Extensive nrDNA Polymorphism in Morus L. and Its Application
Abstract
1. Introduction
2. Results
2.1. SNPs and InDels in nrDNA of Morus
2.2. Inter- and Intraspecific Polymorphism of the nrDNA Region in Morus and Phylogenetic Analysis
2.3. Characterization of the ITS Region in Morus Based on Cloning and Sequencing
2.4. ITS-CAPS Analysis of Morus Species
3. Discussion
3.1. Characteristics of nrDNA in Morus: Incomplete Concerted Evolution
3.1.1. The Assembly of nrDNA Regions Remains Challenging
3.1.2. Next-Generation Sequencing Facilitates Characterization of Morus nrDNA
3.2. Taxonomy of the Genus Morus
3.3. A Rapid and Reliable Method to Identify M. alba and M. notabilis
4. Materials and Methods
4.1. Morus Accessions
4.2. Variant Calling of nrDNA and the Read Counts for 13/16 Bp Insertions
4.3. nrDNA Variations in 542 Morus Accessions and Phylogenetic Analysis
4.4. ITS Fragment Alignment, Sanger Sequencing, and ITS-CAPS Assay
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Volkov, R.A.; Borisjuk, N.; Garcia, S.; Kovařík, A.; Sáez-Vásquez, J. Editorial: Molecular organization, evolution, and function of ribosomal DNA. Front. Plant Sci. 2022, 13, 994380. [Google Scholar] [CrossRef]
- Havlová, K.; Dvořáčková, M.; Peiro, R.; Abia, D.; Mozgová, I.; Vansáčová, L.; Gutierrez, C.; Fajkus, J. Variation of 45S rDNA intergenic spacers in Arabidopsis thaliana. Plant Mol. Biol. 2016, 92, 457–471. [Google Scholar] [CrossRef]
- Fuertes Aguilar, J.; Rosselló, J.; Nieto Feliner, G. Nuclear ribosomal DNA (nrDNA) concerted evolution in natural and artificial hybrids of Armeria (Plumbaginaceae). Mol. Ecol. 1999, 8, 1341–1346. [Google Scholar] [CrossRef]
- Baldwin, B.G.; Markos, S. Phylogenetic utility of the external transcribed spacer (ETS) of 18S–26S rDNA: Congruence of ETS and ITS trees of Calycadenia (Compositae). Mol. Phylogenet. Evol. 1998, 10, 449–463. [Google Scholar] [CrossRef] [PubMed]
- Schoch, C.L.; Seifert, K.A.; Huhndorf, S.; Robert, V.; Spouge, J.L.; Levesque, C.A.; Chen, W.; Consortium, F.B. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc. Natl. Acad. Sci. USA 2012, 109, 6241–6246. [Google Scholar] [CrossRef] [PubMed]
- Qian, D.; Zhang, J.; Fernie, A.; Alseekh, S. Extensive nrDNA ITS polymorphism in Lycium: Nonconcerted evolution and the identification of pseudogenes. Front. Plant Sci. 2022, 13, 984579. [Google Scholar]
- Group, C.P.W. A DNA barcode for land plants. Proc. Natl. Acad. Sci. USA 2009, 106, 12794–12797. [Google Scholar]
- Grimm, G.W.; Renner, S.S.; Stamatakis, A.; Hemleben, V. A nuclear ribosomal DNA phylogeny of Acer inferred with maximum likelihood, splits graphs, and motif analysis of 606 sequences. Evol. Bioinform. 2006, 2, 7–22. [Google Scholar] [CrossRef]
- Ganley, A.R.; Kobayashi, T. Highly efficient concerted evolution in the ribosomal DNA repeats: Total rDNA repeat variation revealed by whole-genome shotgun sequence data. Genome Res. 2007, 17, 184–191. [Google Scholar] [CrossRef]
