. 17: 2695. https://doi.org/10.3390/plants14172695
APA StyleStanković, M., Zlatić, N., Locatelli, M., Perrucci, M., Marković, T., & Jakovljević, D. (2025). Comprehensive Study of Habitat Substrate-Related Variability of Cotinus coggygria Scop. as a Valuable Source of Natural Bioactive Compounds. Plants, 14(17), 2695. https://doi.org/10.3390/plants14172695