Iminosugars of the Invasive Arboreal Amorpha fruticosa and Glycosidase Inhibition Potential
Abstract
1. Introduction
2. Results
2.1. Major Compounds of Amorpha Fruticosa Samples
2.1.1. Chromatography–Mass Spectrometry (GC-MS)
2.1.2. Nuclear Magnetic Resonance (NMR)
2.2. Glycosidase Inhibition Assay
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Chromatography–Mass Spectrometry (GC-MS)
4.3. Nuclear Magnetic Resonance (NMR)
4.4. Glycosidase Inhibition Assay
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- DeHaan, L.R.; Ehlke, N.J.; Sheaffer, C.C.; Wyse, D.L.; DeHaan, R.L. Evaluation of diversity among North American accessions of false indigo (Amorpha fruticosa L.) for forage and biomass. Genet. Resour. Crop Evol. 2006, 53, 1463–1476. [Google Scholar] [CrossRef]
- USDA; NRCS. The PLANTS Database. Baton Rouge, LA: National Plant Data Center; Natural Resources Conservation Service: Washington, DC, USA, 2009. Available online: https://plants.usda.gov/ (accessed on 2 June 2025).
- Straub, S.C.K. Amorpha Species. Ph.D. Thesis, Cornell University, Ithaca, NY, USA, 2010. [Google Scholar]
- Oddo, L.; Piana, L.; Bogdanov, S.; Bentabol, A.; Gotsiou, P.; Kerkvliet, J.; Martin, P.; Morlot, M.; Valbuena, A.; Ruoff, K.; et al. Botanical species giving unifloral honey in Europe. Apidologie 2004, 35 (Suppl. S1), S82–S93. [Google Scholar] [CrossRef]
- Tucak, Z.; Periškiæ, M.; Škrivanko, M.; Konjareviæ, A. The influence of the botanic origin of honey plants on the quality of honey. Agriculture 2007, 13, 234–236. [Google Scholar]
- Dimou, M.; Tananaki, C.; Liolios, V.; Thrasyvoulou, A. Pollen foraging by honey bees (Apis mellifera L.) in Greece: Botanical and geographical origin. J. Apicult. Sci. 2014, 58, 11–23. [Google Scholar] [CrossRef]
- Hong, I.P.; Woo, S.O.; Han, S.M.; Kim, S.G.; Jang, H.R.; Lee, M.Y. Evaluation of nutritional potential of Amorpha fruticosa pollen collected by honey bees. J. Apicult. 2016, 31, 73–77. [Google Scholar] [CrossRef]
- Bowie, A.J. Investigations of vegetation for stabilizing eroding streambanks. Trans. ASAE 1982, 25, 1601–1606. [Google Scholar] [CrossRef]
- DAISIE. Handbook of Alien Species in Europe; Springer: Dordrecht, The Netherlands, 2009. [Google Scholar]
- POWO. Plants of the World Online. Amorpha fruticosa L. 2023. Available online: https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:11421-2 (accessed on 2 June 2025).
- Grabić, J.; Ljevnaić-Mašić, B.; Zhan, A.; Benka, P.; Heilmeier, H. A review on invasive false indigo bush (Amorpha fruticosa L.): Nuisance plant with multiple benefits. Ecol. Evol. 2022, 12, e9290. [Google Scholar] [CrossRef] [PubMed]
- Kurmanov, R.G. Resource Melliferous-Polleniferous Role of Invasive Plants in Russia. Russ. J. Biol. Invasions 2023, 14, 565–580. [Google Scholar] [CrossRef]
- Austin, D.F. Florida Ethnobotany; CRC Press: BocaRaton, FL, USA, 2004. [Google Scholar]
- Kozuharova, E.; Matkowski, A.; Wozacuteniak, D.; Simeonova, R.; Naychov, Z.; Malainer, C.; Mocan, A.; Nabavi, S.M.; Atanasov, A.G. Amorpha fruticosa—A noxious invasive alien plant in Europe or a medicinal plant against metabolic disease? Front. Pharmacol. 2017, 8, 333. [Google Scholar] [CrossRef] [PubMed]
