Plant Electrophysiological Parameters Represent Leaf Intracellular Water–Nutrient Metabolism and Immunoregulations in Brassica rapa During Plasmodiophora Infection
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Selection and Preparation of Conidial Suspensions
2.2. Plasmodiophora Infection Treatment
2.3. Biomass Estimation
2.4. Measurement of Photosynthesis of Plant Species
2.5. Measurement of Electrophysiological Parameters of the Plant
2.6. Calculation of Plant Electrophysiological Parameters
2.7. Estimation of Intracellular Water Metabolism in Plants Based on Electrophysiological Information
2.8. Nutrient Transport Capacity Based on Electrophysiological Information Characterization
2.9. The Cellular Metabolic Energy for B. rapa Leaves
2.10. B-Type Dielectric Substance Transfer Percentage of B. rapa Leaves
2.11. Statistical Analysis
3. Results
3.1. Plant Biomass
3.2. Photosynthesis in Plants
3.3. Fitting Equations for Leaf Electrophysiological Parameters and Clamping Force
3.4. Electrophysiological Information About Plants During Plasmodiophora Infection
3.5. Intracellular Water Metabolism Based on Plant Electrical Signal Quantification in B. rapa
3.6. Characterization of Nutrient Transport in B. rapa Plant
3.7. Cellular Metabolic Energy for the Leaf of B. rapa in Response to Plasmodiophora
3.8. B-Type Dielectric Substance Transfer Percentage in B. rapa Leaves
3.9. Correlation Between Growth and Electrophysiological Information About B. rapa During Plasmodiophora Infection
4. Discussion
4.1. Electrophysiology Can More Sensitively Reflect Plasmodiophora Infection
4.2. Plasmodiophora Infection Changed Intracellular Water and Nutrient Metabolism of B. rapa Leaves
4.3. Dissociation of Energy Metabolism and Dielectric Substance Transfer in B. rapa During Plasmodiophora Infection
4.4. Immunological Relevance of Electrophysiological Properties of B. rapa During Plasmodiophora Infection
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, G.; Jiang, D.; Wang, J.; Liao, Y.; Zhang, T.; Zhang, H.; Dai, X.; Ren, H.; Chen, C.; Zheng, Y. A high-continuity genome assembly of Chinese flowering cabbage (Brassica rapa var. parachinensis) provides new insights into Brassica genome structure evolution. Plants 2023, 12, 2498. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, H.; Wang, J.; Lv, J.; Xie, B.; Luo, S.; Wang, S.; Zhang, B.; Li, Z.; Yue, Z.; et al. Physical, chemical, and biological control of black rot of Brassicaceae vegetables: A review. Front Microbiol. 2022, 13, 1023826. [Google Scholar] [CrossRef]
- Struck, C.; Rüsch, S.; Strehlow, B. Control strategies of clubroot disease caused by Plasmodiophora brassicae. Microorganisms 2022, 10, 620. [Google Scholar] [CrossRef]
- Li, X.; Wei, Y.; Ma, Y.; Cao, G.; Ma, S.; Zhang, T.; Zhan, Z.; Piao, Z. Marker-assisted pyramiding of CRa and CRd genes to improve the clubroot resistance of Brassica rapa. Genes 2022, 13, 2414. [Google Scholar] [CrossRef]
- Lucas, J. Plant pathology and plant pathogens. Plant Pathol. 1999, 48, 676–677. [Google Scholar] [CrossRef]
- Manners, J. Principles of Plant Pathology; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar] [CrossRef]
