Intra-Varietal Variability for Abiotic Stress Tolerance Traits in the Grapevine Variety Arinto
Abstract
1. Introduction
2. Results
2.1. Genetic Variance Components Estimates and Quantification of Intra-Varietal Variability
2.2. Polyclonal Selection
3. Discussion
3.1. The Need for Abiotic Stress Tolerant Material
3.2. The Importance of the Experimental Design
3.3. Abiotic Stress Tolerance Indicators
3.4. Predicted Genetic Gains of Selection
3.5. Polyclonal Selected Material
3.6. Why Was SLT the Best Stress Indicator?
4. Materials and Methods
4.1. Description of the Field Trial and Experimental Design
4.2. Environmental Conditions and Abiotic Stress Evaluation
4.3. Yield and Quality Trait Evaluation
4.4. Data Analysis
4.5. Polyclonal Selection
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- OIV. State of the World Vine and Wine Sector in 2022. Available online: https://www.oiv.int/sites/default/files/documents/OIV_State_of_the_world_Vine_and_Wine_sector_in_2022_2.pdf (accessed on 10 April 2025).
- DGAV. Inscrição no Catálogo Nacional de Variedades de Videira-2020. Available online: https://www.dgav.pt/wp-content/uploads/2021/04/cnvideira2020.pdf (accessed on 8 April 2025).
- Fonseca, A.; Fraga, H.; Santos, J.A. Exposure of Portuguese viticulture to weather extremes under climate change. Clim. Serv. 2023, 30, 100357. [Google Scholar] [CrossRef]
- Carvalho, L.C.; Gonçalves, E.F.; Marques da Silva, J.; Costa, J.M. Potential Phenotyping Methodologies to Assess Inter- and Intravarietal Variability and to Select Grapevine Genotypes Tolerant to Abiotic Stress. Front. Plant Sci. 2021, 12, 718202. [Google Scholar] [CrossRef]
- Maes, W.H.; Steppe, K. Estimating evapotranspiration and drought stress with ground-based thermal remote sensing in agriculture: A review. J. Exp. Bot. 2012, 63, 4671–4712. [Google Scholar] [CrossRef]
- Pradawet, C.; Khongdee, N.; Pansak, W.; Spreer, W.; Hilger, T.; Cadisch, G. Thermal imaging for assessment of maize water stress and yield prediction under drought conditions. J. Agron. Crop Sci. 2023, 209, 56–70. [Google Scholar] [CrossRef]
- Humplík, J.F.; Lazár, D.; Husičková, A.; Spíchal, L. Automated phenotyping of plant shoots using imaging methods for analysis of plant stress responses—A review. Plant Methods 2015, 11, 29. [Google Scholar] [CrossRef]
- Carvalho, L.C.; Gonçalves, E.; Amâncio, S.; Martins, A. Selecting Aragonez Genotypes Able to Outplay Climate Change–Driven Abiotic Stress. Front. Plant Sci. 2020, 11, 599230. [Google Scholar] [CrossRef] [PubMed]
- Cassol, D.; De Silva, F.S.P.; Falqueto, A.R.; Bacarin, M.A. An Evaluation of Non-Destructive Methods to Estimate Total Chlorophyll Content. Photosynthetica 2008, 46, 634–636. [Google Scholar] [CrossRef]
- Royo, C.; Aparicio, N.; Villegas, D.; Casadesus, J.; Monneveux, P.; Araus, J.L. Usefulness of spectral reflectance indices as durum wheat yield predictors under contrasting Mediterranean conditions. Int. J. Remote Sens. 2003, 24, 4403–4419. [Google Scholar] [CrossRef]
- Gutiérrez-Rodríguez, M.; Reynolds, M.P.; Escalante-Estrada, J.A.; Rodríguez-González, M.T. Association between canopy reflectance indices and yield and physiological traits in bread wheat under drought and well-irrigated conditions. Aust. J. Agric. Res. 2004, 55, 1139–1147. [Google Scholar] [CrossRef]
- Babar, M.A.; Van Ginkel, M.; Klatt, A.R.; Prasad, B.; Reynolds, M.P. The potential of using spectral reflectance indices to estimate yield in wheat grown under reduced irrigation. Euphytica 2006, 150, 155–172. [Google Scholar] [CrossRef]
