Elimination of Intraspecific Competition Does Not Improve Maize Leaf Physiological and Biochemical Responses to Topsoil Degradation
Abstract
1. Introduction
2. Results
2.1. Grain Yield and Yield Components
2.1.1. Grain Yield
2.1.2. Yield Components
2.2. Leaf Physiological Parameters
2.2.1. Net Assimilation Rate of Leaf Area
2.2.2. Leaf Area Production Efficiency
2.2.3. Leaf Nitrogen and Carbon Accumulation
2.2.4. Photosynthesis Rate
2.3. Enzyme Parameters
2.3.1. Activities of Key Nitrogen Metabolism Enzymes
2.3.2. Activities of Key Nitrogen Metabolism Enzymes
2.4. Correlations
3. Discussion
3.1. Reducing Topsoil Depth Directly Limits Maize Yield
3.2. Reducing Topsoil Depth Limits Leaf Production Capacity
3.3. Reducing Topsoil Depth Limits Leaf Nutrient Accumulation and Photosynthetic Rate
3.4. Reducing Topsoil Depth Limits Leaf Enzyme Activities
3.5. Physiological Processes and Mechanisms
4. Materials and Methods
4.1. Site Description
4.2. Experimental Design
4.3. Measurements
4.3.1. Grain Yield
4.3.2. Leaf Area Net Assimilation Rate and Production Efficiency
4.3.3. Leaf Nitrogen and Carbon Accumulation
4.3.4. Leaf Nitrogen and Carbon Accumulation
4.3.5. Determination of Activities of Key Enzymes of Leaf Nitrogen Metabolism and Photosynthesis
4.4. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [PubMed]
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2021. Transforming Food Systems for Food Security, Improved Nutrition and Affordable Healthy Diets for All; FAO: Rome, Italy, 2021. [Google Scholar] [CrossRef]
- Gao, X.; Xie, Y.; Liu, G.; Liu, B.; Duan, X. Effects of soil erosion on soybean yield as estimated by simulating gradually eroded soil profiles. Soil Tillage Res. 2014, 145, 126–134. [Google Scholar] [CrossRef]
- Lal, R. Soil degradation by erosion. Land Degrad. Dev. 2001, 12, 519–539. [Google Scholar] [CrossRef]
- Miryeganeh, M. Plants’ epigenetic mechanisms and abiotic stress. Genes 2021, 12, 1106. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, W.; Cao, D.; Chen, L.; Yang, H.; Chen, H.; Chen, S.; Hao, Q.; Qiu, D.; Shan, Z.; et al. Heterologous expression of the Glycine soja Kunitz-type protease inhibitor GsKTI improves resistance to drought stress and Helicoverpa armigera in transgenic Arabidopsis lines. Plant Physiol. Biochem. 2023, 202, 107915. [Google Scholar] [CrossRef] [PubMed]
- Luo, N.; Meng, Q.; Feng, P.; Qu, Z.; Yu, Y.; Liu, D.; Müller, C.; Wang, P. China can be self-sufficient in maize production by 2030 with optimal crop management. Nat. Commun. 2023, 14, 2637. [Google Scholar] [CrossRef]
- NBSC (National Bureau of Statistics of China). China Statistical Yearbook; China Statistics Press: Beijing, China, 2021. (In Chinese) [Google Scholar]
- Keller, T.; Or, D. Farm vehicles approaching weights of sauropods exceed safe mechanical limits for soil functioning. Proc. Natl. Acad. Sci. USA 2022, 119, e2117699119. [Google Scholar] [CrossRef]
- Pandey, B.K.; Huang, G.Q.; Bhosale, R.; Hartman, S.; Sturrock, C.J.; Jose, L.; Martin, O.C.; Karady, M.; Voesenek, L.A.C.J.; Ljung, K.; et al. Plant roots sense soil compaction through restricted ethylene diffusion. Science 2021, 371, 276–280. [Google Scholar] [CrossRef]
