Verbena officinalis L. Herb Extract, Its Amino Acid Preparations and 3D-Printed Dosage Forms: Phytochemical, Technological and Pharmacological Research
Abstract
1. Introduction
2. Results
2.1. Phytochemical Research
2.2. Pharmacological Research
2.3. Novel 3D-Printed Oral Dosage Forms for the V. officinalis Extract
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Assay of Main Phytochemicals by Spectrophotometry
4.3. Analysis of Phenolic Compounds by LC-MS/MS
4.4. Assay of Amino Acids by LC-MS/MS
4.5. Pharmacological Research
4.6. Three-Dimensional (3D) Printing of V. officinalis Extracts
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Vélez-Gavilán, J. Verbena officinalis (Vervain) 2020, 56184. Available online: http://www.cabidigitallibrary.org/doi/10.1079/cabicompendium.56184 (accessed on 6 February 2025).
- Kubica, P.; Szopa, A.; Dominiak, J.; Luczkiewicz, M.; Ekiert, H. Verbena officinalis (Common Vervain)—A Review on the Investigations of This Medicinally Important Plant Species. Planta Med. 2020, 86, 1241–1257. [Google Scholar] [CrossRef]
- Rehecho, S.; Hidalgo, O.; García-Iñiguez De Cirano, M.; Navarro, I.; Astiasarán, I.; Ansorena, D.; Cavero, R.Y.; Calvo, M.I. Chemical Composition, Mineral Content and Antioxidant Activity of Verbena officinalis L. LWT—Food Sci. Technol. 2011, 44, 875–882. [Google Scholar] [CrossRef]
- Shu, J.; Chou, G.; Wang, Z. Two New Iridoids from Verbena officinalis L. Molecules 2014, 19, 10473–10479. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Xin, F.; Sha, Y.; Fang, J.; Li, Y.-S. Two New Secoiridoid Glycosides from Verbena officinalis. J. Asian Nat. Prod. Res. 2010, 12, 649–653. [Google Scholar] [CrossRef] [PubMed]
- Kubica, P.; Szopa, A.; Kokotkiewicz, A.; Miceli, N.; Taviano, M.F.; Maugeri, A.; Cirmi, S.; Synowiec, A.; Gniewosz, M.; Elansary, H.O.; et al. Production of Verbascoside, Isoverbascoside and Phenolic Acids in Callus, Suspension, and Bioreactor Cultures of Verbena officinalis and Biological Properties of Biomass Extracts. Molecules 2020, 25, 5609. [Google Scholar] [CrossRef]
- El-Wakil, E.S.; El-Shazly, M.A.M.; El-Ashkar, A.M.; Aboushousha, T.; Ghareeb, M.A. Chemical Profiling of Verbena officinalis and Assessment of Its Anti-Cryptosporidial Activity in Experimentally Infected Immunocompromised Mice. Arab. J. Chem. 2022, 15, 103945. [Google Scholar] [CrossRef]
- Chen, Y.; Gan, Y.; Yu, J.; Ye, X.; Yu, W. Key Ingredients in Verbena officinalis and Determination of Their Anti-Atherosclerotic Effect Using a Computer-Aided Drug Design Approach. Front. Plant Sci. 2023, 14, 1154266. [Google Scholar] [CrossRef]
- Gibitz-Eisath, N.; Eichberger, M.; Gruber, R.; Sturm, S.; Stuppner, H. Development and Validation of a Rapid Ultra-High Performance Liquid Chromatography Diode Array Detector Method for Verbena officinalis L. J. Pharm. Biomed. Anal. 2018, 160, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Falleh, H.; Hafsi, C.; Mohsni, I.; Ksouri, R. Évaluation de Différents Procédés d’extraction Des Composés Phénoliques d’une Plante Médicinale: Verbena officinalis. Biol. Aujourd’hui 2021, 215, 133–142. [Google Scholar] [CrossRef]
- Raal, A.; Dolgošev, G.; Ilina, T.; Kovalyova, A.; Lepiku, M.; Grytsyk, A.; Koshovyi, O. The Essential Oil Composition in Commercial Samples of Verbena officinalis L. Herb from Different Origins. Crops 2025, 5, 16. [Google Scholar] [CrossRef]
- De Martino, L.; D’Arena, G.; Minervini, M.M.; Deaglio, S.; Fusco, B.M.; Cascavilla, N.; De Feo, V. Verbena officinalis Essential Oil and Its Component Citral as Apoptotic-Inducing Agent in Chronic Lymphocytic Leukemia. Int. J. Immunopathol. Pharmacol. 2009, 22, 1097–1104. [Google Scholar] [CrossRef]
- Mohini, K.; Mohini, U.; Amrita, K.; Aishwarya, Z.; Disha, S.; Padmaja, K. Verbena officinalis (Verbenaceae): Pharmacology, Toxicology and Role in Female Health. IJAM 2022, 13, 296–304. [Google Scholar] [CrossRef]
- Posatska, N.M.; Grytsyk, A.R.; Struk, O.A. Research of Steroid and Volatile Compounds in Verbena officinalis L. Herb. Sci. Pract. J. 2024, 3, 120–125. [Google Scholar] [CrossRef]
