Efficient In Vitro Plantlet Regeneration from Stolon Explants and Genetic Stability Assessment Using ISSR Markers in the Ornamental Fern Hypolepis punctata
Abstract
1. Introduction
2. Results
2.1. Preparation of Sterile Materials
2.2. Effect of MS Macronutrient Intensity on GGB Induction
2.3. Effect of the Combination of BA and NAA on the Induction and Proliferation of Green Globular Bodies
2.4. Effect of PGRs on Sporophyte Regeneration
2.5. Effect of Basic Culture Medium on Leaf Expansion and Biomass Accumulation of Sporophytes
2.6. Effects of BA and AC on Shoot Elongation and Growth
2.7. Effect of IBA on Rooting
2.8. Genetic Fidelity Assessment
3. Discussion
4. Materials and Methods
4.1. Plant Material and Sterilization
4.2. Induction of Green Globular Bodies
4.3. Proliferation of Green Globular Bodies
4.4. Regeneration of Sporophytes
4.5. Leaf Expansion and Biomass Accumulation of Sporophytes
4.6. Elongation of Adventitious Shoots
4.7. Rooting and Acclimatization
4.8. Genetic Homogeneity Analysis
4.9. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Brownsey, P.J. A review of the fern genus Hypolepis (Dennstardtiaceae) in the Malesian and Pacific regions. Blumea Biodivers. Evol. Biogeogr. Plants 1987, 32, 227–276. [Google Scholar]
- Xing, F.; Wang, F. Hypolepis. In Flora of China, Vols. 2–3; Wu, Z., Raven, P.H., Hong, D., Eds.; Science Press: Beijing, China; Missouri Botanical Garden Press: St. Louis, MI, USA, 2013; pp. 152–154. [Google Scholar]
- Schwartsburd, P.B.; Perrie, L.R.; Brownsey, P.; Shepherd, L.D.; Shang, H.; Barrington, D.S.; Sundue, M.A. New insights into the evolution of the fern family Dennstaedtiaceae from an expanded molecular phylogeny and morphological analysis. Mol. Phylogenet. Evol. 2020, 150, 106881. [Google Scholar] [CrossRef]
- Li, L.; Yang, C.P.; Shang, H. Characteristics of intragametophytic selfing of ornamental Ferns Hypolepis punctata on sporophyte germination and development. Hortic. Seed 2024, 44, 15–18. [Google Scholar] [CrossRef]
- Huang, K.; Shang, H.; Zhou, Q.; Wang, Y.; Shen, H.; Yan, Y. Volatiles Induced from Hypolepis punctata (Dennstaedtiaceae) by Herbivores Attract Sclomina erinacea (Hemiptera: Reduviidae): Clear Evidence of Indirect Defense in Fern. Insects 2021, 12, 978. [Google Scholar] [CrossRef]
- Potter, D.M.; Baird, M.S. Carcinogenic effects of ptaquiloside in bracken fern and related compounds. Br. J. Cancer 2000, 83, 914–920. [Google Scholar] [CrossRef]
- Hayashi, Y.; Nishizawa, M.; Harita, S.; Sakan, T. Structures and Syntheses of Hypolepin A, B and C, Sesquiterpenes from Hypolepis punctata Mett. Chem. Lett. 1972, 5, 375–378. [Google Scholar] [CrossRef]
- Lai, K. Studies on the Cytotoxic Principles from Hypolepis punctata. Master’s Thesis, Taipei Medical University, Taipei, Taiwan, 2003. [Google Scholar]
- Barnicoat, H.; Cripps, R.; Kendon, J.; Sarasan, V. Conservation in vitro of rare and threatened ferns—Case studies of biodiversity hotspot and island species. In Vitro Cell. Dev. Biol.-Plant 2011, 47, 37–45. [Google Scholar] [CrossRef]