- Weidner, C.; de Groot, J.C.; Prasad, A.; Sauer, S. Amorfrutins are potent antidiabetic dietary natural products. Proc. Natl. Acad. Sci. USA 2012, 109, 7257–7262. [Google Scholar] [CrossRef] [PubMed]
- Simeonova, R.; Shkondrov, A.; Kozuharova, E.; Ionkova, I.; Krasteva, I. A Study on the Safety and Effects of Amorpha fruticosa Fruit Extract on Spontaneously Hypertensive Rats with Induced Type 2 Diabetes. Curr. Issues Mol. Biol. 2022, 44, 2583–2592. [Google Scholar] [CrossRef] [PubMed]
- Weidner, C.; Wowro, S.J.; Freiwald, A.; Kawamoto, K.; Witzke, A.; Kliem, M.; Siems, K.; Müller-Kuhrt, L.; Schroeder, F.C.; Sauer, S. Amorfrutin B is an efficient natural peroxisome proliferator-activated receptor gamma (PPARγ) agonist with potent glucose-lowering properties. Diabetologia 2013, 56, 1802–1812. [Google Scholar] [CrossRef] [PubMed]
- Sharp, H.; Hollinshead, J.; Bartholomew, B.B.; Oben, J.; Watson, A.; Nash, R.J. Inhibitory Effects of Cissus quadrangularis L. Derived Components on Lipase, Amylase and alpha-Glucosidase Activity in vitro. Nat. Prod. Commun. 2007, 2, 8. [Google Scholar]
- Nash, R.J.; Kato, A.; Yu, C.-Y.; Fleet, G.W.J. Iminosugars as therapeutic agents: Recent advances and promising trends. Future Med. Chem. 2011, 3, 1513–1521. [Google Scholar] [CrossRef] [PubMed]
- Harris, T.M.; Harris, C.M.; Hill, J.E.; Ungemach, F.S. (1S, 2R, 8aS)-1,2-dihydroxyindolizidine formation by Rhizoctonia legumini cola, the fungus that produces slaframine and swainsonine. J. Org. Chem. 1987, 52, 3094–3098. [Google Scholar] [CrossRef]
- Nash, R.J. Studies of the Chemotaxonomic and Ecological Significance of Secondary Compounds in the Leguminosae and Cycadales. Ph.D. Thesis, King’s College London, London, UK, 1987. [Google Scholar]
- Romeo, J.T.; Swain, L.A.; Bleeker, A.B. Cis-4-hydroxypipecolic acid and 2,4-cis-4,5-trans-4,5-dihydroxypipecolic acid from Calliandra. Phytochemistry 1983, 22, 1615–1617. [Google Scholar] [CrossRef]
- Bhatt, G.; Singh, A.; Panda, A.N.; Mitra, S.; Rangan, L. Glabrin from Pongamia pinnata: Structural Insights and Antibacterial Potential. Natl. Acad. Sci. Lett. 2025, 48, 27–31. [Google Scholar] [CrossRef]
- Sánchez-Hidalgo, M.; León-González, A.J.; Gálvez-Peralta, M. D-Pinitol: A cyclitol with versatile biological and pharmacological activities. Phytochem. Rev. 2021, 20, 211–224. [Google Scholar] [CrossRef]
- Fuhr, L.; Rousseau, M.; Plauth, A.; Schroeder, F.C.; Sauer, S. Amorfrutins Are Natural PPARγ Agonists with Potent Anti-inflammatory Properties. J. Nat. Prod. 2015, 78, 1160–1164. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Liao, H.; Wu, K.; Cui, L. Chemical Constituents from the Seeds of Amorpha fruticosa and Their Chemotaxonomic Significance. Open Access Libr. J. 2016, 3, 1–7. [Google Scholar] [CrossRef]
- Singh, A.B.; Khaliq, T.; Chaturvedi, J.P.; Narender, T.; Srivastava, A.K. Anti-diabetic and anti-oxidative effects of 4-hydroxypipecolic acid in C57BL/KsJ-db/db mice. Hum. Exp. Toxicol. 2012, 31, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Hatanaka, S.-I.; Kaneko, S. Cis-5-hydroxy-L-pipecolic acid from Morus alba and Lathyrus japonicus. Phytochemistry 1977, 16, 1041–1042. [Google Scholar] [CrossRef]