- Babar, M.A.; Reynolds, M.P.; Van Ginkel, M.; Klatt, A.R.; Raun, W.R.; Stone, M.L. Spectral reflectance indices as a potential indirect selection criteria for wheat yield under irrigation. Crop Sci. 2006, 46, 578–588. [Google Scholar] [CrossRef]
- Prasad, B.; Carver, B.F.; Stone, M.L.; Babar, M.A.; Raun, W.R.; Klatt, A.R. Potential use of spectral reflectance indices as a selection tool for grain yield in winter wheat under great plains conditions. Crop Sci. 2007, 47, 1426–1440. [Google Scholar] [CrossRef]
- Magney, T.S.; Vierling, L.A.; Eitel, J.U.H.; Huggins, D.R.; Garrity, S.R. Response of high frequency Photochemical Reflectance Index (PRI) measurements to environmental conditions in wheat. Remote Sens. Environ. 2016, 173, 84–97. [Google Scholar] [CrossRef]
- OIV. Resolution OIV-VITI 564A-2017; Process for the Clonal Selection of Vines. International Organisation of Vine and Wine: Dijon, France, 2017. Available online: https://www.oiv.int/public/medias/5382/oiv-viti-564a-2017-en.pdf (accessed on 28 July 2025).
- OIV. Resolution OIV-VITI 564B-2019; Process for the Recovery and Conservation of the Intravarietal Diversity and the Polyclonal Selection of the Vine in Grape Varieties with Wide Genetic Variability. International Organisation of Vine and Wine (OIV): Dijon, France, 2019. Available online: https://www.oiv.int/public/medias/6939/oiv-viti-564b-2019-en.pdf (accessed on 28 July 2025).
- Gonçalves, E.; Martins, A. Optimizing conservation and evaluation of intra-varietal grapevine diversity. In Sustainable Viticulture and Winemaking Practices; Costa, J.M., Catarino, S., Escalona, J.M., Comuzzo, P., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 45–64. [Google Scholar]
- IVV. Catálogo Das Castas Para Vinho Cultivadas Em Portugal; Instituto da Vinha e do Vinho; I. P. Chaves Ferreira: Lisboa, Portugal, 2011. (In Portuguese) [Google Scholar]
- IVV. Castas Mais Utilizadas a Nível Nacional. Available online: https://www.ivv.gov.pt/np4/7501.html (accessed on 8 April 2025).
- Plantevin, M.; Merpault, Y.; Lecourt, J.; Destrac-Irvine, A.; Dijsktra, L.; van Leeuwen, C. Characterization of varietal effects on the acidity and pH of grape berries for selection of varieties better adapted to climate change. Front. Plant Sci. 2024, 15, 1439114. [Google Scholar] [CrossRef]
- van Leeuwen, C.; Darriet, P. The Impact of Climate Change on Viticulture and Wine Quality. J. Wine Econ. 2016, 11, 150–167. [Google Scholar] [CrossRef]
- Gonçalves, E.; Martins, A. Efficient Assessment and Large-Scale Conservation of Intra-Varietal Diversity of Ancient Grapevine Varieties: Case Study Portugal. Plants 2022, 11, 1917. [Google Scholar] [CrossRef]
- Askari-Khorasgani, O.; Pessarakli, M. Grapevine selection for improving nutrient content and composition and the associated quality indices—A review. J. Plant Nutr. 2019, 42, 2176–2187. [Google Scholar] [CrossRef]
- Surgy, S.; Cadima, J.; Gonçalves, E. Integer programming as a powerful tool for polyclonal selection in ancient grapevine varieties. Theor. Appl. Genet. 2025, 138, 122. [Google Scholar] [CrossRef] [PubMed]
- Ollat, N.; Cookson, S.J.; Destrac-Irvine, A.; Lauvergeat, V.; Ouaked-Lecourieux, F.; Marguerit, E.; Barrieu, F.; Dai, Z.; Duchêne, E.; Gambetta, G.A.; et al. Grapevine adaptation to abiotic stress: An overview. Acta Hortic. 2019, 1248, 497–512. [Google Scholar] [CrossRef]