- Sankaran, S.; Mishra, A.; Ehsani, R.; Davis, C. A review of advanced techniques for detecting plant diseases. Comput. Electron. Agric. 2010, 72, 1–13. [Google Scholar] [CrossRef]
- Sinyukhin, A.M.; Britikov, E.A. Action potentials in the reproductive system of plants. Nature 1967, 215, 1278–1280. [Google Scholar] [CrossRef]
- Ali Solangi, K.; Wu, Y.; Xing, D.; Ahmed Qureshi, W.; Hussain Tunio, M.; Ali Sheikh, S.; Shabbir, A. Can electrophysiological information reflect the response of mangrove species to salt stress? A case study of rewatering and Sodium nitroprusside application. Plant Signal Behav. 2022, 17, 2073420. [Google Scholar] [CrossRef] [PubMed]
- Xing, D.; Chen, X.; Wu, Y.; Xu, X.; Chen, Q.; Li, L.; Zhang, C. Rapid prediction of the re-watering time point of Orychophragmus violaceus L. based on the online monitoring of electrophysiological indexes. Sci. Hortic. 2019, 256, 108642. [Google Scholar] [CrossRef]
- Jócsák, I.; Végvári, G.; Vozáry, E. Electrical impedance measurement on plants: A review with some insights to other fields. Theor. Exp. Plant Physiol. 2019, 31, 359–375. [Google Scholar] [CrossRef]
- Lin, C.-M.; Chen, L.-H.; Chen, T.-M. The development and application of an electrical impedance spectroscopy measurement system for plant tissues. Comput. Electron. Agric. 2012, 82, 96–99. [Google Scholar] [CrossRef]
- Li, H.; Lv, J.; Su, Y.; Wu, Y. Appropriate sodium bicarbonate concentration enhances the intracellular water metabolism, nutrient transport and photosynthesis capacities of Coix lacryma-jobi L. Agronomy 2023, 13, 1790. [Google Scholar] [CrossRef]
- Zhang, C.; Wu, Y.; Su, Y.; Xing, D.; Dai, Y.; Wu, Y.; Fang, L. A Plant’s electrical parameters indicate its physiological state: A Study of intracellular water metabolism. Plants 2020, 9, 1256. [Google Scholar] [CrossRef] [PubMed]
- Xia, A.; Wu, Y.; Qin, Z.; Zhu, Y.; Li, L.; Xiao, J.; Aboueldahab, M.; Wan, H.; Ming, J.; Xiang, J. Synergistic effects of bicarbonate and selenium on cadmium transport in karst-adaptable plants based on plant electrical signals. Agronomy 2024, 14, 218. [Google Scholar] [CrossRef]
- Sukhov, V. Electrical signals as mechanism of photosynthesis regulation in plants. Photosynth. Res. 2016, 130, 373–387. [Google Scholar] [CrossRef] [PubMed]
- Sukhov, V.; Sukhova, E.; Vodeneev, V. Long-distance electrical signals as a link between the local action of stressors and the systemic physiological responses in higher plants. Prog. Biophys. Mol. Biol. 2019, 146, 63–84. [Google Scholar] [CrossRef]
- Sondergaard, T.E.; Schulz, A.; Palmgren, M.G. Energization of transport processes in plants. Roles of the plasma membrane H+-ATPase. Plant Physiol. 2004, 136, 2475–2482. [Google Scholar] [CrossRef] [PubMed]
- Farr, W.K. Structure and composition of plant cell membranes. Nature 1940, 146, 153–155. [Google Scholar] [CrossRef]
- Strömqvist, J.; Jarvis, N. Sorption, degradation and leaching of the fungicide iprodione in a golf green under Scandinavian conditions: Measurements, modelling and risk assessment. Pest Manag. Sci. 2005, 61, 1168–1178. [Google Scholar] [CrossRef]
- Botero-Ramírez, A.; Hwang, S.F.; Strelkov, S.E. Effect of clubroot (Plasmodiophora brassicae) on yield of canola (Brassica napus). Can. J. Plant Pathol. 2021, 44, 372–385. [Google Scholar] [CrossRef]