- Zhang, Y.; Jin, H.; Qin, J.; Fu, J.; Cheng, X.; Zhang, W. Chemical Constituents from Verbena officinalis. Chem. Nat. Compd. 2011, 47, 319–320. [Google Scholar] [CrossRef]
- Council of Europe. European Pharmacopoeia, 11th ed.; Council of Europe: Strasbourg, France, 2022. [Google Scholar]
- Chevallier, A. Encyclopedia of Herbal Medicine, 2nd ed.; DK Publishing Inc.: London, UK, 2000. [Google Scholar]
- Popova, A.; Mihaylova, D.; Spasov, A. Plant-Based Remedies with Reference to Respiratory Diseases—A Review. Open Biotechnol. J. 2021, 15, 46–58. [Google Scholar] [CrossRef]
- Popovich, V.I.; Beketova, H.V. Results of a Randomised Controlled Study on the Efficacy of a Combination of Saline Irrigation and Sinupret Syrup Phytopreparation in the Treatment of Acute Viral Rhinosinusitis in Children Aged 6 to 11 Years. Clin. Phytosci 2018, 4, 21. [Google Scholar] [CrossRef]
- Dziurka, M.; Kubica, P.; Kwiecień, I.; Biesaga-Kościelniak, J.; Ekiert, H.; Abdelmohsen, S.A.M.; Al-Harbi, F.F.; El-Ansary, D.O.; Elansary, H.O.; Szopa, A. In Vitro Cultures of Some Medicinal Plant Species (Cistus × Incanus, Verbena officinalis, Scutellaria lateriflora, and Scutellaria baicalensis) as a Rich Potential Source of Antioxidants—Evaluation by CUPRAC and QUENCHER-CUPRAC Assays. Plants 2021, 10, 454. [Google Scholar] [CrossRef]
- Hrytsyk, A.R.; Posatska, N.M.; Klymenko, А.O. Obtaining and Study of Properties of Extracts Verbena officinalis. Pharm. Rev. 2016, 3, 39–44. [Google Scholar] [CrossRef]
- Casanova, E.; García-Mina, J.M.; Calvo, M.I. Antioxidant and Antifungal Activity of Verbena officinalis L. Leaves. Plant Foods Hum. Nutr. 2008, 63, 93–97. [Google Scholar] [CrossRef]
- Jin, C.; Liu, X.; Ma, D.; Hua, X.; Jin, N. Optimization of Polysaccharides Extracted from Verbena officinalis L and Their Inhibitory Effects on Invasion and Metastasis of Colorectal Cancer Cells. Trop. J. Pharm. Res. 2017, 16, 2387–2394. [Google Scholar] [CrossRef]
- Encalada, M.A.; Rehecho, S.; Ansorena, D.; Astiasarán, I.; Cavero, R.Y.; Calvo, M.I. Antiproliferative Effect of Phenylethanoid Glycosides from Verbena officinalis L. on Colon Cancer Cell Lines. LWT—Food Sci. Technol. 2015, 63, 1016–1022. [Google Scholar] [CrossRef]
- Nisar, R.; Adhikary, S.; Ahmad, S.; Alam, M.A. In Vitro Antimelanoma Properties of Verbena officinalis Fractions. Molecules 2022, 27, 6329. [Google Scholar] [CrossRef] [PubMed]
- Kou, W.-Z.; Yang, J.; Yang, Q.-H.; Wang, Y.; Wang, Z.-F.; Xu, S.-L.; Liu, J. Study on In-Vivo Anti-Tumor Activity of Verbena officinalis Extract. Afr. J. Trad. Compl. Alt. Med. 2013, 10, 512–517. [Google Scholar] [CrossRef] [PubMed]
- Gharachorloo, M.; Amouheidari, M. Chemical Composition, Antibacterial and Antioxidant Activities of the Essential Oil Isolated from Verbena officinalis. J. Food Biosci. Technol. 2016, 6, 33–40. [Google Scholar]
- Sanchooli, N.; Saeidi, S.; Barani, H.K.; Sanchooli, E. In Vitro Antibacterial Effects of Silver Nanoparticles Synthesized Using Verbena officinalis Leaf Extract on Yersinia ruckeri, Vibrio cholera and Listeria monocytogenes. Iran. J. Microbiol. 2018, 10, 400–408. [Google Scholar] [PubMed]
- Ashfaq, A.; Khan, A.; Minhas, A.M.; Aqeel, T.; Assiri, A.M.; Bukhari, I.A. Anti-Hyperlipidemic Effects of Caralluma edulis (Asclepiadaceae) and Verbena officinalis (Verbenaceae) Whole Plants against High-Fat Diet-Induced Hyperlipidemia in Mice. Trop. J. Pharm. Res. 2017, 16, 2417–2423. [Google Scholar] [CrossRef]
- Rodrigues Oliveira, S.M.; Dias, E.; Girol, A.P.; Silva, H.; Pereira, M.D.L. Exercise Training and Verbena officinalis L. Affect Pre-Clinical and Histological Parameters. Plants 2022, 11, 3115. [Google Scholar] [CrossRef]
- Bekara, A.; Amazouz, A.; Benyamina Douma, T. Evaluating the Antidepressant Effect of Verbena officinalis L. (Vervain) Aqueous Extract in Adult Rats. Basic Clin. Neurosci. J. 2020, 11, 91–98. [Google Scholar] [CrossRef]
- Jawaid, T.; Imam, S.A.; Kamal, M. Antidepressant Activity of Methanolic Extract of Verbena officinalis Linn. Plant in Mice. Asian J. Pharm. Clin. Res. 2015, 8, 308–310. [Google Scholar]