- Schjønning, P.; van den Akker, J.J.H.; Keller, T.; Greve, M.H.; Lamandé, M.; Simojoki, A.; Stettler, M.; Arvidsson, J.; Breuning-Madsen, H. Driver-Pressure-State-Impact- Response (DPSIR) analysis and risk assessment for soil compaction-A European Perspective. Adv. Agron. 2015, 133, 183–237. [Google Scholar] [CrossRef]
- Feng, Z.; Zheng, F.; Hu, W.; Li, G.; Xu, X. Impacts of mollic epipedon thickness and overloaded sediment deposition on corn yield in the Chinese Mollisol region. Agric. Ecosyst. Environ. 2018, 257, 175–182. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, X.; Sui, Y.; Wang, Y.; Herbert, S.J. Soil degradation: A problem threatening the sustainable development of agriculture in Northeast China. Plant Soil Environ. 2010, 56, 87–97. [Google Scholar] [CrossRef]
- MWR (Ministry of Water Resources); CAS (Chinese Academy of Sciences); CAE (Chinese Academy of Engineering). Chinese Soil Erosion and Ecological Security: Northeast Black Soil; Science Press: Beijing, China, 2010; p. 148. (In Chinese) [Google Scholar]
- Ouyang, W.; Wu, Y.; Hao, Z.; Zhang, Q.; Bu, Q.; Gao, X. Combined impacts of land use and soil property changes on soil erosion in a mollisol area under long-term agricultural development. Sci. Total Environ. 2018, 613, 798–809. [Google Scholar] [CrossRef]
- Guo, L.; Yang, Y.; Zhao, Y.; Li, Y.; Sui, Y.; Tang, C.; Jin, J.; Liu, X. Reducing topsoil depth decreases the yield and nutrient uptake of maize and soybean grown in a glacial till. Land Degrad. Dev. 2020, 32, 2849–2860. [Google Scholar] [CrossRef]
- Oyedele, D.J.; Aina, P.O. Response of soil properties and maize yield to simulated erosion by artificial topsoil removal. Plant Soil 2006, 284, 375–384. [Google Scholar] [CrossRef]
- Yang, M.; Geng, M.; Shen, P.; Chen, X.; Li, Y.; Wen, X. Effect of post-silking drought stress on the expression profiles of genes involved in carbon and nitrogen metabolism during leaf senescence in maize (Zea mays L.). Plant Physiol. Biochem. 2019, 135, 304–309. [Google Scholar] [CrossRef]
- Savage, J.A.; Clearwater, M.J.; Haines, D.F.; Klein, T.; Mencuccini, M.; Sevanto, S.; Turgeon, R.; Zhang, C. Allocation, stress tolerance and carbon transport in plants: How does phloem physiology affect plant ecology? Plant Cell Environ. 2016, 39, 709–725. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Fountain, J.C.; Ji, P.; Ni, X.; Chen, S.; Lee, R.D.; Kemerait, R.C.; Guo, B. Deciphering drought-induced metabolic responses and regulation in developing maize kernels. Plant Biotechnol. J. 2018, 16, 1616–1628. [Google Scholar] [CrossRef]
- Zheng, J.; Fu, J.; Gou, M.; Huai, J.; Liu, Y.; Jian, M.; Huang, Q.; Guo, X.; Dong, Z.; Wang, H. Genome-wide transcriptome analysis of two maize inbred lines under drought stress. Plant Mol. Biol. 2010, 72, 407–421. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Song, Q.; Zhao, J.; Mao, L.; Bu, H.; Hu, Y.; Zhu, X. Canopy occupation volume as an indicator of canopy photosynthetic capacity. New Phytol. 2021, 232, 941–956. [Google Scholar] [CrossRef]
- Liu, G.; Yang, Y.; Liu, W.; Guo, X.; Xie, R.; Ming, B.; Xue, J.; Zhang, G.; Li, R.; Wang, K.; et al. Optimized canopy structure improves maize grain yield and resource use efficiency. Food Energy Secur. 2022, 11, e375. [Google Scholar] [CrossRef]