- Kim, M.-J.; Lee, S.-B.; Lee, H.-S.; Lee, S.-Y.; Baek, J.-S.; Kim, D.; Moon, T.-W.; Robyt, J.F.; Kwan-Hwa Park, K.-H. Comparative Study of the Inhibition of α-Glucosidase, α-Amylase, and Cyclomaltodextrin Glucanosyltransferase by Acarbose, Isoacarbose, and Acarviosine–Glucose. Arch. Biochem. Biophys. 1999, 371, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Seo, M.J.; Jang, S. 1-Deoxynojirimycin-producing bacteria: Production, optimization, biosynthesis, biological activities. Biotechnol. Bioproc. Eng. 2024, 29, 981–992. [Google Scholar] [CrossRef]
- Hardick, D.J.; Hutchinson, D.W. The biosynthesis of 1-deoxynojirimycin in Bacillus subtilis var niger. Tetrahedron 1993, 49, 6707–6716. [Google Scholar] [CrossRef]
- Watson, A.A.; Fleet, G.W.J.; Asano, N.; Molyneux, R.J.; Nash, R.J. Polyhydroxylated Alkaloids-Natural Occurrence and Therapeutic Applications. Phytochemistry 2001, 56, 265–295. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, M.; Zeier, J. N-hydroxypipecolic acid and salicylic acid: A metabolic duo for systemic acquired resistance. Curr. Opin. Plant Biol. 2019, 50, 44–57. [Google Scholar] [CrossRef] [PubMed]
- Olajide, O.A.; Iwuanyanwu, V.U.; Banjo, O.W.; Kato, A.; Penkova, Y.B.; Fleet, G.W.J.; Nash, R.J. Iminosugar Amino Acid idoBR1 Reduces Inflammatory Responses in Microglia. Molecules 2022, 27, 3342. [Google Scholar] [CrossRef] [PubMed]
- Nash, R.J.; Wilson, F.X.; Horne, G. Treatment of Energy Utilization Disease. Patent PCT/GB2009/000417, 6 November 2013. [Google Scholar]
- Awolade, P.; Cele, N.; Kerru, N.; Gummidi, L.; Oluwakemi, E.; Singh, P. Therapeutic significance of β-glucuronidase activity and its inhibitors: A review. Eur. J. Med. Chem. 2020, 187, 111921. [Google Scholar] [CrossRef] [PubMed]
- Lietzan, A.D.; Simpson, J.B.; Boynton, M.H.; Liu, J.; Walton, G.W.; Redinbo, M.R. Microbial β-glucuronidases drive human periodontal disease etiology. Sci. Adv. 2023, 9, eadg3390. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Shikhman, A.R.; Lotz, M.K.; Wong, C.H. Hexosaminidase inhibitors as new drug candidates for the therapy of osteoarthritis. Chem. Biol. 2001, 8, 701–711. [Google Scholar] [CrossRef] [PubMed]
- Ramessur, K.T.; Greenwell, P.; Nash, R.; Dwek, M. Breast cancer invasion is mediated by beta-N-acetylglucosaminidase (beta-NAG) and associated with a dysregulation in the secretory pathway of cancer cells. Brit. J. Biomed. Sci. 2010, 67, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Taegtmeyer, H.; Wang, Z.V. Diverging consequences of hexosamine biosynthesis in cardiovascular disease. J. Mol. Cell. Cardiol. 2021, 153, 104–105. [Google Scholar] [CrossRef] [PubMed]
- Watson, A.A.; Nash, R.J.; Wormald, M.R.; Harvey, D.J.; Dealler, S.; Lees, E.; Asano, N.; Kizu, H.; Kato, A.; Griffiths, R.C.; et al. Glycosidase-inhibiting pyrrolidine alkaloids from Hyacinthoides non-scripta. Phytochemistry 1997, 46, 255–259. [Google Scholar] [CrossRef]
Pods | Leaves | ||||