- Rashidian, A.; Kazemi, F.; Mehrzadi, S.; Dehpour, A.R.; Mehr, S.E.; Rezayat, S.M. Anticonvulsant Effects of Aerial Parts of Verbena officinalis Extract in Mice: Involvement of Benzodiazepine and Opioid Receptors. J. Evid. Based Complement. Altern. Med. 2017, 22, 632–636. [Google Scholar] [CrossRef]
- Kravchenko, G.; Krasilnikova, O.; Raal, A.; Mazen, M.; Chaika, N.; Kireyev, I.; Grytsyk, A.; Koshovyi, O. Arctostaphylos Uva-Ursi L. Leaves Extract and Its Modified Cysteine Preparation for the Management of Insulin Resistance: Chemical Analysis and Bioactivity. Nat. Prod. Bioprospect. 2022, 12, 30. [Google Scholar] [CrossRef]
- Koshovyi, O.; Sepp, J.; Jakštas, V.; Žvikas, V.; Kireyev, I.; Karpun, Y.; Odyntsova, V.; Heinämäki, J.; Raal, A. German Chamomile (Matricaria chamomilla L.) Flower Extract, Its Amino Acid Preparations and 3D-Printed Dosage Forms: Phytochemical, Pharmacological, Technological, and Molecular Docking Study. Int. J. Mol. Sci. 2024, 25, 8292. [Google Scholar] [CrossRef]
- Koshovyi, O.; Vlasova, I.; Jakštas, V.; Vilkickytė, G.; Žvikas, V.; Hrytsyk, R.; Grytsyk, L.; Raal, A. American Cranberry (Oxycoccus macrocarpus (Ait.) Pursh) Leaves Extract and Its Amino-Acids Preparation: The Phytochemical and Pharmacological Study. Plants 2023, 12, 2010. [Google Scholar] [CrossRef]
- MacDougall, C. Pharmacokinetics of Valaciclovir. J. Antimicrob. Chemother. 2004, 53, 899–901. [Google Scholar] [CrossRef] [PubMed]
- Karpov, Y.A. Perindopril Arginine: A New ACE Inhibitor Salt Increases Therapeutic Potential. Cardiovasc. Ther. Prev. 2008, 7, 64–72. [Google Scholar]
- Koshovyi, O.; Raal, A.; Kireyev, I.; Tryshchuk, N.; Ilina, T.; Romanenko, Y.; Kovalenko, S.M.; Bunyatyan, N. Phytochemical and Psychotropic Research of Motherwort (Leonurus cardiaca L.) Modified Dry Extracts. Plants 2021, 10, 230. [Google Scholar] [CrossRef] [PubMed]
- Koshovyi, O.; Granica, S.; Piwowarski, J.P.; Stremoukhov, O.; Kostenko, Y.; Kravchenko, G.; Krasilnikova, O.; Zagayko, A. Highbush Blueberry (Vaccinium corymbosum L.) Leaves Extract and Its Modified Arginine Preparation for the Management of Metabolic Syndrome—Chemical Analysis and Bioactivity in Rat Model. Nutrients 2021, 13, 2870. [Google Scholar] [CrossRef] [PubMed]
- Azad, M.A.; Olawuni, D.; Kimbell, G.; Badruddoza, A.Z.M.; Hossain, M.S.; Sultana, T. Polymers for Extrusion-Based 3D Printing of Pharmaceuticals: A Holistic Materials–Process Perspective. Pharmaceutics 2020, 12, 124. [Google Scholar] [CrossRef]
- El Aita, I.; Rahman, J.; Breitkreutz, J.; Quodbach, J. 3D-Printing with Precise Layer-Wise Dose Adjustments for Paediatric Use via Pressure-Assisted Microsyringe Printing. Eur. J. Pharm. Biopharm. 2020, 157, 59–65. [Google Scholar] [CrossRef]
- Koshovyi, O.; Heinämäki, J.; Raal, A.; Laidmäe, I.; Topelius, N.S.; Komisarenko, M.; Komissarenko, A. Pharmaceutical 3D-Printing of Nanoemulsified Eucalypt Extracts and Their Antimicrobial Activity. Eur. J. Pharm. Sci. 2023, 187, 106487. [Google Scholar] [CrossRef]
- Stefanov, O.V. Preclinical Studies of Drugs; Avicenna: Kyiv, Ukraine, 2001. [Google Scholar]
- Prokopchuk, О.G.; Aleksandrova, O.I.; Kravchenko, I.A. Study of the Dynamics of Anticonvulsant and Anxiolytic Action after Oral Administration of Tin (II) Chloride. Rep. Vinnytsia Nation. Med. Univ. 2019, 23, 204–208. [Google Scholar] [CrossRef] [PubMed]
- Tovchiga, O.V.; Shtrygol’, S.J.; Balia, A.A. The Influence of Goutweed (Aegopodium podagraria L.) Extract and Tincture on the Behavioural Reactions of Mice against the Background of Caffeine-Sodium Benzoate. Klìn. Farm. 2018, 22, 29–37. [Google Scholar] [CrossRef]
- Singh, B.; Jalwal, P.; Dahiya, J.; Khokhara, S. Research Methods for Animal Studies of the Anxiolytic Drugs. Pharma Innov. J. 2016, 5, 19–22. [Google Scholar]
- Cryan, J.F.; Mombereau, C.; Vassout, A. The Tail Suspension Test as a Model for Assessing Antidepressant Activity: Review of Pharmacological and Genetic Studies in Mice. Neurosci. Biobehav. Rev. 2005, 29, 571–625. [Google Scholar] [CrossRef]