- Mayol, M.; Rosselló, J.A. Why nuclear ribosomal DNA spacers (ITS) tell different stories in Quercus. Mol. Phylogenet. Evol. 2001, 19, 167–176. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, Q.; Xu, X.; Wang, Z.; Qi, J. Intragenomic variability and pseudogenes of ribosomal DNA in stone flounder Kareius bicoloratus. Mol. Phylogenet. Evol. 2009, 52, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Muir, G.; Fleming, C.C.; Schlötterer, C. Three divergent rDNA clusters predate the species divergence in Quercus petraea (Matt.) Liebl. and Quercus robur L. Mol. Biol. Evol. 2001, 18, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Xu, Y.; Yonezawa, T.; Li, L.; Hasegawa, M.; Lu, F.; Chen, J.; Zhang, W. Polymorphism and evolution of ribosomal DNA in tea (Camellia sinensis, Theaceae). Mol. Phylogenet. Evol. 2015, 89, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, C.; Jiang, Y.; Katz, L.A.; Gao, F.; Yan, Y. Further analyses of variation of ribosome DNA copy number and polymorphism in ciliates provide insights relevant to studies of both molecular ecology and phylogeny. Sci. China Life Sci. 2019, 62, 203–214. [Google Scholar] [CrossRef]
- Xuan, Y.; Wang, S.; Li, S.; Yuan, J.; Zhou, Q.; He, N. Chromosome constitution and genetic relationships of Morus spp. revealed by genomic in situ hybridization. BMC Plant Biol. 2023, 23, 428. [Google Scholar] [CrossRef]
- Agaev, Y.M.; Fedorova, H.E. Investigation of meiosis in the diploid species Morus alba L., the 22-ploid M. nigra L. and their cross in relation to the origin of the species M. nigra L. Genetika 1970, 2, 65–76. [Google Scholar]
- Zhang, S.D.; Soltis, D.E.; Yang, Y.; Li, D.Z.; Yi, T.S. Multi-gene analysis provides a well-supported phylogeny of Rosales. Mol. Phylogenet. Evol. 2011, 60, 21–28. [Google Scholar] [CrossRef]
- Linnaeus, C. Morus. In Species Plantarum; Impensis Laurentii Salvii: Stockholm, Sweden, 1753; Volume 2, p. 968. [Google Scholar]
- Zhou, Z.; Gilbert, M.G. Moraceae. In Flora of China; Wu, Z.Y., Raven, P.H., Hong, D.Y., Eds.; Science Press: Beijing, China; Missouri Botanical Garden Press: Saint Louis, MO, USA, 2003; Volume 5, pp. 22–26. [Google Scholar]
- Zeng, Q.W.; Chen, H.Y.; Zhang, C.; Han, M.J.; Li, T.; Qi, X.W.; Xiang, Z.H.; He, N.J. Definition of Eight Mulberry Species in the Genus Morus by Internal Transcribed Spacer-Based Phylogeny. PLoS ONE 2015, 10, e0135411. [Google Scholar] [CrossRef]
- Jain, M.; Bansal, J.; Rajkumar, M.S.; Sharma, N.; Khurana, J.P.; Khurana, P. Draft genome sequence of Indian mulberry (Morus indica) provides a resource for functional and translational genomics. Genomics 2022, 114, 110346. [Google Scholar] [CrossRef]
- Hotta, T. Fundamentals of Morus plants classification. Kinugasa Sanpo 1954, 390, 13–21. [Google Scholar]
- Koidzumi, G. Florae Symbolae Orientali-Asiaticae: Sive, Contributions to the Knowledge of the Flora of Eastern Asia; NDL: Kyoto, Japan, 1930.