- Liu, J.H.; Wang, Y.; Liu, B.D. Observation on gametophyte development of Hypolepis punctata. J. Trop. Biol. 2012, 3, 345–348. [Google Scholar] [CrossRef]
- Winarto, B.; da Silva, J.A.T. Improved micropropagation protocol for leatherleaf fern (Rumohra adiantiformis) using rhizomes as donor explant. Sci. Hortic. 2012, 140, 74–80. [Google Scholar] [CrossRef]
- Lin, W.; Li, Y.; Liang, J.; Liu, Y.; Chen, P.; He, B.; Huang, J.; Guo, L.; Lan, S. Establishment of Dendrobium wilsonii Rolfe in vitro regeneration system. Sci. Hortic. 2024, 324, 112598. [Google Scholar] [CrossRef]
- Li, Y.; Yu, R.P.; Li, H.; Li, D.; Shi, L. Research Advances in Tissue Culture of Ornamental Ferns. Acta Hortic. Sin. 2012, 39, 1839–1848. [Google Scholar] [CrossRef]
- Pu, Y.; Song, Q.; Wang, G.; Wu, L.; Yang, C.; Yu, R. In vitro propagation and long-term observation of acclimated plants in endangered tree fern Alsophila costularis. Plant Cell Tissue Organ Cult. (PCTOC) 2023, 152, 275–285. [Google Scholar] [CrossRef]
- Fernández, H.; Revilla, M.A. In vitro culture of ornamental ferns. Plant Cell Tissue Organ Cult. 2003, 73, 1–13. [Google Scholar] [CrossRef]
- Hegde, S.; Menon, V.K.; Noronha, R.; D’Souza, L. Callus culture and an unconventional pattern of sporophyte regeneration in Drynaria quercifolia—A medicinal fern. Vitr. Cell. Dev. Biol.-Plant 2006, 42, 508–513. [Google Scholar] [CrossRef]
- Kato, Y. Physiological and morphogenetic studies of fern gametophytes in aseptic culture. I. Callus tissues from dark-cultured Pteris vittata. Bot. Gaz. 1963, 124, 413–416. [Google Scholar] [CrossRef]
- Xiong, Y.; Zeng, Y.; Liu, J.; Chen, X.; Li, Y.; Zhang, X.; Bian, Z.; da Silva, J.A.T.; Zeng, S.; Wu, K.; et al. Gametophyte development and sporophyte regeneration of Alsophila spinulosa. J. Plant Growth Regul. 2023, 42, 7488–7499. [Google Scholar] [CrossRef]
- Camloha, M.; Gogala, N.; Rode, J. Plant regeneration from leaf explants of the fern Platycerium bifurcatum in vitro. Sci. Hortic. 1994, 56, 257–266. [Google Scholar] [CrossRef]
- Bertrand, A.M.; Albuerne, M.A.; Fernandez, H.; Gonzalez, A.; Sánchez-Tamés, R. In vitro organogenesis of Polypodium cambricum. Plant Cell Tissue Organ Cult. 1999, 57, 65–69. [Google Scholar] [CrossRef]
- Higuchi, H.; Amaki, W.; Suzuki, S. In vitro propagation of Nephrolepis cordifolia Prsel. Sci. Hortic. 1987, 32, 105–113. [Google Scholar] [CrossRef]
- Liao, Y.K.; Wu, Y.H. In vitro propagation of Platycerium bifurcatum (cav.) c. chr. via green globular body initiation. Bot. Stud. 2011, 52, 455–463. [Google Scholar]
- Quiroz, L.F.; Khan, M.; Gondalia, N.; Lai, L.; McKeown, P.C.; Brychkova, G.; Spillane, C. Tissue culture-independent approaches to revolutionizing plant transformation and gene editing. Hortic. Res. 2025, 12, uhae292. [Google Scholar] [CrossRef] [PubMed]
- Bui, L.T.; Long, H.; Irish, E.E.; Cordle, A.R.; Cheng, C.L. The power of gametophyte transformation. In Current Advances in Fern Research; Springer International Publishing: Cham, Switzerland, 2018; pp. 271–284. [Google Scholar] [CrossRef]