- Gonçalves, E.; Carrasquinho, I.; Martins, A. Fully and Partially Replicated Experimental Designs for Evaluating Intravarietal Variability in Grapevine. Genet. Res. 2022, 1, 5293298. [Google Scholar] [CrossRef]
- Karakizi, C.; Oikonomou, M.; Karantzalos, K. Vineyard detection and vine variety discrimination from very high resolution satellite data. Remote Sens. 2016, 8, 235. [Google Scholar] [CrossRef]
- Kourounioti, O.; Oikonomou, E. Detection and Clustering of Grapevine Varieties via Multispectral Aerial Imagery and Vegetation Indices Analysis. Environ. Sci. Proc. 2024, 29, 36. [Google Scholar] [CrossRef]
- López, A.; Ogayar, C.J.; Feito, F.R.; Sousa, J.J. Classification of Grapevine Varieties Using UAV Hyperspectral Imaging. Remote Sens. 2024, 16, 2103. [Google Scholar] [CrossRef]
- Rey-Caramés, C.; Diago, M.P.; Pilar Martín, M.; Lobo, A.; Tardaguila, J. Using RPAS multi-spectral imagery to characterise vigour; leaf development; yield components and berry composition variability within a vineyard. Remote Sens. 2015, 7, 14458–14481. [Google Scholar] [CrossRef]
- Adjah, K.L.; Asante, M.D.; Frei, M.; Toure, A.; Aziadekey, M.; Wu, L.; Wairich, A.; Gamenyah, D.D.; Yadav, S. Leaf reflectance and physiological attributes monitoring differentiate rice cultivars under drought-stress and non-stress conditions. Cogent Food Agric. 2025, 11, 2453086. [Google Scholar] [CrossRef]
- Kokhan, S.; Vostokov, A. Using vegetative indices to quantify agricultural crop characteristics. J. Ecol. Eng. 2020, 21, 120–127. [Google Scholar] [CrossRef]
- Yu, R.; Torres, N.; Tanner, J.D.; Kacur, S.M.; Marigliano, L.E.; Zumkeller, M.; Gilmer, J.C.; Gambetta, G.A.; Kurtural, S.K. Adapting wine grape production to climate change through canopy architecture manipulation and irrigation in warm climates. Front. Plant Sci. 2022, 13, 1015574. [Google Scholar] [CrossRef]
- Buchner, O.; Roach, T.; Gertzen, J.; Schenk, S.; Karadar, M.; Stöggl, W.; Miller, R.; Bertel, C.; Neuner, G.; Kranner, I. Drought affects the heat-hardening capacity of alpine plants as indicated by changes in xanthophyll cycle pigments; singlet oxygen scavenging, α-tocopherol and plant hormones. Environ. Exp. Bot. 2017, 133, 159–175. [Google Scholar] [CrossRef]
- Kutasy, E.; Buday-Bódi, E.; Virág, I.C.; Forgács, F.; Melash, A.A.; Zsombik, L.; Nagy, A.; Csajbók, J. Mitigating the negative effect of drought stress in oat (Avena sativa L.) with silicon and sulphur foliar fertilization. Plants 2022, 11, 30. [Google Scholar] [CrossRef] [PubMed]
- OIV. OIV General Assembly, OIV Protocol for Identification of Varieties; International Organisation of Vine and Wine: Geneva, Switzerland, 2019; Available online: https://www.oiv.int/node/3112 (accessed on 28 July 2025).
- Gonçalves, E.; Carrasquinho, I.; Almeida, R.; Pedroso, V.; Martins, A. Genetic correlations in grapevine and their effects on selection. Aust. J. Grape Wine Res. 2016, 22, 52–63. [Google Scholar] [CrossRef]
- Falconer, D.S.; Mackay, T.F.C. Introduction to Quantitative Genetics, 4th ed.; Addison Wesley Longman: Boston, MA, USA, 1996. [Google Scholar]
- Patterson, H.; Thompson, R. Recovery of Inter-Block Information when Block Sizes are Unequal. Biometrika 1971, 58, 545–554. [Google Scholar] [CrossRef]
- Butler, D.O.G.; Cullis, B.R.; Gilmour, A.R.; Gogel, B.J.; Thompson, R. ASReml-R Reference Manual, Version 4.2.; VSN International Ltd.: Hertfordshire, UK, 2023; Available online: https://asreml.kb.vsni.co.uk/ (accessed on 12 June 2025).