- Bureau, L.É. Moraceae. In Prodromus Systematis Naturalis Regni Vegetabilis; DeCandolle, A.P., Ed.; Tuettel and Wurtz: Paris, France, 1873; Volume 17, pp. 211–288. [Google Scholar]
- Zeng, Q.; Chen, M.; Wang, S.; Xu, X.; Li, T.; Xiang, Z.; He, N. Comparative and phylogenetic analyses of the chloroplast genome reveal the taxonomy of the Morus genus. Front. Plant Sci. 2022, 13, 1047592. [Google Scholar] [CrossRef]
- Yang, C.-X.; Liu, S.-Y.; Zerega, N.J.C.; Stull, G.W.; Gardner, E.M.; Tian, Q.; Gu, W.; Lu, Q.; Folk, R.A.; Kates, H.R.; et al. Phylogeny and Biogeography of Morus (Moraceae). Agronomy 2023, 13, 2021. [Google Scholar] [CrossRef]
- Gardner, E.M.; Garner, M.; Cowan, R.; Dodsworth, S.; Epitawalage, N.; Arifiani, D.; Sahromi; Baker, W.J.; Forest, F.; Maurin, O.; et al. Repeated parallel losses of inflexed stamens in Moraceae: Phylogenomics and generic revision of the tribe Moreae and the reinstatement of the tribe Olmedieae (Moraceae). Taxon 2021, 70, 946–988. [Google Scholar] [CrossRef]
- Wang, M.; Zhu, M.; Qian, J.; Yang, Z.; Shang, F.; Egan, A.N.; Li, P.; Liu, L. Phylogenomics of mulberries (Morus, Moraceae) inferred from plastomes and single copy nuclear genes. Mol. Phylogenet. Evol. 2024, 197, 108093. [Google Scholar] [CrossRef]
- Jiao, F.; Luo, R.; Dai, X.; Liu, H.; Yu, G.; Han, S.; Lu, X.; Su, C.; Chen, Q.; Song, Q.; et al. Chromosome-Level Reference Genome and Population Genomic Analysis Provide Insights into the Evolution and Improvement of Domesticated Mulberry (Morus alba). Mol. Plant. 2020, 13, 1001–1012. [Google Scholar] [CrossRef] [PubMed]
- Dai, F.W.; Zhuo, X.K.; Luo, G.Q.; Wang, Z.J.; Xu, Y.J.; Wang, D.; Zhong, J.W.; Lin, S.; Chen, L.; Li, Z.Y.; et al. Genomic Resequencing Unravels the Genetic Basis of Domestication, Expansion, and Trait Improvement in Morus atropurpurea. Adv. Sci. 2023, 10, 2300039. [Google Scholar] [CrossRef]
- Xuan, Y.; Ma, B.; Li, D.; Tian, Y.; Zeng, Q.; He, N. Chromosome restructuring and number change during the evolution of Morus notabilis and Morus alba. Hortic. Res. 2022, 9, uhab030. [Google Scholar] [CrossRef]
- Xia, Z.; Dai, X.; Fan, W.; Liu, C.; Zhang, M.; Bian, P.; Zhou, Y.; Li, L.; Zhu, B.; Liu, S.; et al. Chromosome-level Genomes Reveal the Genetic Basis of Descending Dysploidy and Sex Determination in Morus Plants. Genom. Proteom. Bioinf. 2022, 20, 1119–1137. [Google Scholar] [CrossRef]
- Ma, B.; Wang, H.; Liu, J.; Chen, L.; Xia, X.; Wei, W.; Yang, Z.; Yuan, J.; Luo, Y.; He, N. The gap-free genome of mulberry elucidates the architecture and evolution of polycentric chromosomes. Hortic. Sci. 2023, 10, uhad111. [Google Scholar] [CrossRef]
- Vijayan, K.S.; da Silva, J.A.T.B. Germplasm conservation in mulberry (Morus spp.). Sci. Hortic. 2011, 128, 371–379. [Google Scholar] [CrossRef]
- Kruthika, H.S.; Rukmangada, M.S.; Naik, V.G. Genome size, chromosome number variation and its correlation with stom atal characters for assessment of ploidy levels in a core subset of mulberry (Morus spp.) germplasm. Gene 2023, 881, 147637. [Google Scholar] [CrossRef] [PubMed]
- Dufrenoy, M.-L. Sericulture. Sci. Mon. 1950, 71, 133–134. [Google Scholar]
- Stone, K.R. Morus alba. Fire Effects Information System; Fire Sciences Laboratory: Missoula, MT, USA, 2009.