- Steru, L.; Chermat, R.; Thierry, B.; Simon, P. The Tail Suspension Test: A New Method for Screening Antidepressants in Mice. Psychopharmacology 1985, 85, 367–370. [Google Scholar] [CrossRef]
- Gojak-Salimović, S.; Alijagić, N.; Ramić, S. Investigation of Antioxidant Activity of Gallic, Protocatechuic and Vanilic Acid Using the Briggs-Rauscher Reaction as Tool. Glas. Hem. Tehnol. Bosne Herceg. 2023, 60, 7–12. [Google Scholar] [CrossRef]
- Da Silva, A.P.G.; Sganzerla, W.G.; John, O.D.; Marchiosi, R. A Comprehensive Review of the Classification, Sources, Biosynthesis, and Biological Properties of Hydroxybenzoic and Hydroxycinnamic Acids. Phytochem. Rev. 2025, 24, 1061–1090. [Google Scholar] [CrossRef]
- Enogieru, A.B.; Haylett, W.; Hiss, D.C.; Bardien, S.; Ekpo, O.E. Rutin as a Potent Antioxidant: Implications for Neurodegenerative Disorders. Oxidative Med. Cell. Longev. 2018, 2018, 6241017. [Google Scholar] [CrossRef]
- Ganeshpurkar, A.; Saluja, A.K. The Pharmacological Potential of Rutin. Saudi Pharm. J. 2017, 25, 149–164. [Google Scholar] [CrossRef] [PubMed]
- Al-Dhabi, N.A.; Valan Arasu, M.; Park, C.H.; Park, S.U. An Up-to-Date Review of Rutin and Its Biological and Pharmacological Activities. EXCLI J. 2015, 14, 59. [Google Scholar] [CrossRef]
- Nguyen, L.V.; Nguyen, K.D.A.; Ma, C.-T.; Nguyen, Q.-T.; Nguyen, H.T.H.; Yang, D.-J.; Tran, T.L.; Kim, K.W.; Doan, K.V. P-Coumaric Acid Enhances Hypothalamic Leptin Signaling and Glucose Homeostasis in Mice via Differential Effects on AMPK Activation. Int. J. Mol. Sci. 2021, 22, 1431. [Google Scholar] [CrossRef]
- Liang, S.; Zhao, Z.; Liu, L.; Zhang, Y.; Liu, X. Research Progress on the Mechanisms of Protocatechuic Acid in the Treatment of Cognitive Impairment. Molecules 2024, 29, 4724. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.; Zhang, X.; Lv, C.; Li, C.; Yu, Y.; Wang, X.; Han, F. Protocatechuic Acid Ameliorates Neurocognitive Functions Impairment Induced by Chronic Intermittent Hypoxia. Sci. Rep. 2015, 5, 14507. [Google Scholar] [CrossRef]
- Ogut, E.; Armagan, K.; Gül, Z. The Role of Syringic Acid as a Neuroprotective Agent for Neurodegenerative Disorders and Future Expectations. Metab. Brain Dis. 2022, 37, 859–880. [Google Scholar] [CrossRef]
- Sperringer, J.E.; Addington, A.; Hutson, S.M. Branched-Chain Amino Acids and Brain Metabolism. Neurochem. Res. 2017, 42, 1697–1709. [Google Scholar] [CrossRef]
- Fu, Y.; Wang, Y.; Ren, H.; Guo, X.; Han, L. Branched-Chain Amino Acids and the Risks of Dementia, Alzheimer’s Disease, and Parkinson’s Disease. Front. Aging Neurosci. 2024, 16, 1369493. [Google Scholar] [CrossRef]
- Holeček, M. Branched-Chain Amino Acids in Health and Disease: Metabolism, Alterations in Blood Plasma, and as Supplements. Nutr. Metab. (Lond.) 2018, 15, 33. [Google Scholar] [CrossRef]
- Abouyaala, O.; Bougrine, S.; Brikat, S.; Brouzi, M.Y.E.; Elhessni, A.; Mesfioui, A.; Ouahidi, M.L. The Anxiolytic, Anti-Depressive, and Antioxidative Effects of Lemon Verbena in Rat Rendered Diabetic by Streptozotocin Injection. Neurosci. Behav. Physiol. 2025, 55, 31–42. [Google Scholar] [CrossRef]
- Khan, A.W.; Khan, A.; Ahmed, T. Anticonvulsant, Anxiolytic, and Sedative Activities of Verbena officinalis. Front. Pharmacol. 2016, 7, 499. [Google Scholar] [CrossRef] [PubMed]
- Karpuz Ağören, B.; Küpeli Akkol, E.; Çelik, I.; Sobarzo-Sánchez, E. Sedative and Anxiolytic Effects of Capparis Sicula Duhamel: In Vivo and in Silico Approaches with Phytochemical Profiling. Front. Pharmacol. 2024, 15, 1443173. [Google Scholar] [CrossRef] [PubMed]
- Cowen, P.J.; Williamson, D.J.; McTavish, S.F.B. Effect of Valine on 5-HT Neurotransmission and Mood. In Recent Advances in Tryptophan Research; Filippini, G.A., Costa, C.V.L., Bertazzo, A., Eds.; Advances in Experimental Medicine and Biology; Springer US: Boston, MA, USA, 1996; Volume 398, pp. 67–71. ISBN 978-1-4613-8026-9. [Google Scholar]