- Xiang, D.L.; Li, G.S. Control of leaf development in the water fern Ceratopteris richardii by the auxin efflux transporter CrPINMa in the CRISPR/Cas9 analysis. BMC Plant Biol. 2024, 24, 322. [Google Scholar] [CrossRef]
- Wang, F.; Zhong, Z.; Chen, L.; Shu, J.; Yan, Y. Overview of gene function research in monilophytes (ferns). J. Integr. Plant Biol. 2024, 59, 495–514. [Google Scholar]
- Chen, Z.H. Unveiling novel genes in fern genomes for the design of stress tolerant crops. Crop Des. 2022, 1, 100013. [Google Scholar] [CrossRef]
- Shukla, J.N.; Kalsi, M.; Sethi, A.; Narva, K.E.; Fishilevich, E.; Singh, S.; Mogilicherla, K.; Palli, S.R. Reduced stability and intracellular transport of dsRNA contribute to poor RNAi response in lepidopteran insects. RNA Biol. 2016, 13, 656–669. [Google Scholar] [CrossRef] [PubMed]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Chu, C.C. The N6 medium and its applications to anther culture of cereal crops. Proc. Symp. Plant Tissue Cult. 1981, 43–50. [Google Scholar]
- Gupta, P.K.; Durzan, D.J. Shoot multiplication from mature trees of Douglas-fir (Pseudotsuga menziesii) and sugar pine (Pinus lambertiana). Plant Cell Rep. 1985, 4, 177–179. [Google Scholar] [CrossRef]
- George, E.F.; Hall, M.A.; De Klerk, G.J. (Eds.) Plant Propagation by Tissue Culture: Volume 1. The Background (Vol. 1); Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007. [Google Scholar] [CrossRef]
- Yu, R.; Li, F.; Wang, G.; Ruan, J.; Wu, L.; Wu, M.; Yang, C.; Shan, Q. In vitro regeneration of the colorful fern Pteris aspericaulis var. tricolor via green globular bodies system. Vitr. Cell. Dev. Biol.-Plant 2021, 57, 225–234. [Google Scholar] [CrossRef]
- Mikuła, A.; Pożoga, M.; Grzyb, M.; Rybczyński, J.J. An unique system of somatic embryogenesis in the tree fern Cyathea delgadii Sternb.: The importance of explant type, and physical and chemical factors. Plant Cell Tissue Organ Cult. (PCTOC) 2015, 123, 467–478. [Google Scholar] [CrossRef]
- Fernández, H.; Bertrand, A.M.; Sanchez-Tames, R. Influence of tissue culture conditions on apogamy in Dryopteris affinis sp. affinis. Plant Cell Tissue Organ Cult. 1996, 45, 93–97. [Google Scholar] [CrossRef]
- Thakur, R.C.; Hosoi, Y.; Ishii, K. Rapid in vitro propagation of Matteuccia struthiopteris (L.) Todaro–an edible fern. Plant Cell Rep. 1998, 18, 203–208. [Google Scholar] [CrossRef]
- Higuchi, H.; Amaki, W. Effects of 6-benzylaminopurine on the organogenesis of Asplenium nidus L. through in vitro propagation. Sci. Hortic. 1989, 37, 351–359. [Google Scholar] [CrossRef]
- Yu, R.; Zhang, G.; Li, H.; Cao, H.; Mo, X.; Gui, M.; Zhou, X.; Jiang, Y.; Li, S.; Wang, J. In vitro propagation of the endangered tree fern Cibotium barometz through formation of green globular bodies. Plant Cell Tissue Organ Cult. (PCTOC) 2017, 128, 369–379. [Google Scholar] [CrossRef]
- Amaki, W.; Higuchi, H. A possible propagation system of Nephrolepis, Asplenium, Pteris, Adiantum and Rumohra (Arachniodes) through tissue culture. Vitr. Cult. XXIII IHC 1990, 300, 237–244. [Google Scholar] [CrossRef]