- Burgess, K.S.; Morgan, M.; Deverno, L.; Husband, B.C. Asymmetrical introgression between two Morus species (M. alba, M. rubra) that differ in abundance. Mol. Ecol. 2005, 14, 3471–3483. [Google Scholar] [CrossRef] [PubMed]
- Burgess, K.S.; Morgan, M.; Husband, B.C. Interspecific seed discounting and the fertility cost of hybridization in an endangered species. New Phytol. 2008, 177, 276–283. [Google Scholar] [CrossRef]
- Burgess, K.S.; Husband, B.C. Habitat differentiation and the ecological costs of hybridization: The effects of introduced mulberry (Morus alba) on a native congener (M. rubra). J. Ecol. 2006, 94, 1061–1069. [Google Scholar] [CrossRef]
- Parks Canada Agency. Recovery Strategy for the Red Mulberry (Morus rubra) in Canada [PROPOSED]; Parks Canada Agency: Ottawa, ON, Canada, 2010; p. 25.
- Pratiwi, I.R. Genetic Relationships of Mulberry (Morus L.) Using Internal Transcribed Spacer (ITS) Markers. Int. J. Soc. Sci. World (TIJOSSW) 2021, 3, 55–63. [Google Scholar]
- Xuan, Y.; Wu, Y.; Li, P.; Liu, R.; Luo, Y.; Yuan, J.; Xiang, Z.; He, N. Molecular phylogeny of mulberries reconstructed from ITS and two cpDNA sequences. PeerJ 2019, 7, e8158. [Google Scholar] [CrossRef]
- Nepal, M.P.; Ferguson, C.J. Phylogenetics of Morus (Moraceae) inferred from ITS and trnL-trnF sequence data. Syst. Bot. 2012, 37, 442–450. [Google Scholar] [CrossRef]
- Konieczny, A.; Frederick, M.A. A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J. 1993, 4, 403–410. [Google Scholar] [CrossRef]
- Kumari, S.; Kanth, B.K.; Jeon, Y.; Jang, J.Y.; Kim, H.S.; Lee, G.J. Internal transcribed spacer-based CAPS marker development for Lilium hansonii identification from wild Lilium native to Korea. Sci. Hortic. 2018, 236, 52–59. [Google Scholar] [CrossRef]
- Kunihisa, M.; Fukino, N.; Matsumoto, S. Development of cleavage amplified polymorphic sequence (CAPS) markers for identification of strawberry cultivars. Euphytica 2003, 134, 209–215. [Google Scholar] [CrossRef]
- Möhring, S.; Horstmann, V.; Esch, E. Development of a molecular CAPS marker for the self-incompatibility locus in Brassica napus and identification of different S alleles. Plant Breeding 2005, 124, 105–110. [Google Scholar] [CrossRef]
- Matuszczak, M.; Spasibionek, S.; Gacek, K. Cleaved amplified polymorphic sequences (CAPS) marker for identification of two mutant alleles of the rapeseed BnaA. FAD2 gene. Mol. Biol. Rep. 2020, 47, 7607–7621. [Google Scholar] [CrossRef]
- Walkowiak, M.; Matuszczak, M.; Spasibionek, S.; Liersch, A.; Mikolajczyk, K. Cleaved Amplified Polymorphic Sequences (CAPS) Markers for Characterization of the LuFAD3A Gene from Various Flax (Linum usitatissimum L.) Cultivars. Agronomy 2022, 12, 1432. [Google Scholar] [CrossRef]
- Bongiorno, G.; Di Noia, A.; Ciancaleoni, S.; Marconi, G.; Cassibba, V.; Albertini, E. Development and Application of a Cleaved Amplified Polymorphic Sequence Marker (Phyto) Linked to the Pc5.1 Locus Conferring Resistance to Phytophthora capsici in Pepper (Capsicum annuum L.). Plants 2023, 12, 2757. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Genome assembly in the telomere-to-telomere era. Nat. Rev. Genet. 2024, 25, 658–670. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Yan, M.; Chen, S.; Sun, J.; Wang, J.; Meng, D.; Li, J.; Zhang, L.; Guo, L. The complete genome assembly of Nicotiana benthamiana reveals the genetic and epigenetic landscape of centromeres. Nat. Plants 2024, 10, 1928–1943. [Google Scholar] [CrossRef] [PubMed]
