Regulation of Flower Bud Differentiation Hormones and Identification of Related Key Genes in Dendrobium officinale Based on Multi-omics Analysis
Abstract
1. Introduction
2. Results
2.1. Morphological and Physiological Changes in D. officinale Flower Buds Under Different Hormone Treatments
2.2. Transcriptome Quality Control and Differential Gene Clustering Analysis
2.3. Annotation of DEGs
2.4. Transcription Factor Analysis
2.5. WGCNA Screening of Transcription Factors Regulating D. officinale Flower Bud Differentiation by Hormones
2.6. Metabolomics Analysis
2.7. Differential Metabolite Clustering Analysis
2.8. Combined Analysis of Transcriptomics and Metabolomics
2.9. Responses of Plant Hormone Pathways to Hormones
2.10. Real-Time Fluorescence Quantitative PCR (qPCR) Analysis
3. Discussion
4. Materials and Methods
4.1. Plant Materials and Experimental Design
4.2. Physiological Parameters Determination
4.2.1. Determination of Soluble Sugar and Starch
4.2.2. Determination of Soluble Protein
4.2.3. Determination of POD Activity
4.2.4. Determination of CAT Activity
4.3. cDNA Library Construction, Sequencing, and Data Analysis
4.4. Identification and Analysis of DEGs
4.5. Quantitative Real-Time Polymerase Chain Reaction Verification
4.6. Metabolite Analysis
4.7. Gene Network Construction and Visualization
4.8. Combined Transcriptome and Metabolome Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Givnish, T.J.; Spalink, D.; Ames, M.; Lyon, S.P.; Hunter, S.J.; Zuluaga, A.; Doucette, A.; Caro, G.G.; McDaniel, J.; Clements, M.A.; et al. Orchid historical biogeography, diversification, Antarctica and the paradox of orchid dispersal. J. Biogeogr. 2016, 43, 1905–1916. [Google Scholar] [CrossRef]
- Fay, M.F. Orchid conservation: How can we meet the challenges in the twenty-first century? Bot. Stud. 2018, 59, 16. [Google Scholar] [CrossRef]
- Christenhusz, M.; Byng, J.W. The number of known plant species in the world and its annual increase. Phytotaxa 2016, 261, 201–217. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, Y.; Li, J.; Qin, J.; Zhang, W.; Huang, W.; Hu, H. Physiological diversity of orchids. Plant Divers. 2018, 40, 196–208. [Google Scholar] [CrossRef]
- Luo, Y.B.; Jia, J.S.; Wang, C.L. A general review of the conservation status of Chinese orchids. Biodivers. Sci. 2003, 1, 70–77. [Google Scholar] [CrossRef]
- Srikanth, A.; Schmid, M. Regulation of flowering time: All roads lead to Rome. Cell. Mol. Life Sci. 2011, 68, 2013–2037. [Google Scholar] [CrossRef]
- Zhang, Y.N.; Zhou, Y.P.; Chen, Q.H.; Huang, X.L.; Tian, C.E. Molecular Basis of Flowering Time Regulation in Arabidopsis. Chin. Bull. Bot. 2014, 49, 469–482. [Google Scholar] [CrossRef]
- Yang, F.; Zhu, G.; Wei, Y.; Gao, J.; Liang, G.; Peng, L.; Lu, C.; Jin, J. Low-temperature-induced changes in the transcriptome reveal a major role of CgSVP genesin regulating flowering of Cymbidium goeringii. BMC Genom. 2019, 20, 53. [Google Scholar] [CrossRef]
- Pan, Z.J.; Chen, Y.Y.; Du, J.S.; Chen, Y.Y.; Chung, M.C.; Tsai, W.C.; Wang, C.N.; Chen, H.H. Flower development of Phalaenopsis orchid involves functionally diver—Gent SEPALLATA-like genes. New Phytol. 2014, 202, 1024–1042. [Google Scholar] [CrossRef]