- Singh, N.; Ecker, G.F. Insights into the Structure, Function, and Ligand Discovery of the Large Neutral Amino Acid Transporter 1, LAT1. Int. J. Mol. Sci. 2018, 19, 1278. [Google Scholar] [CrossRef]
- Feng, J.; Cai, X.; Zhao, J.; Yan, Z. Serotonin Receptors Modulate GABAA Receptor Channels through Activation of Anchored Protein Kinase C in Prefrontal Cortical Neurons. J. Neurosci. 2001, 21, 6502–6511. [Google Scholar] [CrossRef] [PubMed]
- Rautio, J.; Gynther, M.; Laine, K. LAT1-Mediated Prodrug Uptake: A Way to Breach the Blood–Brain Barrier? Ther. Deliv. 2013, 4, 281–284. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Huang, W.; Harris, M.B.; Goolsby, J.M.; Venema, R.C. Interaction of the Endothelial Nitric Oxide Synthase with the CAT-1 Arginine Transporter Enhances NO Release by a Mechanism Not Involving Arginine Transport. Biochem. J. 2005, 386, 567–574. [Google Scholar] [CrossRef] [PubMed]
- Banjarnahor, S.; König, J.; Maas, R. Screening of Commonly Prescribed Drugs for Effects on the CAT1-Mediated Transport of l-Arginine and Arginine Derivatives. Amino Acids 2022, 54, 1101–1108. [Google Scholar] [CrossRef]
- Shima, Y.; Maeda, T.; Aizawa, S.; Tsuboi, I.; Kobayashi, D.; Kato, R.; Tamai, I. L-Arginine Import via Cationic Amino Acid Transporter CAT1 Is Essential for Both Differentiation and Proliferation of Erythrocytes. Blood 2006, 107, 1352–1356. [Google Scholar] [CrossRef]
- Koshovyi, O.; Hrytsyk, Y.; Perekhoda, L.; Suleiman, M.; Jakštas, V.; Žvikas, V.; Grytsyk, L.; Yurchyshyn, O.; Heinämäki, J.; Raal, A. Solidago canadensis L. Herb Extract, Its Amino Acids Preparations and 3D-Printed Dosage Forms: Phytochemical, Technological, Molecular Docking and Pharmacological Research. Pharmaceutics 2025, 17, 407. [Google Scholar] [CrossRef]
- Koshovyi, O.; Heinämäki, J.; Laidmäe, I.; Topelius, N.S.; Grytsyk, A.; Raal, A. Semi-Solid Extrusion 3D-Printing of Eucalypt Extract-Loaded Polyethylene Oxide Gels Intended for Pharmaceutical Applications. Ann. 3D Print. Med. 2023, 12, 100123. [Google Scholar] [CrossRef]
- Kute, V.G.; Patil, R.S.; Kute, V.G.; Kaluse, P.D. Immediate-Release Dosage Form; Focus on Disintegrants Use as a Promising Excipient. J. Drug Deliv. Ther. 2023, 13, 170–180. [Google Scholar] [CrossRef]
- Mohalkar, R.; Poul, B.; Patil, S.S.; Hetkar, M.A.; Chavan, S.D. A Review on Immediate Release Drug Delivery Systems. PharmaTutor 2014, 2, 95–109. [Google Scholar]
- Kovaleva, A.M.; Georgievskyi, G.V.; Kovalev, V.M.; Komissarenko, A.M.; Timchenko, M.M. Development of the Method of Standardization of the New Medicinal Product Piflamin. Pharmacom 2002, 2, 92–97. [Google Scholar]
- Krivoruchko, E.; Markin, A.; Samoilova, V.A.; Ilina, T.; Koshovyi, O. Research in the Chemical Composition of the Bark of Sorbus Aucuparia. Ceska A Slov. Farm. 2018, 67, 113–115. [Google Scholar] [CrossRef]
- Riguene, H.; Moussaoui, Y.; Salem, R.B.; Rigane, G. Response Surface Methodology as a Predictive Tool and UPLC-HRMS Analysis of Phenolic Rich Extract from Verbena officinalis L. Using Microwave-Assisted Extraction: Part I. Chem. Afr. 2023, 6, 2857–2869. [Google Scholar] [CrossRef]
- Polumackanycz, M.; Petropoulos, S.A.; Añibarro-Ortega, M.; Pinela, J.; Barros, L.; Plenis, A.; Viapiana, A. Chemical Composition and Antioxidant Properties of Common and Lemon Verbena. Antioxidants 2022, 11, 2247. [Google Scholar] [CrossRef] [PubMed]
- Zapata Flores, E.D.J.; Herodes, K.; Leito, I. Comparison of the Ionisation Mode in the Determination of Free Amino Acids in Beers by Liquid Chromatography Tandem Mass Spectrometry. J. Chromatogr. A 2022, 1677, 463320. [Google Scholar] [CrossRef]
- Maciel, L.S.; Marengo, A.; Rubiolo, P.; Leito, I.; Herodes, K. Derivatization-Targeted Analysis of Amino Compounds in Plant Extracts in Neutral Loss Acquisition Mode by Liquid Chromatography-Tandem Mass Spectrometry. J. Chromatogr. A 2021, 1656, 462555. [Google Scholar] [CrossRef]
- The Law of Ukraine “On the Protection of Animals from Cruel Treatment” Dated 12/15/2009. Available online: https://zakon.rada.gov.ua/laws/show/3447-15#Text (accessed on 6 February 2025).