- Maddonni, G.A.; Otegui, M.E.; Cirilo, A.G. Plant population density: Row spacing and hybrid effects on maize canopy architecture and light attenuation. Field Crop. Res. 2001, 71, 183–193. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, L.; Gu, W.; Wang, Y.; Zhang, J. Increasing photosynthetic performance and post-silking N uptake by moderate decreasing leaf source of maize under high planting density. J. Integr. Agric. 2021, 20, 494–510. [Google Scholar] [CrossRef]
- Dong, S.; Hu, C.; Gao, R. Rates of apparent photosynthesis, respiration and dry matter accumulation in maize canopies. Biol. Plantarum. 1993, 35, 273–277. [Google Scholar] [CrossRef]
- Sun, X.; Li, X.; Jiang, W.; Zhao, M.; Gao, Z.; Ge, J.; Sun, Q.; Ding, Z.; Zhou, B. Integrated management practices for canopy–topsoil improves the grain yield of maize with high planting density. Plants 2023, 12, 2000. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Wang, G.; Morris, E.C.; Wei, X.; Li, D.; Chen, B.; Zhao, C.; Liu, J.; Wang, Y. Plant mass-density relationship along a moisture gradient in north-west China. J. Ecol. 2006, 94, 953–958. [Google Scholar] [CrossRef]
- Liu, G.; Liu, W.; Hou, P.; Ming, B.; Yang, Y.; Guo, X.; Xie, R.; Wang, K.; Li, S. Reducing maize yield gap by matching plant density and solar radiation. J. Integr. Agric. 2021, 20, 363–370. [Google Scholar] [CrossRef]
- Bakker, M.M.; Govers, G.; Jones, R.A.; Rounsevell, M.D.A. The effect of soil erosion on Europe’s crop yields. Ecosystems 2007, 10, 1209–1219. [Google Scholar] [CrossRef]
- Zhang, L.; Huang, Y.; Rong, L.; Duan, X.; Zhang, R.; Li, Y.; Guan, J. Effect of soil erosion depth on crop yield based on topsoil removal method: A meta-analysis. Agron. Sustain. Dev. 2021, 41, 63. [Google Scholar] [CrossRef]
- Zhou, K.; Sui, Y.; Liu, X.; Zhang, X.; Jin, J.; Wang, G.; Herbert, S.J. Crop rotation with nine-year continuous cattle manure addition restores farmland productivity of artificially eroded Mollisols in Northeast China. Field Crop. Res. 2015, 171, 138–145. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, X.; Liu, Z.; Pullens, J.W.M.; Chen, J.; Marek, G.W.; Chen, Y.; Lv, S.; Sun, S. Greater maize yield improvements in low/unstable yield zones through recommended nutrient and water inputs in the main cropping regions, China. Agric. Water Manag. 2020, 232, 106018. [Google Scholar] [CrossRef]
- Li, X.; Gao, J.; Huang, J.; Xing, D.; Peng, S. Effects of topsoil removal on nitrogen uptake, biomass accumulation, and yield formation in puddled-transplanted rice. Field Crop. Res. 2021, 265, 108130. [Google Scholar] [CrossRef]
- Sui, Y.; Liu, X.; Jin, J.; Zhang, S.; Zhang, X.; Herbert, S.J.; Ding, G. Differentiating the early impacts of topsoil removal and soil amendments on crop performance productivity of corn and soybean in eroded farmland of Chinese Mollisols. Field Crop. Res. 2009, 111, 276–283. [Google Scholar] [CrossRef]
- Huang, S.; Gao, Y.; Li, Y.; Xu, Y.; Tao, H.; Wang, P. Influence of plant architecture on maize physiology and yield in the Heilonggang River valley. Crop. J. 2016, 5, 52–56. [Google Scholar] [CrossRef]
- Yang, Y.; Guo, X.; Liu, H.; Liu, G.; Liu, W.; Ming, B.; Xie, R.; Wang, K.; Hou, P.; Li, S. The effect of solar radiation change on the maize yield gap from the perspectives of dry matter accumulation and distribution. J. Integr. Agric. 2021, 20, 482–493. [Google Scholar] [CrossRef]