- Tsai, W.-C.; Lee, P.-F.; Chen, H.I.; Hsiao, Y.-Y.; Wei, W.-J.; Pan, Z.-J.; Chuang, M.-H.; Kuoh, C.-S.; Chen, W.-H.; Chen, H.-H. PeMADS6, a GLOBOSA/PISTILLATA-like gene in Phalaenopsis equestris involved in petaloid formation, and correlated withflower longevity and ovary development. Plant Cell Physiol. 2005, 46, 1125–1139. [Google Scholar] [CrossRef]
- Du, Z.H.; Yang, L.; Yao, X.Z.; Chen, Z.L. Expression Pattern Analysis of Dendrobium ochreatum DoFT1 Gene During Flower Development and Its Functional Verification. Chin. J. Trop. Crops 2021, 42, 951–957. [Google Scholar]
- Liu, X.R.; Pan, T.; Liang, W.Q.; Gao, L.; Wang, X.J.; Li, H.Q.; Liang, S. Over- expression of an orchid (Dendrobium nobile) SOC1/TM3-like ortholog, DnAGL19, in Arabidopsis regulates HOS1-FT expression. Front. Plant Sci. 2016, 7, 99. [Google Scholar]
- Wada, K.C.; Mizuuchi, K.; Koshio, A.; Kaneko, K.; Mitsui, T.; Takeno, K. Stress enhances the gene expression and enzyme activity of phenylalanine ammonia-lyaseand the endogenous content of salicylic acid to induce floweringin pharbitis. J. Plant Physiol. 2014, 171, 895–902. [Google Scholar] [CrossRef]
- Sheng, J.; Li, X.; Zhang, D. Gibberellins, brassinolide, and ethyl-ene signaling were involved in flower differentiation and devel-opment in Nelumbo nucifera. Hortic. Plant J. 2022, 8, 243–250. [Google Scholar] [CrossRef]
- Shankaraswamy, J.; Neelavathi, R. Effect of growth regulators, nutrients, seaweed extract and pruning on induction of early flowering in mango (Mangifera indica) cv. Kesar. Indian J. Agric. Sci. 2016, 86, 1175–1178. [Google Scholar] [CrossRef]
- Fang, S.; Gao, K.; Hu, W.; Snider, J.L.; Wang, S.; Chen, B.; Zhou, Z. Chemical priming of seed alters cotton floral bud differentiation by inducing changes in hormones, metabolites and gene expression. Plant Physiol. Biochem. 2018, 130, 633–640. [Google Scholar] [CrossRef] [PubMed]
- Yan, R.; Huo, Y.; Gao, X.; Hao, Y. Transcriptomic and metabolomic analyses reveal the key factors through which exogenous hormones regulate pedicel formation in Phalaenopsis orchids. Hortic. Environ. Biotechnol. 2025, 66, 563–573. [Google Scholar] [CrossRef]
- Chin, Y.D.; An, D.C.; Hwang, J.C.; Ju, Y.S.; Jeong, B.R. Effect of Concentration and Time of GA3 Treatment on Flowering and Cut Flower Yield of Limonium spp. ‘Ocean Blue’. J. Bio-Environ. Control. 2009, 18, 153–159. [Google Scholar]
- Li, B.; Wang, Q.; Qiu, Z.; Lu, Z.; Zhang, J.; He, Q.; Yang, J.; Zhang, H.; Zhu, X.; Chen, X. Transcriptomic Analysis of Gibberellin-Mediated Flower Opening Process in Tree Peony (Paeonia suffruticosa). Plants 2025, 14, 1002. [Google Scholar] [CrossRef]
- The University of Jordan Jordan; Othman, Y.; Al-Ajlouni, M.; A’sAf, T.; Sawalha, H.; Hani, M.B. Influence of gibberellic acid on the physiology and flower quality of gerbera and lily cut flowers. Int. J. Agric. Nat. Resour. 2021, 48, 21–33. [Google Scholar] [CrossRef]
- Ayesha, R.; Hassan, I.; Abbasi, N.A.; Khan, K.S. Regulation of morpho-physiological and vase quality attributes of carnation (Dianthus caryophyllus) cv. tabasco mediated by GA3. Pak. J. Bot. 2020, 52, 1561–1568. [Google Scholar] [CrossRef]
- Li, W.S.; Ke, H.L.; Deng, X.G.; Liu, Y.W.; Ling, X.B. Effects of 6-BA and GA3 on Dendrobium Nobile-Typ Cultivar. Chin. J. Trop. Crops 2011, 32, 1016–1019. [Google Scholar]