- Mo, W.; Shu, Y.; Liu, B.; Long, Y.; Li, T.; Cao, X.; Deng, X.; Zhai, J. Single-molecule targeted accessibility and methylation sequencing of centromeres, telomeres and rDNAs in Arabidopsis. Nat. Plants 2023, 9, 1439–1450. [Google Scholar] [CrossRef]
- Weiguo, Z.; Yile, P.; Zhifang, Z.; Shihai, J.; Xuexia, M.; Yongping, H. Phylogeny of the genus Morus (Urticales: Moraceae) inferred from ITS and trnL-F sequences. Afr. J. Biomed. Res. 2005, 4, 563–569. [Google Scholar]
- Aroonpong, P.; Chang, J.-C. Micropropagation of a difficult-to-root weeping mulberry (Morus alba var. Shidareguwa): A popular variety for ornamental purposes. Sci. Hortic. 2015, 194, 320–326. [Google Scholar]
- Yu, M.; Jing, C.W.; Zhuo, W.; Wu, C. A preliminary analysis of the inheritance pendulous branches in Morus alba var. pendula Dippel. Canxuetongxun 1999, 19, 9–11. [Google Scholar]
- Kim, K.; Nguyen, V.B.; Dong, J.; Wang, Y.; Park, J.Y.; Lee, S.-C.; Yang, T.-J. Evolution of the Araliaceae family inferred from complete chloroplast genomes and 45S nrDNAs of 10 Panax-related species. Sci. Rep. 2017, 7, 4917. [Google Scholar] [CrossRef]
- Kim, C.K.; Seol, Y.J.; Perumal, S.; Lee, J.; Waminal, N.E.; Jayakodi, M.; Lee, S.C.; Jin, S.; Choi, B.S.; Yu, Y.; et al. Re-exploration of U’s Triangle Brassica Species Based on Chloroplast Genomes and 45S nrDNA Sequences. Sci. Rep. 2018, 8, 7353. [Google Scholar] [CrossRef]
- Dong, Z.; Qu, S.; Landrein, S.; Yu, W.B.; Xin, J.; Zhao, W.; Song, Y.; Tan, Y.; Xin, P. Increasing Taxa Sampling Provides New Insights on the Phylogenetic Relationship Between Eriobotrya and Rhaphiolepis. Front. Genet. 2022, 13, 831206. [Google Scholar] [CrossRef]
- He, N.; Zhang, C.; Qi, X.; Zhao, S.; Tao, Y.; Yang, G.; Lee, T.-H.; Wang, X.; Cai, Q.; Li, D. Draft genome sequence of the mulberry tree Morus notabilis. Nat. Commun. 2013, 4, 2445. [Google Scholar] [CrossRef] [PubMed]
- SB, D.; Rajan, M.V. Microsporogenesis in hexaploid Morus serrata Roxb. Cytologia 1989, 54, 747–751. [Google Scholar]
- Dandia, B.S.B.; Dhar, A.; Sengupta, K. Meiosis in natural decosaploid (22X) Morus nigra L. Cytologia 1990, 55, 505–509. Cytologia 1990, 55, 505–509. [Google Scholar]
- Dufresne, F.; Stift, M.; Vergilino, R.; Mable, B.K. Recent progress and challenges in population genetics of polyploid organisms: An overview of current state-of-the-art molecular and statistical tools. Mol. Ecol. 2014, 23, 40–69. [Google Scholar] [CrossRef] [PubMed]
- Li, D.-Z.; Gao, L.-M.; Li, H.-T.; Wang, H.; Ge, X.-J.; Liu, J.-Q.; Chen, Z.-D.; Zhou, S.-L.; Chen, S.-L.; Yang, J.-B. Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants. Proc. Natl. Acad. Sci. USA 2011, 108, 19641–19646. [Google Scholar]
- Tree Maps & Tree Walks. Available online: https://trees.stanford.edu/treewalks/treemaps.htm (accessed on 18 October 2021).