- On Approval of the Procedure for Preclinical Study of Medicinal Products and Examination of Materials of Preclinical Study of Medicinal Products; EMA: Amsterdam, The Netherlands, 2009.
- Council of the European Union. European Convention for the Protection of Vertebrate Animals Used for Experimental and Other Scientific Purposes; Council of the European Union: Brussels, Belgium, 1999. [Google Scholar]
- Viidik, L.; Seera, D.; Antikainen, O.; Kogermann, K.; Heinämäki, J.; Laidmäe, I. 3D-Printability of Aqueous Poly(Ethylene Oxide) Gels. Eur. Polym. J. 2019, 120, 109206. [Google Scholar] [CrossRef]
- Riegel, J.; Mayer, W.; Havre, Y.V. FreeCAD (Version 0.19.24291). 2001. Available online: http://www.freecad.org (accessed on 6 February 2025).
- Ukrainian Scientific Pharmacopoeial Center of Drugs Quality. State Pharmacopoeia of Ukraine, 2nd ed.; Ukrainian Scientific Pharmacopoeial Center of Drugs Quality: Kharkiv, Ukraine, 2015. [Google Scholar]
- Lapach, S.N.; Chubenko, A.V.; Babich, P.N. Statistical Methods in Biomedical Research Using Excel; MORION: Kyiv, Ukraine, 2000. [Google Scholar]
Compound | |||||||
---|---|---|---|---|---|---|---|
V1 (Extractant 70% Ethanol) | V2 (Extractant Water) | V1-Gly | V1-Phe | V1-Lys | V1-Val | V1-Arg | |
Phenolic compounds | |||||||
p-Coumaric acid | 14 ± 3 | 25 ± 5 | 8 ± 1 | 13 ± 1 | 15 ± 2 | 15 ± 1 | 12 ± 5 |
Quercetin | 285 ± 10 | 137 ± 6 | 137 ± 8 | 231 ± 11 | 240 ± 3 | 217 ± 5 | 208 ± 8 |
Gallic acid | 11 ± 3 | 102 ± 14 | 13 ± 1 | 16 ± 2 | 13 ± 1 | 13 ± 1 | 11 ± 1 |
Protocatechuic acid | 79 ± 11 | 116 ± 27 | 91 ± 14 | 168 ± 12 | 78 ± 11 | 82 ± 11 | 76 ± 8 |
Syringic acid | 54 ± 3 | 101 ± 6 | 51 ± 7 | 62 ± 15 | 70 ± 8 | 66 ± 11 | 60 ± 7 |
Isovanillin | 5405 ± 1432 | 6414 ± 1514 | 983 ± 281 | 5435 ± 847 | 824 ± 70 | 3401 ± 533 | 2519 ± 354 |
Ferulic acid | 33 ± 1 | 53 ± 5 | 21 ± 3 | 36 ± 3 | 35 ± 1 | 31 ± 2 | 27 ± 2 |
Rutin | 14 ± 2 | 7 ± 1 | 6 ± 0 | 16 ± 1 | 14 ± 0 | 11 ± 1 | 10 ± 1 |
Amino acids | |||||||
Histidine | 27 ± 4 | 52 ± 4 | 17 ± 3 | 33 ± 7 | 31 ± 9 | 27 ± 7 | 23 ± 6 |
Arginine | 187 ± 7 | 289 ± 8 | 154 ± 6 | 216 ± 14 | 195 ± 9 | 175 ± 13 | 134,100 ± 2600 |
Asparagine | 1253 ± 56 | 2238 ± 77 | 1114 ± 51 | 1533 ± 24 | 1265 ± 93 | 1141 ± 41 | 1196 ± 46 |
Glutamine | 4995 ± 533 | 666 ± 37 | 3958 ± 124 | 5839 ± 27 | 5574 ± 1219 | 4501 ± 324 | 4612 ± 333 |
Serine | 329 ± 22 | 421 ± 14 | 317 ± 10 | 411 ± 10 | 356 ± 34 | 326 ± 11 | 310 ± 9 |
Aspartic acid | 345 ± 36 | 359 ± 36 | 295 ± 6 | 331 ± 29 | 306 ± 50 | 292 ± 22 | 286 ± 16 |
Glycine | 46 ± 5 | 90 ± 5 | 58,500 ± 1900 | 489 ± 8 | 57 ± 8 | 72 ± 4 | 54 ± 2 |
Threonine | 121 ± 3 | 181 ± 3 | 128 ± 4 | 172 ± 1 | 132 ± 8 | 120 ± 3 | 118 ± 2 |
β-Alanine | 29 ± 6 | 43 ± 7 | 34 ± 2 | 50 ± 2 | 33 ± 7 | 28 ± 5 | 37 ± 3 |
α-Alanine | 721 ± 30 | 915 ± 45 | 763 ± 9 | 919 ± 12 | 789 ± 65 | 950 ± 24 | 722 ± 13 |
Tyrosine | 71 ± 4 | 113 ± 1 | 70 ± 3 | 167 ± 4 | 73 ± 1 | 114 ± 4 | 75 ± 7 |
Valine | 97 ± 22 | 305 ± 47 | 196 ± 21 | 333 ± 50 | 135 ± 32 | 85,900 ± 3000 | 102 ± 32 |
Tryptophan | 56 ± 9 | 74 ± 9 | 50 ± 4 | 78 ± 9 | 56 ± 6 | 53 ± 6 | 46 ± 8 |
Phenylalanine | 48 ± 11 | 106 ± 7 | 93 ± 6 | 183,500 ± 5600 | 57 ± 11 | 123 ± 8 | 55 ± 8 |