- Li, Z.J.; Wang, Y.; Peng, Z.H.; Wang, C.Y.; Miu, K.; Yu, Y. Physiological Effects of 6-BA and GA3 on Flower Bud Differentiation of Nobile Type Dendrobium. Subtrop. Plant Sci. 2009, 38, 15–18. [Google Scholar]
- Li, T.K.; Huang, J.X.; Fu, Z.H.; Huang, Z.Q.; Zhang, J.X. Effects of the Exogenous Gibberellin and 6-Benzylaminopurine on Flowering of Cymbidium sinense. North. Hortic. 2021, 21, 64–71. [Google Scholar]
- Li, P.-Y.; Li, L.; Wang, Y.-Z. Traditional uses, chemical compositions and pharmacological activities of Dendrobium: A review. J. Ethnopharmacol. 2023, 310, 116382. [Google Scholar] [CrossRef]
- Xu, H.; Wang, Z.; Ding, X.; Zhou, K.; Xu, L. Differentiation of Dendrobium species used as “Huangcao Shihu” by rDNA ITS sequence analysis. Planta Medica 2006, 72, 89–92. [Google Scholar] [CrossRef] [PubMed]
- Li, M.F.; Xu, G.J.; Xu, L.S. Investigation and identification of marketable Dendrobium Herb. ChinTradit Herb Drugs 1991, 22, 173–180. [Google Scholar]
- Li, X.X. The Phylogenetic of Chinese Dendrobium and Protection and Genetics Research on Dendrobium Officinale; Nanjing Normal University: Nanjing, China, 2009. [Google Scholar]
- Tang, H.; Zhao, T.; Sheng, Y.; Zheng, T.; Fu, L.; Zhang, Y. Dendrobium officinale Kimura et Migo: A Review on Its Ethnopharmacology, Phytochemistry, Pharmacology, and Industrialization. Evid.-Based Complement. Altern. Med. 2017, 2017, 7436259. [Google Scholar] [CrossRef]
- Lai, Y.N. Study on the efficacy of Dendrobium flower. Technol. Wind. 2020, 18, 277. [Google Scholar] [CrossRef]
- Kataoka, K.; Sumitomo, K.; Fudano, T.; Kawase, K. Changes in sugar content of Phalaenopsis leaves before floral transition. Sci. Hortic. 2004, 102, 121–132. [Google Scholar] [CrossRef]
- Fang, S.; Hu, W.; Wang, S.; Chen, B.; Zhou, Z. Exogenous application of 6-BA and GA3 collaboratively improves cottonseed yield and seed quality via altering production of carbohydrates in the embryo. Arch. Agron. Soil Sci. 2021, 67, 329–341. [Google Scholar] [CrossRef]
- Sun, K.; Xue, Y.Q.; Prijic, Z.; Wang, S.; Markovi, T.; Tian, C.H.; Wang, Y.Y.; Xue, J.Q.; Zhang, X.X. DNA demethylation induces tree peony flowering with a low deformity rate compared to gibberellin by inducing PsFT expression under forcing culture conditions. Int. J. Mol. Sci. 2022, 23, 6632. [Google Scholar] [CrossRef]
- Li, B.; Wang, D.; Li, Z.H.; Liu, J.; Xu, W.J.; Li, X.W.; Huang, J.Y. Morphological Development and Nutritional Metabolism during Floral Bud Differentiation in Acca Sellowiana (Feijoa). Int J Fruit Sci. 2023, 23, 102–115. [Google Scholar] [CrossRef]
- Kasraoui, F.; Duquesnoy, I.; Winterton, P.; Lamaze, T. Soluble and cell wall bound peroxidase activities are markers of flower bud development stages in lemon (Citrus limon L.). J. Appl. Bot. Food Qual. 2014, 87, 1–8. [Google Scholar] [CrossRef]
- Sun, M.; Li, J.; Tian, L.; Sun, H.; Miao, Y.; Bai, L.; Hou, L.; Li, T. Effects of Varying Nitrogen Concentrations on the Locule Number in Tomato Fruit. Plants 2025, 14, 952. [Google Scholar] [CrossRef]
- He, S.; Fan, Y.; Zhang, J.; Ma, J.; Li, X.; Xu, L.; Wang, H.; Li, T.; Wu, J.; Liu, H.; et al. Effect of Plant Growth Regulators on Flowering Traits and Physiological Characteristics of Dendrobium denneanum. Biol. Bull. 2025, 52, 54. [Google Scholar] [CrossRef]