- Ulloa, S.M.; Datta, A.; Bruening, C.; Neilson, B.; Miller, J.; Gogos, G.; Knezevic, S.Z. Maize response to broadcast flaming at different growth stages: Effects on growth, yield and yield components. Eur. J. Agron. 2011, 34, 10–19. [Google Scholar] [CrossRef]
- Liu, Z.; Gao, J.; Zhao, S.; Sha, Y.; Huang, Y.; Hao, Z.; Ke, L.; Chen, F.; Yuan, L.; Mi, G. Nitrogen responsiveness of leaf growth, radiation use efficiency and grain yield of maize (Zea mays L.) in Northeast China. Field Crop. Res. 2023, 291, 108806. [Google Scholar] [CrossRef]
- Hunt, R.; Cornelissen, J.H.C. Components of relative growth rate and their interrelations in 59 temperate plant species. New Phytol. 1997, 135, 395–417. [Google Scholar] [CrossRef]
- Wright, I.J.; Westoby, M. Cross-species relationships between seedling relative growth rate, nitrogen productivity and root vs leaf function in 28 Australian woody species. Funct. Ecol. 2000, 14, 97–107. [Google Scholar] [CrossRef]
- Bourgault, M.; Tausz-Posch, S.; Greenwood, M.; Löw, M.; Henty, S.; Armstrong, R.D.; O’Leary, G.L.; Fitzgerald, G.J.; Tausz, M. Does elevated [CO2] only increase root growth in the topsoil? A FACE study with lentil in a semi-arid environment. Plants 2021, 10, 612. [Google Scholar] [CrossRef]
- Tollenaar, M.; Ahmadzadeh, A.; Lee, E.A. Physiological basis of heterosis for grain yield in maize. Crop. Sci. 2004, 44, 2086–2094. [Google Scholar] [CrossRef]
- Yan, Y.; Hou, P.; Duan, F.; Niu, L.; Dai, T.; Wang, K.; Zhao, M.; Li, S.; Zhou, W. Improving photosynthesis to increase grain yield potential: An analysis of maize hybrids released in different years in China. Photosynth. Res. 2021, 150, 295–311. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, W.; Hou, P.; Liu, G.; Liu, W.; Wang, Y.; Zhao, R.; Ming, B.; Xie, R.; Wang, K.; et al. Improving maize grain yield by matching maize growth and solar radiation. Sci. Rep. 2019, 9, 3635. [Google Scholar] [CrossRef] [PubMed]
- Xing, H.; Zhou, W.; Wang, C.; Li, L.; Li, X.; Cui, N.; Hao, W.; Liu, F.; Wang, Y. Excessive nitrogen application under moderate soil water deficit decreases photosynthesis, respiration, carbon gain and water use efficiency of maize. Plant Physiol. Biochem. 2021, 166, 1065–1075. [Google Scholar] [CrossRef]
- Yasumura, Y. The effect of altered sink-source relations on photosynthetic traits and matter transport during the phase of reproductive growth in the annual herb Chenopodium album. Photosynthetica 2009, 47, 263–270. [Google Scholar] [CrossRef]
- Jafarikouhini, N.; Kazemeini, S.A.; Sinclair, T.R. Sweet corn nitrogen accumulation, leaf photosynthesis rate, and radiation use efficiency under variable nitrogen fertility and irrigation. Field Crop. Res. 2020, 257, 107913. [Google Scholar] [CrossRef]
- Chen, K.; Kumudini, S.V.; Tollenaar, M.; Vyn, T.J. Plant biomass and nitrogen partitioning changes between silking and maturity in newer versus older maize hybrids. Field Crop. Res. 2015, 183, 315–328. [Google Scholar] [CrossRef]
- Chen, Q.; Mu, X.; Chen, F.; Yuan, L.; Mi, G. Dynamic change of mineral nutrient content in different plant organs during the grain filling stage in maize grown under contrasting nitrogen supply. Eur. J. Agron. 2016, 80, 137–153. [Google Scholar] [CrossRef]