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: http://www.r-project.org (accessed on 12 June 2025).
- Gonçalves, E.; Carrasquinho, I.; St. Aubyn, A.; Martins, A. Broad-sense heritability in mixed models for grapevine initial selection trials. Euphytica 2013, 189, 379–391. [Google Scholar] [CrossRef]
- Henderson, C.R. Best Linear Unbiased Estimation and Prediction under a Selection Model_forMendeley. Biometrics 1975, 31, 423–447. [Google Scholar] [CrossRef] [PubMed]
Trait | Year | Overall Mean | (p-Value) | CVG (%) | Percentage of Design Effects Variance | |||
---|---|---|---|---|---|---|---|---|
Rep | Row | Col | ||||||
NDVI | 2019 | 0.68 | 0.0001 (<0.001) | 1.08 | 0.563 | 50.86 | 4.44 | 44.71 |
2020 | 0.79 | 0.00002 (<0.022) | 0.53 | 0.223 | 48.50 | 0 | 51.50 | |
2021 | 0.85 | 0.00004 (0.019) | 0.78 | 0.241 | 22.52 | 1.25 | 76.23 | |
PRI | 2019 | 0.02 | 0.000006 (<0.001) | 13.49 | 0.595 | 32.80 | 4.88 | 62.33 |
2020 | 0.02 | 0.0000007 (<0.001) | 4.26 | 0.361 | 44.21 | 0 | 55.79 | |
2021 | 0.13 | 0.00014 (<0.001) | 9.09 | 0.310 | 30.19 | 0.55 | 69.26 | |
SPAD | 2019 | 14.28 | 1.7424 (<0.001) | 9.25 | 0.672 | 45.63 | 7.52 | 46.85 |
2020 | 16.95 | 2.5165 (<0.001) | 9.36 | 0.667 | 74.86 | 3.65 | 21.49 | |
2021 | 10.83 | 0.8025 (<0.001) | 8.28 | 0.520 | 7.89 | 1.06 | 91.04 | |
SLT (°C) | 2019 | 31.16 | 1.4885 (<0.001) | 3.92 | 0.583 | 70.11 | 1.90 | 27.99 |
2020 | 29.37 | 0.5949 (<0.001) | 2.63 | 0.617 | 58.06 | 5.96 | 35.98 | |
2021 | 25.06 | 0.3384 (<0.001) | 2.32 | 0.478 | 61.18 | 6.28 | 32.54 | |
Yield (kg plant−1) | 2019 | 4.55 | 1.0743 (<0.001) | 22.78 | 0.695 | 46.27 | 13.96 | 39.78 |
2020 | 5.69 | 1.0949 (<0.001) | 18.39 | 0.636 | 79.88 | 3.54 | 16.58 | |
2021 | 5.55 | 3.1761 (<0.001) | 26.56 | 0.744 | 50.04 | 7.11 | 42.85 | |
Berry weight (g) | 2019 | 1.09 | 0.0064 (<0.001) | 7.31 | 0.482 | 70.10 | 4.90 | 24.98 |
2020 | 1.55 | 0.0136 (<0.001) | 7.54 | 0.612 | 11.86 | 11.59 | 76.55 | |
2021 | 1.50 | 0.0070 (<0.001) | 5.57 | 0.457 | 9.43 | 31.80 | 58.77 | |
Berry soluble solids (°Brix) | 2019 | 22.90 | 1.1441 (<0.001) | 4.67 | 0.668 | 82.74 | 5.78 | 11.49 |
2020 | 23.07 | 1.2403 (<0.001) | 4.83 | 0.692 | 5.05 | 7.5 | 87.44 | |
2021 | 23.51 | 0.2324 (<0.001) | 2.05 | 0.478 | 52.77 | 24.58 | 22.64 | |
Berry total acidity (tartaric acid, g L−1) | 2019 | 5.60 | 0.3898 (<0.001) | 11.15 | 0.714 | 45.51 | 10.92 | 43.57 |
2020 | 4.39 | 0.1084 (<0.001) | 7.49 | 0.668 | 38.06 | 0 | 61.94 | |
2021 | 6.93 | 0.1566 (<0.001) | 5.71 | 0.493 | 84.37 | 0 | 15.63 | |