- Blanchard, R.O.; Carter, J.K. Electrical resistance measurements to detect Dutch elm disease prior to symptom expression. Can. J. Plant Pathol. 1980, 10, 111–114. [Google Scholar] [CrossRef]
- Davis, W.; Shortle, W.; Shigo, A. Potential hazard rating system for fir stands infested with budworm using cambial electrical resistance. Can. J. Forest Res. 1980, 10, 541–544. [Google Scholar] [CrossRef]
- Wilner, J.; Brach, E.J. Utilization of bioelectric tests in biological research. Med. Biol. Eng. 1973, 11, 164–175. [Google Scholar] [CrossRef]
- Zimmermann, M.R.; Mithöfer, A.; Will, T.; Felle, H.H.; Furch, A.C. Herbivore-triggered electrophysiological reactions: Candidates for systemic signals in higher plants and the challenge of their identification. Plant Physiol. 2016, 170, 2407–2419. [Google Scholar] [CrossRef] [PubMed]
- Yu, R.; Wu, Y.; Xing, D. The Differential response of intracellular water metabolism derived from intrinsic electrophysiological information in Morus alba L. and Broussonetia papyrifera (L.) vent.subjected to water shortage. Horticulturae 2022, 8, 182. [Google Scholar] [CrossRef]
- Volkov, A.G. Signaling in electrical networks of the Venus flytrap (Dionaea muscipula Ellis). Bioelectrochemistry 2019, 125, 25–32. [Google Scholar] [CrossRef]
- Simmi, F.Z.; Dallagnol, L.J.; Ferreira, A.S.; Pereira, D.R.; Souza, G.M. Electrome alterations in a plant-pathogen system: Toward early diagnosis. Bioelectrochemistry 2020, 133, 107493. [Google Scholar] [CrossRef]
- González-Fernández, A.B.; Rodríguez-Pérez, J.R.; Marcelo, V.; Valenciano, J.B. Using field spectrometry and a plant probe accessory to determine leaf water content in commercial vineyards. Agric. Water Manag. 2015, 156, 43–50. [Google Scholar] [CrossRef]
- Kahmen, A.; Simonin, K.; Tu, K.P.; Merchant, A.; Callister, A.; Siegwolf, R.; Dawson, T.E.; Arndt, S.K. Effects of environmental parameters, leaf physiological properties and leaf water relations on leaf water delta 18O enrichment in different Eucalyptus species. Plant. Cell. Environ. 2008, 31, 738–751. [Google Scholar] [CrossRef]
- Lawson, T.; Vialet., C.S. Speedy stomata, photosynthesis and plant water use efficiency. New Phytol. 2019, 221, 93–98. [Google Scholar] [CrossRef]
- Huang, X.; Lakso, A.N.; Eissenstat, D.M. Interactive effects of soil temperature and moisture on Concord grape root respiration. J. Exp. Bot. 2005, 56, 2651–2660. [Google Scholar] [CrossRef]
- Acosta-Motos, J.R.; Álvarez, S.; Barba-Espín, G.; Hernández, J.A.; Sánchez-Blanco, M.J. Salts and nutrients present in regenerated waters induce changes in water relations, antioxidative metabolism, ion accumulation and restricted ion uptake in Myrtus communis L. plants. Plant. Physiol. Biochem. 2014, 85, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Sha, L.; Liu, Q.; Zhao, Y.; Fang, H.; Cao, Y.; Zhao, J. Recent advances in cell membrane camouflage-based biosensing application. Biosens. Bioelectron. 2021, 194, 113623. [Google Scholar] [CrossRef] [PubMed]
- Harker, F.R.; Dunlop, J. Electrical impedance studies of nectarines during coolstorage and fruit ripening. Postharvest Biol. Technol. 1994, 4, 125–134. [Google Scholar] [CrossRef]