- Chen, Y.; Xiao, C.; Chen, X.; Li, Q.; Zhang, J.; Chen, F.; Yuan, L.; Mi, G. Characterization of the plant traits contributed to high grain yield and high grain nitrogen concentration in maize. Field Crop. Res. 2014, 159, 1–9. [Google Scholar] [CrossRef]
- Fan, P.; Ming, B.; Evers, J.B.; Li, Y.; Li, S.; Xie, R.; Anten, N.P.R. Nitrogen availability determines the vertical patterns of accumulation, partitioning, and reallocation of dry matter and nitrogen in maize. Field Crop. Res. 2023, 297, 108927. [Google Scholar] [CrossRef]
- Iqbal, N.; Masood, A.; Khan, N.A. Analyzing the significance of defoliation in growth, photosynthetic compensation and source-sink relations. Photosynthetica 2012, 50, 161–170. [Google Scholar] [CrossRef]
- Sugiura, D.; Watanabe, C.K.; Betsuyaku, E.; Terashima, I. Sink–source balance and down-regulation of photosynthesis in raphanus sativus: Effects of grafting, N and CO2. Plant Cell Physiol. 2017, 58, 2043–2056. [Google Scholar] [CrossRef]
- Radin, J.W.; Eidenbock, M.P. Carbon accumulation during photosynthesis in leaves of nitrogen- and phosphorus-stressed cotton. Plant Physiol. 1986, 82, 869–871. [Google Scholar] [CrossRef]
- Fu, L.; Ren, H.; Xu, S.; Hu, S.; Yang, J.; Liu, C. Planting models and mulching material strategies to reduce bundle sheath cell leakage and improve photosynthetic capacity and maize production in semi-arid climate. Environ. Sci. Pollut. Res. 2020, 28, 2315–2327. [Google Scholar] [CrossRef]
- Zhang, X.; Kong, Y.; Lv, Y.; Yao, F.; Cao, Y.; Shao, X.; Geng, Y.; Wang, L.; Wang, Y. Increased topsoil depth required to support increased grain yield production in high density maize. Field Crop. Res. 2024, 308, 109282. [Google Scholar] [CrossRef]
- Chaves, M.M.; Flexas, J.; Pinheiro, C. Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell. Ann. Bot. 2009, 103, 551–560. [Google Scholar] [CrossRef]
- Cao, L.; Qin, B.; Gong, Z.; Zhang, Y. Melatonin improves nitrogen metabolism during grain filling under drought stress. Physiol. Mol. Biol. Plants 2022, 28, 1477–1488. [Google Scholar] [CrossRef] [PubMed]
- Fournier, C.; Andrieu, B. ADEL-maize: An L-system based model for the integration of growth processes from the organ to the canopy. Application to regulation of morphogenesis by light availability. Agronomie 1999, 19, 313–327. [Google Scholar] [CrossRef]
- Zhao, Y.; Fan, Z.; Hu, F.; Yin, W.; Zhao, C.; Yu, A.; Chai, Q. Source-to-sink translocation of carbon and nitrogen is regulated by fertilization and plant population in maize-pea intercropping. Front. Plant Sci. 2019, 10, 891. [Google Scholar] [CrossRef]
- Xu, Z.; Zhou, G. Nitrogen Metabolism and photosynthesis in Leymus chinensis in response to long-term soil drought. J. Plant Growth Regul. 2006, 25, 252–266. [Google Scholar] [CrossRef]
- Li, X.; Ji, P.; Zhou, B.; Dong, W.; Zhang, L.; Xiao, K.; Yin, B.; Zhang, Y. Nitrogen partitioning traits and expression patterns of N metabolism-associated genes in maize hybrids with contrasting N utilization efficiencies. Agron. J. 2021, 113, 1439–1456. [Google Scholar] [CrossRef]
- Takashima, T.; Hikosaka, K.; Hirose, T. Photosynthesis or persistence: Nitrogen allocation in leaves of evergreen and deciduous Quercus species. Plant Cell Environ. 2004, 27, 1047–1054. [Google Scholar] [CrossRef]