Berry pH | 2019 | 3.59 | 0.0065 (<0.001) | 2.25 | 0.648 | 14.95 | 1.23 | 83.82 |
2020 | 3.69 | 0.0039 (<0.001) | 1.69 | 0.486 | 0 | 0 | 100 | |
2021 | 3.54 | 0.0026 (<0.001) | 1.45 | 0.575 | 8.11 | 4.69 | 87.20 |
Trait | Year | EBLUP of Genotypic Effect | PGV | ||
---|---|---|---|---|---|
Minimum | Maximum | Minimum | Maximum | ||
NDVI | 2019 | −0.030 | 0.011 | 0.648 | 0.689 |
2020 | −0.007 | 0.005 | 0.783 | 0.795 | |
2021 | −0.009 | 0.019 | 0.845 | 0.873 | |
PRI | 2019 | −0.013 | 0.003 | 0.006 | 0.022 |
2020 | −0.002 | 0.001 | 0.018 | 0.021 | |
2021 | −0.035 | 0.013 | 0.095 | 0.141 | |
SPAD | 2019 | −3.284 | 2.317 | 10.98 | 16.58 |
2020 | −4.164 | 2.416 | 12.78 | 19.36 | |
2021 | −1.716 | 1.510 | 9.86 | 13.09 | |
SLT (°C) | 2019 | −2.627 | 2.415 | 28.531 | 33.571 |
2020 | −1.662 | 1.507 | 27.746 | 30.915 | |
2021 | −0.945 | 1.561 | 24.120 | 26.627 | |
Yield (kg plant−1) | 2019 | −2.072 | 2.860 | 2.48 | 7.41 |
2020 | −2.909 | 2.373 | 2.78 | 8.06 | |
2021 | −3.312 | 4.303 | 2.24 | 9.85 | |
Berry weight (g) | 2019 | −0.124 | 0.230 | 0.968 | 1.322 |
2020 | −0.493 | 0.203 | 1.056 | 1.753 | |
2021 | −0.190 | 0.147 | 1.310 | 1.647 | |
Berry Soluble Solids (ºBrix) | 2019 | −2.285 | 1.701 | 20.61 | 24.60 |
2020 | −2.718 | 1.465 | 20.35 | 24.53 | |
2021 | −1.013 | 1.037 | 22.50 | 24.55 | |
Berry Total Acidity (tartaric acid, g L−1) | 2019 | −0.884 | 2.737 | 4.715 | 8.336 |
2020 | −0.463 | 1.542 | 3.930 | 5.936 | |
2021 | −0.638 | 0.907 | 6.289 | 7.833 | |
Berry pH | 2019 | −0.181 | 0.194 | 3.412 | 3.787 |
2020 | −0.103 | 0.107 | 3.588 | 3.798 | |
2021 | −0.122 | 0.104 | 3.423 | 3.649 |
Stress Indicator/Trait | 2019–2020 | 2019–2021 | 2020–2021 |
---|---|---|---|
SLT (°C) | 0.404 ± 0.113 | 0.213 ± 0.166 | 0.154 ± 0.158 |
NDVI | * | 0.621 ± 0.210 | 0.792 ± 0.302 |
PRI | * | 0.766 ± 0.137 | * |
SPAD | * | * | * |
Yield (kg plant−1) | 0.783 ± 0.067 | 0.904 ± 0.039 | 0.845 ± 0.058 |
Soluble solids (°Brix) | 0.866 ± 0.074 | 0.734 ± 0.106 | 0.914 ± 0.100 |
Berry total acidity (tartaric acid, g L−1) | 0.836 ± 0.062 | 0.756 ± 0.099 | 0.794 ± 0.089 |
pH | 0.797 ± 0.114 | 0.672 ± 0.098 | 0.839 ± 0.117 |
Berry weight | 0.281 ± 0.142 | 0.796 ± 0.148 | 0.628 ± 0.118 |
Traits | Predicted Genetic Gain (as Percentage of the Mean of the Variety) | |||
---|---|---|---|---|
2019 | 2020 | 2021 | ||
NVDI | NVDI | 1.165 * | 0.468 * | 0.747 * |
Yield (kg plant−1) | 3.761 | −2.265 | 13.756 * | |
Berry weight (g) | 2.665 | 1.641 | −0.127 | |
Berry pH | 1.400 * | 0.727 | −0.245 | |
Berry soluble solids (°Brix) | 2.833 * | 2.066 * | 0.327 | |