- Cárdenas-Aquino, M.D.R.; Camas-Reyes, A.; Valencia-Lozano, E.; López-Sánchez, L.; Martínez-Antonio, A.; Cabrera-Ponce, J.L. The Cytokinins BAP and 2-iP modulate different molecular mechanisms on shoot proliferation and Root Development in Lemongrass (Cymbopogon citratus). Plants 2023, 12, 3637. [Google Scholar] [CrossRef]
- Pan, M.J.; Staden, J.V. The use of charcoal in in vitro culture–A review. Plant Growth Regul. 1998, 26, 155–163. [Google Scholar] [CrossRef]
- Thomas, T.D. The role of activated charcoal in plant tissue culture. Biotechnol. Adv. 2008, 26, 618–631. [Google Scholar] [CrossRef] [PubMed]
- Teng, W.L. Activated charcoal affects morphogenesis and enhances sporophyte regeneration during leaf cell suspension culture of Platycerium bifurcatum. Plant Cell Rep. 1997, 17, 77–83. [Google Scholar] [CrossRef]
- Padhya, M.A.; Mehta, A.R. Propagation of fern (Nephrolepis) through tissue culture. Plant Cell Rep. 1982, 1, 261–263. [Google Scholar] [CrossRef]
- Jang, B.K.; Cho, J.S.; Park, K.; Lee, C.H. Practical methodology for gametophyte proliferation and sporophyte production in green penny fern (Lemmaphyllum microphyllum C. Presl) using mechanical fragmentation. Vitr. Cell. Dev. Biol.-Plant 2020, 56, 318–324. [Google Scholar] [CrossRef]
- Yan, X.; Zheng, K.; Li, P.; Zhong, X.; Zhu, Z.; Zhou, H.; Zhu, M. An efficient in vitro organogenesis protocol for the endangered relic tree species Bretschneidera sinensis and genetic fidelity assessment using DNA markers. Front. Plant Sci. 2024, 15, 1259925. [Google Scholar] [CrossRef] [PubMed]
- Nalousi, A.M.; Hatamzadeh, A.; Azadi, P.; Mohsenpour, M.; Lahiji, H.S. A procedure for indirect shoot organogenesis of Polianthes tuberosa L. and analysis of genetic stability using ISSR markers in regenerated plants. Sci. Hortic. 2019, 244, 315–321. [Google Scholar] [CrossRef]
- Zhou, H.; Sun, J.; Zheng, K.; Zhang, X.; Yao, Y.; Zhu, M. Efficient Plantlet Regeneration from Branches in Mangifera indica L. Plants 2024, 13, 2595. [Google Scholar] [CrossRef]
- Shang, H.; Wang, Y.; Yan, Y.H. Development and characterization of microsatellite loci in the pantropical fern Hypolepis punctata (Dennstaedtiaceae). Appl. Plant Sci. 2015, 3, 1500047. [Google Scholar] [CrossRef]
75% Ethanol (s) | 15% Sodium Hypochlorite (min) | Contamination Rate (%) | Survival Rate (%) |
---|---|---|---|
30 | 8 | 48.89 ± 2.22 d | 51.11 ± 2.22 d |
30 | 12 | 17.78 ± 1.11 b | 81.11 ± 1.11 a |
30 | 15 | 12.22 ± 2.94 b | 70.00 ± 1.92 b |
60 | 8 | 33.33 ± 1.93 c | 57.78 ± 1.11 cd |
60 | 12 | 14.44 ± 2.94 b | 67.78 ± 2.94 b |
60 | 15 | 4.45 ± 2.22 a | 60.00 ± 3.33 c |
MS Macronutrient Intensity | GGB Induction Rate (%) |
---|---|
2 MS | 30.00 ± 2.31 c |
MS | 54.00 ± 1.15 a |
1/2 MS | 36.67 ± 1.76 b |
1/4 MS | 18.67 ± 0.67 d |
BA (mg/L) | NAA (mg/L) | GGB Induction Rate (%) | GGB Diameter (mm) |
---|---|---|---|
0 | 0 | 0.00 | —— |
0.2 | 0.2 | 16.67 ± 1.93 e | 5.14 ± 0.14 e |
1 | 0.2 | 52.23 ± 2.22 c | 6.11 ± 0.18 d |
2 | 0.01 | 24.44 ± 1.11 e | 7.97 ± 0.16 b |
2 | 0.2 | 75.56 ± 2.93 a | 8.46 ± 0.12 a |
3 | 0.01 | 45.53 ± 2.22 d | 7.31 ± 0.17 c |
3 | 0.2 | 67.78 ± 1.11 b | 8.40 ± 0.09 ab |