- Tazoe, Y.; Noguchi, K.; Terashima, I. Effects of growth light and nitrogen nutrition on the organization of the photosynthetic apparatus in leaves of a C4 plant, Amaranthus cruentus. Plant Cell Environ. 2006, 29, 691–700. [Google Scholar] [CrossRef]
- Uribelarrea, M.; Crafts-Brandner, S.J.; Below, F.E. Physiological N response of field-grown maize hybrids (Zea mays L.) with divergent yield potential and grain protein concentration. Plant Soil 2009, 316, 151–160. [Google Scholar] [CrossRef]
- Ku, M.S.B.; Agarie, S.; Nomura, M.; Fukayama, H.; Tsuchida, H.; Ono, K.; Hirose, S.; Toki, S.; Miyao, M.; Matsuoka, M. High level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants. Nat. Biotechnol. 1999, 17, 76–80. [Google Scholar] [CrossRef]
- Makino, A.; Shimada, T.; Takumi, K.S.; Kaneko, K.; Matsuoka, M.; Shimamoto, K.; Nakano, H.; Miyao-Tokutomi, M.; Mae, T.; Yamamoto, N. Does decrease in ribulose-i, 5-bisphosphate carboxylase by antisense rbcs lead to a higher n-use efficiency of photosynthesis under conditions of saturating CO2 and light in rice plants? Plant Physiol. 1997, 114, 483–491. [Google Scholar] [CrossRef]
- Mu, X.; Chen, Q.; Chen, F.; Yuan, L.; Mi, G. Dynamic remobilization of leaf nitrogen components in relation to photosynthetic rate during grain filling in maize. Plant Physiol. Biochem. 2018, 129, 27–34. [Google Scholar] [CrossRef]
- Brown, H.E.; Huth, N.I.; Holzworth, D.P.; Teixeira, E.I.; Wang, E.; Zyskowski, R.F.; Zheng, B. A generic approach to modelling, allocation and redistribution of biomass to and from plant organs. Silico Plants 2019, 1, diy004. [Google Scholar] [CrossRef]
- Liu, Z.; Sha, Y.; Huang, Y.; Hao, Z.; Guo, W.; Ke, L.; Chen, F.; Yuan, L.; Mi, G. Efficient nitrogen allocation and reallocation into the ear in relation to the superior vascular system in low-nitrogen tolerant maize hybrid. Field Crop. Res. 2022, 284, 108580. [Google Scholar] [CrossRef]
- Ning, P.; Fritschi, F.B.; Li, C. Temporal dynamics of post-silking nitrogen fluxes and their effects on grain yield in maize under low to high nitrogen inputs. Field Crop. Res. 2017, 204, 249–259. [Google Scholar] [CrossRef]
- Evans, J.R.; Clarke, V.C. The nitrogen cost of photosynthesis. J. Exp. Bot. 2019, 70, 7–15. [Google Scholar] [CrossRef]
- Hikosaka, K. Optimality of nitrogen distribution among leaves in plant canopies. J. Plant Res. 2016, 129, 299–311. [Google Scholar] [CrossRef]
- Gao, Z.; Li, J.; Liu, S.; Chen, Y. Within-leaf chloroplasts and nitrogen allocation to thylakoids in relation to photosynthesis during grain filling in maize. Plant Physiol. Biochem. 2023, 196, 830–840. [Google Scholar] [CrossRef]
- Ghosh, P.K. Growth, yield, competition and economics of groundnut/cereal fodder intercropping systems in the semi-arid tropics of India. Field Crop. Res. 2004, 88, 227–237. [Google Scholar] [CrossRef]
- Tang, Y.; Guo, J.; Jagadish, S.V.K.; Yang, S.; Qiao, J.; Wang, Y.; Xie, K.; Wang, H.; Yang, Q.; Deng, L.; et al. Ovary abortion in field-grown maize under water-deficit conditions is determined by photo-assimilation supply. Field Crop. Res. 2023, 293, 108830. [Google Scholar] [CrossRef]
- Michybiology. Available online: http://www.michybio.com/ (accessed on 1 August 2025).
- The Comprehensive R Archive Network. Available online: https://cran.r-project.org/ (accessed on 1 August 2025).