Isoleucine | 93 ± 28 | 182 ± 26 | 124 ± 9 | 379 ± 28 | 94 ± 20 | 249 ± 23 | 108 ± 25 |
Leucine | 73 ± 6 | 182 ± 4 | 97 ± 4 | 999 ± 34 | 78 ± 3 | 814 ± 40 | 86 ± 6 |
Lysine | 26 ± 12 | 67 ± 13 | 27 ± 3 | 50 ± 7 | 68,000 ± 4200 | 53 ± 10 | 29 ± 8 |
Spectrophotometry, % | |||||||
Hydroxycinnamic acids (chlorogenic acid equivalents, spectrophotometry), % | 5.79 ± 0.39 | 3.95 ± 0.31 | 5.51 ± 0.73 | 5.15 ± 0.47 | 4.46 ± 0.43 | 4.34 ± 0.67 | 3.78 ± 0.75 |
Flavonoids (rutin equivalents, spectrophotometry), % | 2.91 ± 0.12 | 2.00 ± 0.09 | 2.48 ± 0.05 | 2.39 ± 0.06 | 2.27 ± 0.06 | 2.24 ± 0.08 | 2.07 ± 0.04 |
Total phenolic compounds (gallic acid equivalents, spectrophotometry), % | 7.77 ± 0.28 | 5.75 ± 0.25 | 6.76 ± 0.38 | 6.26 ± 0.10 | 5.93 ± 0.18 | 5.85 ± 0.18 | 5.56 ± 0.16 |
Investigated Indicator | Control Animals | Comparison Group (“Sedaphyton”) | V1 (Extractant 70% Ethanol) | V2 (Extractant Water) | V1-Gly | V1-Phe | V1-Lys | V1-Val | V1-Arg |
---|---|---|---|---|---|---|---|---|---|
Number of crossed squares | 75.33 ± 5.68 | 73.17 ± 5.85 | 79.50 ± 4.55 | 94.17 ± 6.64 */** | 80.50 ± 8.24 | 83.50 ± 3.77 | 81.50 ± 5.96 | 50.33 ± 5.27 */** | 67.83 ± 7.46 |
Number of vertical stands | 10.50 ± 1.77 | 7.83 ± 0.91 | 12.17 ± 1.25 ** | 11.17 ± 1.05 ** | 7.33 ± 0.67 * | 10.67 ± 1.02 ** | 9.00 ± 0.58 | 6.67 ± 1.09 * | 4.33 ± 0.49 */** |
Number of hole explorations | 14.17 ± 1.08 | 2.83 ± 0.48 * | 12.50 ± 0.76 ** | 12.17 ± 0.98 ** | 11.00 ± 1.39 ** | 8.17 ± 0.48 */** | 9.83 ± 0.95 */** | 2.17 ± 0.60 * | 3.17 ± 0.60 * |
Conditional units of exploratory research activity | 3 | 1.91 | 3.10 | 3.17 | 2.54 | 2.70 | 2.58 | 1.45 | 1.53 |
Boluses | 1.33 ± 0.33 | 1.50 ± 0.81 | 1.50 ± 0.22 | 2.33 ± 0.42 | 2.67 ± 0.56 | 1.33 ± 0.21 | 1.00 ± 0.26 | 1.67 ± 0.21 | 1.17 ± 0.60 |
Grooming | 0.67 ± 0.21 | 0.33 ± 0.33 | 1.17 ± 0.31 | 0.67 ± 0.33 | 0.67 ± 0.21 | 0.83 ± 0.17 | 1.00 ± 0.26 | 0.5 ± 0.22 | 0.33 ± 0.21 |
Conditional units of emotional reaction indicators | 2 | 1.62 | 2.87 | 2.75 | 3 | 2.25 | 2.25 | 2 | 1.37 |
Conditional units of all activities | 5 | 3.54 | 5.97 | 5.92 | 5.54 | 4.95 | 4.83 | 3.45 | 2.91 |
Group of Animals | Time Spent in the Open Arm of the Maze, s | Time Spent in the Closed Arm of the Maze, s | Number of Peeks from the Closed Arm | Number of Crossings over the Central Platform | Number of Downward Glances from the Ends of Open Arms |
---|---|---|---|---|---|
Control animals | 24.17 ± 3.95 | 273.17 ± 5.40 | 10.50 ± 1.80 | 3.33 ± 1.2 | 4.67 ± 0.61 |
Comparison group (“Sedaphyton”) | 18.50 ± 1.84 | 279.00 ± 8.54 | 3.33 ± 0.42 * | 1.00 ± 0.37 * | 3.00 ± 0.63 * |
V1 (extractant 70% ethanol) | 54.67 ± 2.80 */** | 235.67 ± 5.52 */** | 8.50 ± 0.43 ** | 8.50 ± 1.06 */** | 10.17 ± 1.05 */** |
V2 (extractant water) | 24.00 ± 2.53 | 270.17 ± 3.84 | 10.83 ± 1.35 ** | 6.33 ± 0.92 */** | 5.33 ± 0.42 ** |
V1-Gly | 29.33 ± 2.75 ** | 262.50 ± 6.57 | 3.17 ± 0.40 * | 3.83 ± 0.06 ** | 4.33 ± 0.42 |
V1-Phe | 59.50 ± 4.21 */** | 238.00 ± 5.85 */** | 10.33 ± 0.49 ** | 8.50 ± 1.06 */** | 11.33 ± 1.20 */** |
V1-Lys | 47.17 ± 3.32 */** | 250.50 ± 8.50 */** | 8.00 ± 0.58 */** | 5.50 ± 1.52 ** | 11.00 ± 1.41 */** |
V1-Val | 9.50 ± 1.43 */** | 287.17 ± 1.96 * | 2.67 ± 0.42 */** | 1.83 ± 0.48 * | 1.00 ± 0.37 */** |