- Barbour, J.R.; Read, R.A.; Barnes, R.L. Morus L. In The Woody Plant Seed Manual. Agriculture Handbook 727; Bonner, F.T., Karrfalt, R.P., Eds.; U.S. Department of Agriculture Forest Service: Washington, DC, USA, 2008; pp. 728–732. [Google Scholar]
- Hashemi, S.; Khadivi, A. Morphological and pomological characteristics of white mulberry (Morus alba L.) accessions. Sci. Hortic. 2020, 259, 108827. [Google Scholar] [CrossRef]
- Nepal, M.P.; Purintun, J.M. Systematics of the Genus Morus L. (Moraceae). In Mulberry: Genetic Improvement in Context of Climate Change; Taylor & Francis Group: Boca Raton, FL, USA, 2021; pp. 1–19. [Google Scholar]
- Stritch, L. Morus rubra IUCN Red List. Threat. Species 2018, 2018, E.T61890109A61890113. [Google Scholar] [CrossRef]
- Ambrose, J. Update COSEWIC Status Report on the Red Mulberry Morus rubra in Canada; Committee on the Status of Endangered Wildlife in Canada: Ottawa, ON, Canada, 1999. [Google Scholar]
- Ambrose, J. Status Report on Red Mulberry (Morus rubra, Moraceae) in Canada; Committee on the Status of Endangered Wildlife in Canada: Ottawa, ON, Canada, 1987; p. 21. [Google Scholar]
- COSEWIC. COSEWIC Assessment and Status Report on the Red Mulberry Morus rubra in Canada; Committee on the Status of Endangered Wildlife in Canada: Ottawa, ON, Canada, 2014; p. 22. [Google Scholar]
- Park, J.S.; Choi, Y.; Kim, J.H.; Lee, C.; Jeong, M.G.; Jeong, Y.I.; Kang, Y.J.; Chung, Y.S.; Choi, H.K. Development of a web-based high-throughput marker design program: CAPS (cleaved amplified polymorphic sequence) Maker. Plant Methods 2024, 20, 192. [Google Scholar] [CrossRef]
- Park, J.C.; Yoon, Y.M.; Lee, C.H.; Hur, O.S.; Kim, S.M. Development of cleaved amplified polymorphic sequence marker for powdery mildew resistance in Korean malting barley using QTL-seq. Front. Plant Sci. 2025, 16, 1596811. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef]
- Ou, J.; Zhu, L.J. trackViewer: A Bioconductor package for interactive and integrative visualization of multi-omics data. Nat. Methods 2019, 16, 453–454. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R.; Subgroup, G.P.D.P. The sequence alignment/map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef]
- Ortiz, E.M. vcf2phylip v2. 0: Convert a VCF Matrix into Several Matrix Formats for Phylogenetic Analysis; Zenodo: Geneva, Switzerland, 2019. [Google Scholar]
- Shen, W.; Le, S.; Li, Y.; Hu, F. SeqKit: A cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS ONE 2016, 11, e0163962. [Google Scholar] [CrossRef] [PubMed]
- Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; Von Haeseler, A.; Lanfear, R. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 2020, 37, 1530–1534. [Google Scholar] [CrossRef] [PubMed]