---|---|---|---|---|---|
Extractables | 1 | 2 | 3 | 4 | 5 |
50% aq ethanol extractable | 232 mg | 231 mg | 171 mg | 161 mg | 167 mg |
Methanol extractable | 146 mg | 158 mg | 121 mg | 116 mg | |
Total amino acids | 2.5 mg | 3 mg | 2.4 mg | 2 mg | 6 mg |
Pinitol | 30 mg | 23 mg | 10 mg | 5 mg | 100 mg |
Hydroxyhygrinic acid | 0.23 mg | 0.02 mg | 0.009 mg | 0.007 mg | 1 mg |
5-hydroxypipecolic acid | 0.12 mg | 1 mg | |||
4,5-dihydroxy-N-methyl-pipecolic acid (tentative) | 0.1 mg | trace | trace | 0.008 mg | |
Glutamic acid | 0.22 mg | 0.3 mg | 0.5 mg | 0.3 mg | 0.3 mg |
Proline | 0.13 mg | 0.17 mg | 0.09 mg | 0.26 mg | 1.5 mg |
Tyrosine | 0.7 mg | 0.34 mg | 0.5 mg | 0.3 mg | 1.5 mg |
2-aminoadenine-N1-oxide | 0.8 mg | 0.3 mg | 0.14 mg | not evident | |
Myoinositol | 3.5 mg | 3.7 mg | 3.2 mg | 3.2 mg |
Type | Conc | α-D-Glucosidase | α-D-Glucosidase | β-D-Glucosidase | α-D-Galactosidase | β-D-Galactosidase | α-D-Mannosidase | N-Acetyl-β-D-Gluc | β-Glu-curonidase |
---|---|---|---|---|---|---|---|---|---|
Yeast | Rat Intestine | Almond | Green Coffee Beans | Rat Intestine | Rat Intestine | Rat Intestine | Bovine Liver | ||
pod methanol | 10 mg/mL | 96.6 | 2.4 | 67.4 | 16.2 | −11.2 | 61.9 | 92 | |
pod methanol | 1 mg/mL | 84.8 | 10.2 | 65.6 | |||||
pod methanol | 0.1 mg/mL | 30.2 | ND | 13.2 | |||||
pod 50% aq | 10 mg/mL | 96.2 | 6.6 | 77.1 | 18.4 | −13.9 | 91.3 | 93.7 | |
pod 50% aq | 1 mg/mL | 96.9 | 28.1 | 66.9 | |||||
pod 50% aq | 0.1 mg/mL | 60.5 | ND | 12.3 | |||||
pod cation-bound | 10 mg/mL | 92.3 | 4 | 50.6 | 3 | −1.8 | 43.7 | 68.7 | |
pod cation-bound | 1 mg/mL | 51.3 | 9.2 | 7.4 | |||||
pod cation-bound | 0.1 mg/mL | 17.3 | ND | 4.2 | |||||
pod bd Dowex 1 | 10 mg/mL | 0.3 | −0.2 | 19.5 | −17 | 12.3 | 3.6 | 1 | |
pod unbd Dowex 1 | 10 mg/mL | 42.1 | 13.9 | 21.7 | 0.2 | 14.9 | 33.2 | 49.6 | |
seedling cation-bound | 10 mg/mL | 41.7 | 27.2 | 11.4 | |||||
leaf anion 5-unbound | 10 mg/mL | 10.9 | 54.2 | 9 | 7.9 | −0.2 | −3.3 | −1.9 | |
leaf anion-unbound end | 10 mg/mL | 8 | 36.2 | 10.1 | −0.4 | 2.5 | −3.6 | 1.3 | |
leaf anion-bound | 10 mg/mL | −4.9 | 0.7 | 9.1 | −5.6 | −6.1 | 5 | −5.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nash, R.J.; Bartholomew, B.; Penkova, Y.B.; Kozuharova, E. Iminosugars of the Invasive Arboreal Amorpha fruticosa and Glycosidase Inhibition Potential. Plants 2025, 14, 2205. https://doi.org/10.3390/plants14142205
Nash RJ, Bartholomew B, Penkova YB, Kozuharova E. Iminosugars of the Invasive Arboreal Amorpha fruticosa and Glycosidase Inhibition Potential. Plants. 2025; 14(14):2205. https://doi.org/10.3390/plants14142205
Chicago/Turabian StyleNash, Robert J., Barbara Bartholomew, Yana B. Penkova, and Ekaterina Kozuharova. 2025. "Iminosugars of the Invasive Arboreal Amorpha fruticosa and Glycosidase Inhibition Potential" Plants 14, no. 14: 2205. https://doi.org/10.3390/plants14142205
APA StyleNash, R. J., Bartholomew, B., Penkova, Y. B., & Kozuharova, E. (2025). Iminosugars of the Invasive Arboreal Amorpha fruticosa and Glycosidase Inhibition Potential. Plants, 14(14), 2205. https://doi.org/10.3390/plants14142205