- Chen, X.; Qi, S.; Zhang, D.; Li, Y.; An, N.; Zhao, C.; Zhao, J.; Shah, K.; Han, M.; Xing, L. Comparative RNA-sequencing-based transcriptome profiling of buds from profusely flowering ‘Qinguan’ and weakly flowering ‘Nagafu no. 2’ apple varieties reveals novel insights into the regulatory mechanisms underlying floral induction. BMC Plant Biol. 2018, 18, 370. [Google Scholar] [CrossRef]
- Xing, L.-B.; Zhang, D.; Li, Y.-M.; Shen, Y.-W.; Zhao, C.-P.; Ma, J.-J.; An, N.; Han, M.-Y. Transcription profiles reveal sugar and hormone signaling pathways mediating flower induction in apple (Malus domestica Borkh.). Plant Cell Physiol. 2015, 56, 2052–2068. [Google Scholar] [CrossRef]
- Shah, K.; Wang, M.; Li, X.; Shang, W.; Wang, S.; Han, M.; Ren, X.; Tian, J.; An, N.; Xing, L. Transcriptome analysis reveals dual action of salicylic acid application in the induction of flowering in Malus domestica. Plant Sci. 2022, 324, 111433. [Google Scholar] [CrossRef]
- Tupler, R.; Perini, G.; Green, M.R. Expressing the human genome. Nature 2001, 409, 832–833. [Google Scholar] [CrossRef]
- Englbrecht, C.C.; Schoof, H.; Böhm, S. diversification and expansion of C2H2 zinc finger proteins in the Arabidopsis thaliana genome. BMC Genom. 2004, 5, 39. [Google Scholar] [CrossRef] [PubMed]
- Lyu, T.; Liu, W.; Hu, Z.; Xiang, X.; Liu, T.; Xiong, X.; Cao, J. Molecular characterization and expression analysis reveal the roles of Cys2/His2 zinc-finger transcription factors during flower development of Brassica rapa subsp. chinensis. Plant Mol. Biol. 2019, 102, 123–141. [Google Scholar] [CrossRef] [PubMed]
- Lyu, T.; Cao, J. Cys2/His2 Zinc-Finger Proteins in Transcriptional Regulation of Flower Development. Int. J. Mol. Sci. 2018, 19, 2589. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Ahsan, M.; Adil, M.F.; Chen, X.; Nazir, M.M.; Shamsi, I.H.; Zeng, F.; Zhang, G. Identification of the gene network modules highly associated with the synthesis of phenolics compounds in barley by transcriptome and metabolome analysis. Food Chem. 2020, 323, 126862. [Google Scholar] [CrossRef]
- Mo, S.; Biao, A.; Wang, Z.; Lin, S.; Yang, T.; Pan, L.; Wang, Y.; Zeng, S. Spatio transcriptome uncover novel insight into the Lycium ruthenicum seedling tolerant to salt stress. Ind. Crop. Prod. 2022, 177, 114502. [Google Scholar] [CrossRef]
- Zhang, S.; Zhu, C.; Lyu, Y.; Chen, Y.; Zhang, Z.; Lai, Z.; Lin, Y. Genome-wide identication, molecular evolution and expression analysis provide new insights into the APETALA2/ethylene responsive factor (AP2/ERF) superfamily in Dimocarpus. BMC Genom. 2021, 21, 62. [Google Scholar] [CrossRef]
- François, L.; Verdenaud, M.; Fu, X.; Ruleman, D.; Dubois, A.; Vandenbussche, M.; Bendahmane, A.; Raymond, O.; Just, J.; Bendahmane, M. A miR172 target—Deficient AP2-like gene correlates with the double flower phenotype in roses. Sci. Rep. 2018, 8, 12912. [Google Scholar] [CrossRef]
- Huang, R.; Zhang, X.; Luo, K.; Tembrock, L.R.; Li, S.; Wu, Z. The Identification of Auxin Response Factors and Expression Analyses of Different Floral Development Stages in Roses. Genes 2025, 16, 41. [Google Scholar] [CrossRef]
- Yin, Z.H.; Du, J.K.; Chen, Y.; Zou, J.Y.; Yan, D.L.; Sun, C.B. Bioinformatics and Tissue-specific Expression Analysis of Dof Gene Family in Dendrobium officinale. Mol. Plant Breed. 2025, 1–26. Available online: https://link.cnki.net/urlid/46.1068.S.20250219.1459.004 (accessed on 11 August 2025).