- Letunic, I.; Bork, P. Interactive Tree of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021, 49, W293–W296. [Google Scholar] [CrossRef] [PubMed]
- Allen, G.C.; Flores-Vergara, M.A.; Krasynanski, S.; Kumar, S.; Thompson, W.F. A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide. Nat. Protoc. 2006, 1, 2320–2325. [Google Scholar] [CrossRef] [PubMed]
Species | Sample Size | Species | Sample Size |
---|---|---|---|
M. alba | 476 | M. macroura | 4 |
M. notabilis | 16 | M. wittiorum | 3 |
M. bombycis | 8 | M. latifolia | 3 |
M. australis | 5 | M. nigra | 3 |
M. celtidifolia | 5 | M. mizuho | 2 |
M. cathayana | 5 | M. serrata | 2 |
M. mongolica | 4 | M. rotundiloba | 1 |
M. rubra | 4 | M. liboensis | 1 |
Species | Accession Number | SNP Number in 18S | SNP Number in ITS | SNP Number in 26S | InDel Number in 18S | InDel Number in ITS | InDel Number in 28S |
---|---|---|---|---|---|---|---|
M. nigra | 3 | 6 | 17 | 20 | 0 | 7 | 1 |
M. serrata | 1 | 8 | 19 | 17 | 0 | 6 | 0 |
M. rubra | 3 | 8 | 16 | 23 | 0 | 6 | 0 |
M. celtidifolia | 5 | 6 | 19 | 17 | 0 | 6 | 0 |
M. notabilis | 16 | 11 | 34 | 32 | 0 | 7 | 1 |
M. alba | 57 | 6 | 7 | 10 | 0 | 3 | 0 |
Species | Homogeneous SNP Number | Heterogeneous SNP Number | Homogeneous InDel Number | Heterogeneous InDel Number |
---|---|---|---|---|
M. nigra | 37 | 6 | 6 | 2 |
M. serrata | 41 | 3 | 6 | 0 |
M. rubra | 30 | 17 | 6 | 0 |
M. celtidifolia | 36 | 6 | 6 | 0 |
M. notabilis | 72 | 5 | 7 | 1 |
M. alba | 0 | 23 | 0 | 3 |
Species | Length of PCR Products | Length of DNA Fragments Digested by Enzymes | |
---|---|---|---|
BstEII | MstI | ||
M. alba | 689|702 | (91/149/449)|(149/553) | 689|(100/602) |
M. celtidifolia | 704 | 149/555 | 100/604 |
M. rubra | 703 | 148/555 | 100/603 |
M. notabilis | 709 | 709 | 709 |
M. serrata | 703 | 148/555 | 100/603 |
M. nigra | 702 | 148/554 | 99/603 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Zhang, L.; Bi, C.; Qin, M.; Wang, S.; Li, D.; He, N.; Zeng, Q. Extensive nrDNA Polymorphism in Morus L. and Its Application. Plants 2025, 14, 2570. https://doi.org/10.3390/plants14162570
Xu X, Zhang L, Bi C, Qin M, Wang S, Li D, He N, Zeng Q. Extensive nrDNA Polymorphism in Morus L. and Its Application. Plants. 2025; 14(16):2570. https://doi.org/10.3390/plants14162570
Chicago/Turabian StyleXu, Xiaoxiang, Le Zhang, Changwei Bi, Meiling Qin, Shouchang Wang, Dong Li, Ningjia He, and Qiwei Zeng. 2025. "Extensive nrDNA Polymorphism in Morus L. and Its Application" Plants 14, no. 16: 2570. https://doi.org/10.3390/plants14162570
APA StyleXu, X., Zhang, L., Bi, C., Qin, M., Wang, S., Li, D., He, N., & Zeng, Q. (2025). Extensive nrDNA Polymorphism in Morus L. and Its Application. Plants, 14(16), 2570. https://doi.org/10.3390/plants14162570