- Xing, D.; Chen, L.; Wu, Y.; Zwiazek, J.J. Leaf physiological impedance and elasticity modulus in Orychophragmus violaceus seedlings subjected to repeated osmotic stress. Sci. Hortic. 2021, 276, 109763. [Google Scholar] [CrossRef]
- Yastreb, T.O.; Kolupaev, Y.E.; Karpets, Y.V.; Dmitriev, A.P. Effect of nitric oxide donor on salt resistance of arabidopsis jin1 mutants and wild-type plants. Russ. J. Plant Physiol. 2017, 64, 207–214. [Google Scholar] [CrossRef]
- Sun, X.; Han, G.; Meng, Z.; Lin, L.; Sui, N. Roles of malic enzymes in plant development and stress responses. Plant Signal. Behav. 2019, 14, e1644596. [Google Scholar] [CrossRef]
- Chang, Y.; Lv, G. Dynamic change mechanism of the desert plant nitraria sibirica growth in natural habitat. Ecol. Indic. 2023, 154, 110695. [Google Scholar] [CrossRef]
- Han, P.; Zhai, Y.; Liu, W.; Lin, H.; An, Q.; Zhang, Q.; Ding, S.; Zhang, D.; Pan, Z.; Nie, X. Dissection of hyperspectral reflectance to estimate photosynthetic characteristics in upland cotton (Gossypium hirsutum L.) under different nitrogen fertilizer application based on machine learning algorithms. Plants 2023, 12, 455. [Google Scholar] [CrossRef]
- Fang, J.; Yuan, S.; Li, C.; Jiang, D.; Zhao, L.; Peng, L.; Zhao, J.; Zhang, W.; Li, X. Reduction of ATPase activity in the rice kinesin protein stemless dwarf 1 inhibits cell division and organ development. Plant J. 2018, 96, 620–634. [Google Scholar] [CrossRef]
- Dürichen, H.; Diekert, G.; Studenik, S. Redox potential changes during ATP-dependent corrinoid reduction determined by redox titrations with europium(II)-DTPA. Protein Sci. 2019, 28, 1902–1908. [Google Scholar] [CrossRef]
- Xiao, J.; Zhou, Y.; Xie, Y.; Li, T.; Su, X.; He, J.; Jiang, Y.; Zhu, H.; Qu, H. ATP homeostasis and signaling in plants. Plant Commun. 2024, 5, 100834. [Google Scholar] [CrossRef]
- Kakouridis, A.; Hagen, J.A.; Kan, M.P.; Mambelli, S.; Feldman, L.J.; Herman, D.J.; Weber, P.K.; Pett-Ridge, J.; Firestone, M.K. Routes to roots: Direct evidence of water transport by arbuscular mycorrhizal fungi to host plants. New Phytol. 2022, 236, 210–221. [Google Scholar] [CrossRef]
- Fatnani, D.; Patel, M.; Parida, A.K. Regulation of chromium translocation to shoot and physiological, metabolomic, and ionomic adjustments confer chromium stress tolerance in the halophyte Suaeda maritima. Environ. Pollut. 2023, 320, 121046. [Google Scholar] [CrossRef]
- Miller, A.; Adhikari, R.; Nemali, K. Recycling nutrient solution can reduce growth due to nutrient deficiencies in hydroponic production. Front Plant Sci. 2020, 11, 607643. [Google Scholar] [CrossRef]
- Liu, X.; Meng, Y.; Wei, S.; Gu, W.J. Exogenous hemin confers cadmium tolerance by decreasing cadmium accumulation and modulating water status and matter accumulation in maize seedlings. Agronomy 2021, 11, 739. [Google Scholar] [CrossRef]
- Ahluwalia, O.; Singh, P.C.; Bhatia, R. A review on drought stress in plants: Implications, mitigation and the role of plant growth promoting rhizobacteria. Res. Environ. Sustainability 2021, 5, 100032. [Google Scholar] [CrossRef]