- Altmann, M.; Altmann, S.; Rodriguez, P.A.; Weller, B.; Vergara, L.E.; Palme, J.; la Rosa, N.M.-D.; Sauer, M.; Wenig, M.; Villaécija-Aguilar, J.A.; et al. Extensive signal integration by the phytohormone protein network. Nature 2020, 583, 271–276. [Google Scholar] [CrossRef]
- Leyser, O. Auxin signaling. Plant Physiol. 2018, 176, 465–479. [Google Scholar] [CrossRef]
- Quint, M.; Gray, W.M. Auxin signaling. Curr. Opin. Plant Biol. 2006, 9, 448–453. [Google Scholar] [CrossRef]
- Kieber, J.J.; Schaller, G.E. Cytokinin signaling in plant development. Development 2018, 145, dev149344. [Google Scholar] [CrossRef] [PubMed]
- Durán-Medina, Y.; Serwatowska, J.; Reyes-Olalde, J.I.; de Folter, S.; Marsch-Martínez, N. The AP2/ERF Transcription Factor DRNL Modulates Gynoecium Development and Affects Its Response to Cytokinin. Front. Plant Sci. 2017, 8, 1841. [Google Scholar] [CrossRef]
- Hartweck, L.M. Gibberellin signaling. Planta 2008, 229, 1–13. [Google Scholar] [CrossRef]
- Zeng, M.-Y.; Zhu, P.-K.; Tang, Y.; Lin, Y.-H.; He, T.-Y.; Rong, J.-D.; Zheng, Y.-S.; Chen, L.-Y. Genome-Wide Identification and Role of the bHLH Gene Family in Dendrocalamus latiflorus Flowering Regulation. Int. J. Mol. Sci. 2024, 25, 10837. [Google Scholar] [CrossRef]
- Chen, K.; Li, G.; Bressan, R.A.; Song, C.; Zhu, J.; Zhao, Y. Abscisic acid dynamics, signaling, and functions in plants. J. Integr. Plant Biol. 2020, 62, 25–54. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Wang, M.; Zeng, H.; Yang, H.; Lv, K.; Zhou, Z.; Hou, Y.; Zhang, J.; Kong, N.; Wu, J. Ti3C2Tx MXene nanosheets protect Torreya grandis against root rot disease. Chem. Eng. J. 2024, 481, 148687. [Google Scholar] [CrossRef]
- Sun, H.; Li, J.; Song, H.; Yang, D.; Deng, X.; Liu, J.; Wang, Y.; Ma, J.; Xiong, Y.; Liu, Y.; et al. Comprehensive analysis of AGPase genes uncovers their potential roles in starch biosynthesis in lotus seed. BMC Plant Biol. 2020, 20, 457. [Google Scholar] [CrossRef]
- Bradford, M.M. Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- González-Gordo, S.; Muñoz-Vargas, M.A.; Palma, J.M.; Corpas, F.J. Class III Peroxidases (POD) in Pepper (Capsicum annuum L.): Genome-Wide Identification and Regulation during Nitric Oxide (NO)-Influenced Fruit Ripening. Antioxidants 2023, 12, 1013. [Google Scholar] [CrossRef]
- Hadwan, M.H.; Hussein, M.J.; Mohammed, R.M.; Hadwan, A.M.; Al-Kawaz, H.S.; Al-Obaidy, S.S.M.; Al Talebi, Z.A. An improved method for measuring catalase activity in biological samples. Biol. Methods Protoc. 2024, 9, bpae015. [Google Scholar] [CrossRef]
- Yang, C.; Shen, S.; Zhou, S.; Li, Y.; Mao, Y.; Zhou, J.; Shi, Y.; An, L.; Zhou, Q.; Peng, W.; et al. Rice metabolic regulatory network spanning the entire life cycle. Mol. Plant 2022, 15, 258–275. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, C.; Yan, X.; Zhang, J.; Xu, J. Simultaneous analysis of ten phytohormones in Sargassum horneri by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry. J. Sep. Sci. 2016, 39, 1804–1813. [Google Scholar] [CrossRef] [PubMed]
- Floková, K.; Tarkowská, D.; Miersch, O.; Strnad, M.; Wasternack, C.; Novák, O. UHPLC-MS/MS based target profiling of stress-induced phytohormones. Phytochemistry 2014, 105, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Cai, B.-D.; Zhu, J.-X.; Gao, Q.; Luo, D.; Yuan, B.-F.; Feng, Y.-Q. Rapid and high-throughput determination of endogenous cytokinins in Oryza sativa by bare Fe3O4 nanoparticles-based magnetic solid-phase extraction. J. Chromatogr. A 2014, 1340, 146–150. [Google Scholar] [CrossRef]