Year | Treatments | Double Cob Rate (%) | Kernels per Plant | 1000-Kernel Weight (g) |
---|---|---|---|---|
2021 | D1S1 | 22.2 ± 19.2 c | 777.2 ± 61.8 c | 368.4 ± 6.2 a |
D1S2 | 55.6 ± 19.3 b | 962.2 ± 20.1 b | 351.8 ± 4.1 a | |
D1S3 | 100.0 ± 0 a | 1171.3 ± 55.6 a | 366.9 ± 11.1 a | |
D1S4 | 100.0 ± 0 a | 1238.0 ± 59.4 a | 354.2 ± 5.2 a | |
D1S5 | 100.0 ± 0 a | 1248.8 ± 11.8 a | 352.7 ± 7.7 a | |
D2S1 | 0 | 458.3 ± 24.2 c | 286.0 ± 9.5 b | |
D2S2 | 0 | 514.7 ± 15.1 b | 325.7 ± 3.5 a | |
D2S3 | 0 | 577.7 ± 16.0 ab | 348.7 ± 3.6 a | |
D2S4 | 0 | 618.5 ± 14.3 a | 327.1 ± 9.0 a | |
D2S5 | 0 | 610.6 ± 16.2 a | 337.0 ± 8.3 a | |
2022 | D1S1 | 11.1 ± 38.5 c | 760.0 ± 116.0 c | 325.5 ± 1.8 a |
D1S2 | 44.4 ± 38.5 b | 1008.0 ± 156.0 bc | 312.3 ± 4.3 a | |
D1S3 | 100.0 ± 0 a | 1170.0 ± 66.4 ab | 306.1 ± 4.2 a | |
D1S4 | 100.0 ± 0 a | 1344.3 ± 18.8 a | 315.2 ± 6.3 a | |
D1S5 | 100.0 ± 0 a | 1374.7 ± 45.9 a | 322.6 ± 4.3 a | |
D2S1 | 0 | 438.1 ± 16.9 c | 239.9 ± 3.4 c | |
D2S2 | 0 | 511.2 ± 13.7 b | 284.0 ± 4.3 c | |
D2S3 | 0 | 609.9 ± 19.9 a | 284.5 ± 6.2 bc | |
D2S4 | 0 | 618.4 ± 20.8 a | 287.0 ± 6.4 ab | |
D2S5 | 0 | 603.3 ± 11.7 a | 302.2 ± 4.8 a |
Density (Plants ha−1) | Topsoil Depth (cm) | ||||
---|---|---|---|---|---|
10 (S1) | 20 (S2) | 30 (S3) | 40 (S4) | 50 (S5) | |
15,000 (D1) | D1S1 | D1S2 | D1S3 | D1S4 | D1S5 |
75,000 (D2) | D2S1 | D2S2 | D2S3 | D2S4 | D2S5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Zhang, X.; Jia, Z.; Liu, K.; Guo, Z.; Lv, Y.; Wang, Y. Elimination of Intraspecific Competition Does Not Improve Maize Leaf Physiological and Biochemical Responses to Topsoil Degradation. Plants 2025, 14, 2470. https://doi.org/10.3390/plants14162470
Zhang S, Zhang X, Jia Z, Liu K, Guo Z, Lv Y, Wang Y. Elimination of Intraspecific Competition Does Not Improve Maize Leaf Physiological and Biochemical Responses to Topsoil Degradation. Plants. 2025; 14(16):2470. https://doi.org/10.3390/plants14162470
Chicago/Turabian StyleZhang, Shan, Xiaolong Zhang, Zechen Jia, Kaichang Liu, Zhongxiao Guo, Yanjie Lv, and Yongjun Wang. 2025. "Elimination of Intraspecific Competition Does Not Improve Maize Leaf Physiological and Biochemical Responses to Topsoil Degradation" Plants 14, no. 16: 2470. https://doi.org/10.3390/plants14162470
APA StyleZhang, S., Zhang, X., Jia, Z., Liu, K., Guo, Z., Lv, Y., & Wang, Y. (2025). Elimination of Intraspecific Competition Does Not Improve Maize Leaf Physiological and Biochemical Responses to Topsoil Degradation. Plants, 14(16), 2470. https://doi.org/10.3390/plants14162470