- Ciaghi, S.; Schwelm, A.; Neuhauser, S. Transcriptomic response in symptomless roots of clubroot infected kohlrabi (Brassica oleracea var. gongylodes) mirrors resistant plants. BMC Plant Bio. 2019, 19, 288. [Google Scholar] [CrossRef]
- Wei, X.; Zhang, Y.; Zhao, Y.; Xie, Z.; Hossain, M.R.; Yang, S.; Shi, G.; Lv, Y.; Wang, Z.; Tian, B.; et al. Root Transcriptome and metabolome profiling reveal key phytohormone-related genes and pathways involved clubroot resistance in Brassica rapa L. Front. Plant Sci. 2021, 12, 759623. [Google Scholar] [CrossRef]
- Bacete, L.; Mélida, H.; Miedes, E.; Molina, A. Plant cell wall-mediated immunity: Cell wall changes trigger disease resistance responses. Plant J. 2017, 93, 614–636. [Google Scholar] [CrossRef]
- De Lorenzo, G.; Ferrari, S.; Giovannoni, M.; Mattei, B.; Cervone, F. Cell wall traits that influence plant development, immunity, and bioconversion. Plant J. 2019, 97, 134–147. [Google Scholar] [CrossRef] [PubMed]
- Devos, S.; Vissenberg, K.; Verbelen, J.; Prinsen, E. Infection of Chinese cabbage by Plasmodiophora brassicae leads to a stimulation of plant growth: Impacts on cell wall metabolism and hormone balance. New Phytol. 2010, 166, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Ludwig-Müller, J.; Thermann, P.; Pieper, K.; Hilgenberg, W. Peroxidase and chitinase isoenzyme activities during root infection of Chinese cabbage with Plasmodiophora brassicae. Physiol. Planta. 1994, 90, 661–670. [Google Scholar] [CrossRef]
Treatment | Root (g/Plant) | Shoot (g/Plant) | Total (g/Plant) |
---|---|---|---|
CK | 3.71 ± 0.17 a | 8.79 ± 0.16 a | 12.49 ± 0.24 a |
PWB1 | 3.16 ± 0.01 a | 8.16 ± 0.03 a | 11.30 ± 0.26 a |
PWB2 | 2.28 ± 0.05 b | 4.71 ± 0.2 b | 6.99 ± 0.25 b |
PWB3 | 2.27 ± 0.1 b | 3.69 ± 0.1 c | 6.96 ± 0.15 b |
PWB4 | 2.05 ± 0.12 b | 3.67 ± 0.1 c | 5.71 ± 0.19 c |
PWB5 | 2.2 ± 0.11 b | 1.39 ± 0.2 d | 3.59 ± 0.12 d |
Treatment | Capacitance/Clamping Force (C/F) | Resistance/Clamping Force (R/F) | Impedance/clamping force (Z/F) |
CK | C = 729.48 + 483.97F | R = 0.0875 + 0.0709e−0.4772F | Z = 0.0559 + 0.0460e−0.5090F |
PWB1 | C = 483.99 + 280.83F | R = 0.1311 + 0.1214e−0.5151F | Z = 0.0850 + 0.0709e−0.4922F |
PWB2 | C = 390.16 + 178.93F | R = 0.1932 +0.1698e−0.7741F | Z = 0.1102 + 0.0919e −0.6872F |
PWB3 | C = 372.02 + 137.29F | R = 0.1889 + 0.1489e−0.6490F | Z = 0.1135 + 0.0865e−0.6183F |
PWB4 | C = 315.33 + 220.70F | R = 0.3043 + 0.2631e−0.6062F | Z = 0.1558 + 0.1338e−0.5379F |
PWB5 | C = 159.80 + 102.11F | R = 0.6745 + 0.6210e−0.7561F | Z = 0.2969 + 0.2589e−0.6517F |
Treatment | Tolerance/Clamping force (XC/F) | Sense resistance/clamping force (XL/F) | R2/p/n |
CK | Xc = 0.0728 + 0.0604e−0.5291F | XL = 0.13.0 + 0.1121e−0.4700F | R2 = 0.99, p < 0.01, n = 15 |
PWB1 | Xc = 0.1103 + 0.0862e−0.5340F | XL = 0.1878 + 0.1555e−0.5071F | R2 = 0.99, p < 0.01, n = 15 |
PWB2 | Xc = 0.1364 + 0.1058e−0.6591F | XL = 0.2800 + 0.2335e−0.7310F | R2 = 0.99, p < 0.01, n = 15 |
PWB3 | Xc = 0.1426 + 0.1050e−0.6146F | XL = 0.2841 + 0.2177e−0.6364F | R2 = 0.99, p < 0.01, n = 15 |
PWB4 | Xc = 0.1731 + 0.1484e−0.5027F | XL = 0.4587 + 0.3966e−0.6007F | R2 = 0.99, p < 0.01, n = 15 |
PWB5 | Xc = 0.3325 + 0.2745e−0.6522F | XL = 0.8771 + 0.7810e−0.7309F | R2 = 0.99, p < 0.01, n = 15 |