BA | NAA | AC | Sporophyte Regeneration Rate (%) | Average Number of Adventitious Buds per Explant |
---|---|---|---|---|
(mg/L) | (mg/L) | (g/L) | ||
0.1 | 0.1 | 0 | 72.21 ± 2.94 de | 30.32 ± 1.07 e |
0.2 | 0.1 | 0 | 81.11 ± 2.22 c | 36.29 ± 0.73 d |
0.5 | 0.1 | 0 | 90.00 ± 3.33 b | 46.10 ± 0.53 b |
0.5 | 0.1 | 2 | 98.89 ± 1.11 a | 49.19 ± 0.65 a |
0.5 | 0.05 | 0 | 81.11 ± 2.94 c | 42.11 ± 0.80 c |
0.5 | 0.2 | 0 | 86.67 ± 1.93 bc | 31.27 ± 1.04 e |
1 | 0.1 | 0 | 65.55 ± 2.22 ef | 10.41 ± 0.56 gh |
1 | 0.1 | 2 | 78.88 ± 2.21 cd | 15.52 ± 0.67 f |
1 | 0.5 | 0 | 57.78 ± 4.01 fg | 12.04 ± 0.25 g |
1.5 | 0.1 | 0 | 46.67 ± 3.85 h | 9.82 ± 0.58 h |
1.5 | 0.1 | 2 | 53.33 ± 1.93 gh | 10.33 ± 0.33 gh |
BA (mg/L) | AC (g/L) | Shoot Elongation (%) | Average Length (cm) |
---|---|---|---|
0.1 | 2 | 60.00 ± 1.92 c | 2.51 ± 0.03 d |
0.1 | 0 | 54.44 ± 1.11 cd | 2.30 ± 0.08 d |
0.5 | 2 | 97.78 ± 2.22 a | 4.83 ± 0.19 a |
0.5 | 0 | 51.11 ± 2.94 d | 3.61 ± 0.23 b |
1 | 2 | 72.22 ± 2.94 b | 3.07 ± 0.09 c |
1 | 0 | 41.11 ± 1.11 e | 2.89 ± 0.13 c |
IBA (mg/L) | Adventitious Root Induction Rate (%) | Number of Roots |
---|---|---|
0 | 43.33 ± 1.93 d | 6.75 ± 1.64 d |
0.3 | 82.22 ± 2.22 c | 15.34 ± 0.62 c |
0.5 | 92.22 ± 2.94 ab | 25.27 ± 0.40 a |
0.7 | 98.89 ± 1.11 a | 18.91 ± 0.43 b |
1.0 | 88.89 ± 2.94 bc | 17.91 ± 2.12 b |
Primer | Nucleotide Sequence (5′–3′) | Number of Amplification Band | Size Range of Band (bp) |
---|---|---|---|
ISSR3 | AGGAGGAGGAGGC | 5 | 100–700 bp |
ISSR6 | AGAGAGAGAGAGAGAGYT | 8 | 150–500 bp |
ISSR8 | GAGAGAGAGAGAGAGAG | 7 | 100–400 bp |
ISSR10 | GAGGAGGAGGAGGC | 6 | 100–600 bp |
ISSR11 | CTCCTCCTCCTCGG | 6 | 200–1000 bp |
ISSR12 | CACACACACACAAC | 7 | 200–1000 bp |
ISSR13 | GGGTGGGGTGGGGTG | 5 | 100–600 bp |
ISSR14 | GAGAGAGAGAGACC | 5 | 300–700 bp |
ISSR15 | CAGCAGCAGGC | 3 | 300–600 |
ISSR20 | CCAGAGGAGGAGGAG | 3 | 100–300 bp |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Yan, X.; Zheng, K.; Shen, H.; Cao, J.; Zhou, Q.; Zhu, M. Efficient In Vitro Plantlet Regeneration from Stolon Explants and Genetic Stability Assessment Using ISSR Markers in the Ornamental Fern Hypolepis punctata. Plants 2025, 14, 2569. https://doi.org/10.3390/plants14162569
Wang X, Yan X, Zheng K, Shen H, Cao J, Zhou Q, Zhu M. Efficient In Vitro Plantlet Regeneration from Stolon Explants and Genetic Stability Assessment Using ISSR Markers in the Ornamental Fern Hypolepis punctata. Plants. 2025; 14(16):2569. https://doi.org/10.3390/plants14162569
Chicago/Turabian StyleWang, Xinyuan, Xuetong Yan, Keyuan Zheng, Hui Shen, Jianguo Cao, Qiang Zhou, and Mulan Zhu. 2025. "Efficient In Vitro Plantlet Regeneration from Stolon Explants and Genetic Stability Assessment Using ISSR Markers in the Ornamental Fern Hypolepis punctata" Plants 14, no. 16: 2569. https://doi.org/10.3390/plants14162569
APA StyleWang, X., Yan, X., Zheng, K., Shen, H., Cao, J., Zhou, Q., & Zhu, M. (2025). Efficient In Vitro Plantlet Regeneration from Stolon Explants and Genetic Stability Assessment Using ISSR Markers in the Ornamental Fern Hypolepis punctata. Plants, 14(16), 2569. https://doi.org/10.3390/plants14162569