V1-Arg | 23.50 ± 2.01 | 275.00 ± 5.94 | 4.67 ± 1.02 */** | 3.00 ± 0.68 ** | 3.83 ± 1.25 |
Group of Animals | Time Spent in the Dark Compartment, s | Number of Peeks from the Dark Compartment | Time Spent in the Illuminated Compartment, s | Number of Exits into the Illuminated Compartment | Average Time of a Single Stay in the Illuminated Compartment, s |
---|---|---|---|---|---|
Control animals | 101.00 ± 4.93 | 5.83 ± 1.17 | 78.33 ± 4.89 | 4.83 ± 0.31 | 16.73 ± 1.87 |
Comparison group (“Sedaphyton”) | 119.00 ± 5.16 * | 2.17 ± 0.70 * | 59.67 ± 4.67 * | 3.33 ± 0.71 * | 25.68 ± 9.18 |
V1 (extractant 70% ethanol) | 24.67 ± 5.28 */** | 2.00 ± 1.06 * | 100.33 ± 5.28 */** | 3.17 ± 0.91 | 47.98 ± 12.85 ** |
V2 (extractant water) | 98.33 ± 6.82 ** | 7.00 ± 1.15 ** | 80.17 ± 6.84 ** | 5.83 ± 0.54 | 14.14 ± 1.48 |
V1-Gly | 75.67 ± 6.58 */** | 2.33 ± 0.61 * | 103.00 ± 6.61 */** | 7.33 ± 0.71 */** | 14.60 ± 1.33 |
V1-Phe | 73.67 ± 5.49 */** | 2.17 ± 1.22 | 105.5 ± 5.60 */** | 6.33 ± 0.61 ** | 17.43 ± 1.82 |
V1-Lys | 97.67 ± 10.55 | 3.83 ± 1.11 | 82.00 ± 10.56 | 5.33 ± 0.42 ** | 15.60 ± 1.97 |
V1-Val | 104.33 ± 9.27 | 3.17 ± 1.08 | 75.33 ± 9.28 | 4.83 ± 0.87 | 20.23 ± 6.57 |
V1-Arg | 126.67 ± 6.80 * | 2.67 ± 0.92 | 53.83 ± 7.06 * | 5.50 ± 1.12 | 11.66 ± 2.66 |
Group of Animals | Total Immobility Time, s |
---|---|
Control animals | 103.67 ± 5.00 |
Comparison group (“Sedaphyton”) | 190.67 ± 12.44 * |
V1 (extractant 70% ethanol) | 84.67 ± 5.38 */** |
V2 (extractant water) | 125.00 ± 3.01 */** |
V1-Gly | 124.83 ± 7.96 ** |
V1-Phe | 97.50 ± 5.76 ** |
V1-Lys | 99.67 ± 6.25 ** |
V1-Val | 177.50 ± 8.11 * |
V1-Arg | 133.67 ± 7.29 */** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koshovyi, O.; Dolgošev, G.; Meegama, U.W.; Herodes, K.; Hrytsyk, Y.; Grytsyk, L.; Grytsyk, A.; Kireyev, I.; Heinämäki, J.; Raal, A. Verbena officinalis L. Herb Extract, Its Amino Acid Preparations and 3D-Printed Dosage Forms: Phytochemical, Technological and Pharmacological Research. Plants 2025, 14, 2651. https://doi.org/10.3390/plants14172651
Koshovyi O, Dolgošev G, Meegama UW, Herodes K, Hrytsyk Y, Grytsyk L, Grytsyk A, Kireyev I, Heinämäki J, Raal A. Verbena officinalis L. Herb Extract, Its Amino Acid Preparations and 3D-Printed Dosage Forms: Phytochemical, Technological and Pharmacological Research. Plants. 2025; 14(17):2651. https://doi.org/10.3390/plants14172651
Chicago/Turabian StyleKoshovyi, Oleh, Getter Dolgošev, Udhan Wimukthi Meegama, Koit Herodes, Yurii Hrytsyk, Lyubov Grytsyk, Andriy Grytsyk, Igor Kireyev, Jyrki Heinämäki, and Ain Raal. 2025. "Verbena officinalis L. Herb Extract, Its Amino Acid Preparations and 3D-Printed Dosage Forms: Phytochemical, Technological and Pharmacological Research" Plants 14, no. 17: 2651. https://doi.org/10.3390/plants14172651
APA StyleKoshovyi, O., Dolgošev, G., Meegama, U. W., Herodes, K., Hrytsyk, Y., Grytsyk, L., Grytsyk, A., Kireyev, I., Heinämäki, J., & Raal, A. (2025). Verbena officinalis L. Herb Extract, Its Amino Acid Preparations and 3D-Printed Dosage Forms: Phytochemical, Technological and Pharmacological Research. Plants, 14(17), 2651. https://doi.org/10.3390/plants14172651