Berry total acidity (tartaric acid, g L−1) | −3.506 | −1.985 | −1.590 | |
PRI | PRI | 14.719 * | 4.090 * | 8.212 * |
Yield (kg plant−1) | 7.429 | −2.190 | 2.624 | |
Berry weight (g) | −2.062 | 0.094 | 1.475 | |
Berry pH | −0.846 * | 0.013 | −0.209 | |
Berry soluble solids (°Brix) | −1.521 | 2.108 * | −0.039 | |
Berry total acidity (tartaric acid, g L−1) | 0.100 | −1.556 | 0.259 | |
SPAD | SPAD | 13.280 * | 11.358 * | 11.220 * |
Yield (kg plant−1) | −2.022 | −0.622 | 4.611 | |
Berry weight (g) | 2.120 | 1.257 | −0.516 | |
Berry pH | 1.012 * | 0.720 | 0.015 | |
Berry soluble solids (°Brix) | 0.636 | 3.223 * | 0.223 | |
Berry total acidity (tartaric acid, g L−1) | −2.218 | −2.472 | −1.003 | |
SLT | SLT (°C) | −6.142 * | −4.316 * | −3.107 * |
Yield (kg plant−1) | 14.774 * | 6.513 | −3.314 | |
Berry weight (g) | 1.044 | 0.818 | −0.675 | |
Berry pH | 0.919 * | −0.094 | 0.035 | |
Berry soluble solids (°Brix) | 2.462 * | 0.932 | 0.038 | |
Berry total acidity (tartaric acid, g L−1) | −5.077 * | −0.583 | −0.004 |
Trait | Average Predicted Gain | Prediction Intervals |
---|---|---|
SLT (°C) | −3.131 | [−3.892, −2.371] |
SPAD | 3.239 | [0.504, 5.974] |
NDVI | 0.139 | [−0.141, 0.420] |
PRI | 0.035 | [−3.078, 3.148] |
Yield (kg plant−1) | 7.319 | [1.499, 13.140] |
Berry weight (g) | −1.295 | [−3.346, 0.755] |
Berry pH | 0.374 | [−0.122, 0.870] |
Berry Soluble Solids (°Brix) | 1.373 | [0.385, 2.361] |
Berry Total Acidity (tartaric acid g L−1) | −1.070 | [−3.220, 1.080] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carvalho, L.C.; Pinto, T.; Costa, J.M.; Martins, A.; Amâncio, S.; Gonçalves, E. Intra-Varietal Variability for Abiotic Stress Tolerance Traits in the Grapevine Variety Arinto. Plants 2025, 14, 2480. https://doi.org/10.3390/plants14162480
Carvalho LC, Pinto T, Costa JM, Martins A, Amâncio S, Gonçalves E. Intra-Varietal Variability for Abiotic Stress Tolerance Traits in the Grapevine Variety Arinto. Plants. 2025; 14(16):2480. https://doi.org/10.3390/plants14162480
Chicago/Turabian StyleCarvalho, Luisa C., Teresa Pinto, Joaquim Miguel Costa, Antero Martins, Sara Amâncio, and Elsa Gonçalves. 2025. "Intra-Varietal Variability for Abiotic Stress Tolerance Traits in the Grapevine Variety Arinto" Plants 14, no. 16: 2480. https://doi.org/10.3390/plants14162480
APA StyleCarvalho, L. C., Pinto, T., Costa, J. M., Martins, A., Amâncio, S., & Gonçalves, E. (2025). Intra-Varietal Variability for Abiotic Stress Tolerance Traits in the Grapevine Variety Arinto. Plants, 14(16), 2480. https://doi.org/10.3390/plants14162480