- Niu, Q.; Zong, Y.; Qian, M.; Yang, F.; Teng, Y. Simultaneous quantitative determination of major plant hormones in pear flowers and fruit by UPLC/ESI-MS/MS. Anal. Methods 2014, 6, 1766–1773. [Google Scholar] [CrossRef]
- Xiao, H.-M.; Cai, W.-J.; Ye, T.-T.; Ding, J.; Feng, Y.-Q. Spatio-temporal profiling of abscisic acid, indoleacetic acid and jasmonic acid in single rice seed during seed germination. Anal. Chim. Acta 2018, 1031, 119–127. [Google Scholar] [CrossRef]
- Pan, X.; Welti, R.; Wang, X. Quantitative analysis of major plant hormones in crude plant extracts by high-performance liquid chromatography-mass spectrometry. Nat. Protoc. 2010, 5, 986–992. [Google Scholar] [CrossRef] [PubMed]
- Šimura, J.; Antoniadi, I.; Široká, J.; Tarkowská, D.; Strnad, M.; Ljung, K.; Novák, O. Plant Hormonomics: Multiple Phytohormone Profiling by Targeted Metabolomics. Plant Physiol. 2018, 177, 476–489. [Google Scholar] [CrossRef] [PubMed]
- Kun, Y.C.; Ya, Y.L.; Xi, Z.; Lin, L.H. Comparison of sample pretreatment methods for the determination of multiple phytohormones in plant samples by liquid chromatography-electrospray ionization-tandem mass spectrometry. Microchem. J. 2015, 121, 25–31. [Google Scholar]
- Wang, R.; Shu, P.; Zhang, C.; Zhang, J.; Chen, Y.; Zhang, Y.; Du, K.; Xie, Y.; Li, M.; Ma, T.; et al. Integrative analyses of metabolome and genome-wide transcriptome reveal the regulatory network governing flavor formation in kiwifruit (Actinidia chinensis). New Phytol. 2022, 233, 373–389. [Google Scholar] [CrossRef] [PubMed]
Species | Hormone Concentration (ppm) | Effect | Reference |
---|---|---|---|
6BA | |||
Mango | 200 | Promotes early flowering | [15] |
Gossypium hirsutum L. | 25 | Increases the number of flower buds | [16] |
Phalaenopsis | 150 | Promotes the formation and development of flower stems | [17] |
GA3 | |||
Limonium spp. ‘Ocean Blue’ | 400 | Promotes early flowering | [18] |
Paeonia suffruticosa Andr | 800/900 | Promotes early flowering | [19] |
Lilium x elegans cvs. Fangio | 50 | Improves the quality of flowers; promotes early flowering | [20] |
Dianthus caryophyllus | 400 | Improves the quality of flowering; promotes early flowering | [21] |
6BA + GA3 | |||
Dendrboium Nobile | 200 + 50 | Promotes flower bud differentiation | [22] |
Dendrobium ‘White Christmas’ | 100 + 50 | Promotes early flowering; increases the number of flowers | [23] |
Cymbidium sinense | 100 + 50 | Promotes flower bud differentiation; increases the number of flower buds; promotes early flowering | [24] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, Z.; Yan, D.; Du, J.; Sun, C. Regulation of Flower Bud Differentiation Hormones and Identification of Related Key Genes in Dendrobium officinale Based on Multi-omics Analysis. Plants 2025, 14, 2668. https://doi.org/10.3390/plants14172668
Yin Z, Yan D, Du J, Sun C. Regulation of Flower Bud Differentiation Hormones and Identification of Related Key Genes in Dendrobium officinale Based on Multi-omics Analysis. Plants. 2025; 14(17):2668. https://doi.org/10.3390/plants14172668
Chicago/Turabian StyleYin, Zhihao, Daoliang Yan, Jianke Du, and Chongbo Sun. 2025. "Regulation of Flower Bud Differentiation Hormones and Identification of Related Key Genes in Dendrobium officinale Based on Multi-omics Analysis" Plants 14, no. 17: 2668. https://doi.org/10.3390/plants14172668
APA StyleYin, Z., Yan, D., Du, J., & Sun, C. (2025). Regulation of Flower Bud Differentiation Hormones and Identification of Related Key Genes in Dendrobium officinale Based on Multi-omics Analysis. Plants, 14(17), 2668. https://doi.org/10.3390/plants14172668