Treatment | ICP/pF | IR/MΩ | IZ/MΩ | IXC/MΩ | IXL/MΩ |
---|---|---|---|---|---|
CK | 729.48 ± 28.48 a | 8.75 ± 1.25 c | 5.59 ± 0.44 e | 7.28 ± 0.29 d | 13.70 ± 1.35 d |
PWB1 | 483.99 ± 46.92 b | 14.11 ± 1.07 c | 8.50 ± 0.18 d | 11.03 ± 1.01 c | 18.78 ± 4.99 d |
PWB2 | 390.16 ± 28.28 c | 19.32 ± 5.18 bc | 11.02 ± 0.65 b | 13.64 ± 0.95 c | 28.00 ± 3.31 c |
PWB3 | 372.02 ± 6.38 cd | 18.89 ± 1.64 bc | 11.35 ± 0.42 c | 14.26 ± 0.24 bc | 28.41 ± 1.66 c |
PWB4 | 315.33 ± 61.16 d | 30.43 ± 10.83 b | 15.58 ± 2.95 a | 17.31 ± 3.78 c | 45.87 ± 6.01 b |
PWB5 | 159.80 ± 7.48 e | 67.45 ± 10.00 a | 29.69 ± 0.82 a | 33.25 ± 1.57 a | 87.71 ± 7.99 a |
Treatment | IWHC | IWUE (10−2) | IWHT | WRT |
---|---|---|---|---|
CK | 8102.65 ± 211.46 a | 6.74 ± 1.11 a | 40.67 ± 1.60 b | 199.54 ± 12.54 a |
PWB1 | 6160.25 ± 395.00 b | 5.01 ± 2.78 ab | 41.00 ± 3.08 b | 149.96 ± 1.61 b |
PWB2 | 5337.38 ± 256.34 c | 3.78 ± 0.23 b | 43.13 ± 5.74 ab | 124.63 ± 9.92 c |
PWB3 | 5172.47 ± 59.08 cd | 2.99 ± 0.80 b | 42.22 ± 0.94 ab | 122.57 ± 3.86 c |
PWB4 | 4619.06 ± 612.13 d | 5.54 ± 1.91 ab | 47.92 ± 1.26 a | 96.20 ± 10.40 d |
PWB5 | 2944.35 ± 92.05 e | 3.91 ± 0.46 ab | 47.46 ± 2.95 a | 62.13 ± 2.30 e |
Treatment | UNF(10−2) | NTR | NTC | UAF(10−2) | NAC |
---|---|---|---|---|---|
CK | 183.52 ± 15.07 b | 199.54 ± 12.54 a | 364.95 ± 6.83 a | 53.35 ± 3.05 ab | 106.71 ± 12.52 a |
PWB1 | 208.21 ± 26,21 ab | 149.96 ± 1.61 b | 312.11 ± 37.95 ab | 62.70 ± 22.82 a | 94.21 ± 35.06 a |
PWB2 | 212.14 ± 59.73 ab | 124.63 ± 9.92 c | 260.45 ± 50.04 bc | 49.40 ± 8.63 ab | 62.14 ± 15.15 b |
PWB3 | 198.75 ± 11.49 ab | 122.57 ± 3.86 c | 243.31 ± 6.60 bcd | 50.29 ± 2.16 ab | 61.70 ± 4.51 b |
PWB4 | 240.68 ± 70.10 ab | 96.20 ± 10.40 d | 230.62 ± 71.57 cd | 37.47 ± 3.10 c | 35.83 ± 1.11 bc |
PWB5 | 280.48 ± 42.46 a | 62.13 ± 2.30 e | 173.70 ± 20.94 d | 38.22 ± 5.32 b | 23.82 ± 4.21 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, A.; Wu, Y.; Zhai, K.; Xiang, D.; Li, L.; Qin, Z.; Twagirayezu, G. Plant Electrophysiological Parameters Represent Leaf Intracellular Water–Nutrient Metabolism and Immunoregulations in Brassica rapa During Plasmodiophora Infection. Plants 2025, 14, 2337. https://doi.org/10.3390/plants14152337
Xia A, Wu Y, Zhai K, Xiang D, Li L, Qin Z, Twagirayezu G. Plant Electrophysiological Parameters Represent Leaf Intracellular Water–Nutrient Metabolism and Immunoregulations in Brassica rapa During Plasmodiophora Infection. Plants. 2025; 14(15):2337. https://doi.org/10.3390/plants14152337
Chicago/Turabian StyleXia, Antong, Yanyou Wu, Kun Zhai, Dongshan Xiang, Lin Li, Zhanghui Qin, and Gratien Twagirayezu. 2025. "Plant Electrophysiological Parameters Represent Leaf Intracellular Water–Nutrient Metabolism and Immunoregulations in Brassica rapa During Plasmodiophora Infection" Plants 14, no. 15: 2337. https://doi.org/10.3390/plants14152337
APA StyleXia, A., Wu, Y., Zhai, K., Xiang, D., Li, L., Qin, Z., & Twagirayezu, G. (2025). Plant Electrophysiological Parameters Represent Leaf Intracellular Water–Nutrient Metabolism and Immunoregulations in Brassica rapa During Plasmodiophora Infection. Plants, 14(15), 2337. https://doi.org/10.3390/plants14152337