Improving the Recognition of Bamboo Color and Spots Using a Novel YOLO Model
Abstract
1. Introduction
2. Materials and Methods
2.1. Experiment Location
2.2. Selection of Bamboo Shoot Samples and Sampling Point Setup
2.3. Collection and Preprocessing of the Dataset
2.4. Dataset Annotation
2.5. YOLOv8-BS Model Architecture
2.6. Programming Environment
2.7. Model Training
2.8. Model Evaluation Metrics
3. Results
3.1. Model Performance and Threshold Sensitivity
3.2. Color and Spot Detection Performance
3.3. Confusion Matrix Analysis
4. Discussion
4.1. Model Performance Analysis
4.2. Architectural Advantages of YOLOv8-BS
4.3. Broader Implications and Future Directions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Choudhury, D.; Sahu, J.K.; Sharma, G. Value addition to bamboo shoots: A review. J. Food Sci. Technol. 2012, 49, 407–414. [Google Scholar] [CrossRef]
- Singhal, P.; Bal, L.M.; Satya, S.; Sudhakar, P.S.; Naik, S.N. Bamboo shoots: A novel source of nutrition and medicine. Crit. Rev. Food Sci. Nutr. 2013, 53, 517–534. [Google Scholar] [CrossRef]
- Goyal, A.K.; Brahma, B.K. Antioxidant and nutraceutical potential of bamboo: An overview. Int. J. Fundam. Appl. Sci. 2014, 3, 2–10. [Google Scholar]
- Goyal, A.K.; Ghosh, P.K.; Dubey, A.K.; Sen, A. Inventorying bamboo biodiversity of North Bengal: A case study. Int. J. Fundam. Appl. Sci. 2012, 1, 2–5. [Google Scholar]
- Satya, S.; Singhal, P.; Bal, L.M.; Sudhakar, P. Bamboo shoot: A potential source of food security. Mediterr. J. Nutr. Metab. 2012, 5, 1–10. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, L.; Li, Y.; Yang, J.; Yang, H.; Zhao, Y.; Chen, G. Bamboo shoot and its food applications in last decade: An undervalued edible resource from forest to feed future people. Trends Food Sci. Technol. 2024, 146, 104399. [Google Scholar] [CrossRef]
- Chongtham, N.; Bisht, M.S. Bamboo Shoot: Superfood for Nutrition, Health and Medicine; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Badwaik, L.S.; Gautam, G.; Deka, S.C. Influence of blanching on antioxidant, nutritional and physical properties of bamboo shoot. J. Agric. Sci. 2015, 10, 140–150. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, J.; Wang, D.; Ye, F.; He, Y.; Hu, Z.; Zhao, G. A systematic review on the composition, storage, processing of bamboo shoots: Focusing the nutritional and functional benefits. J. Funct. Foods 2020, 71, 104015. [Google Scholar] [CrossRef]
- Chongtham, N.; Bisht, M.S. S.; Haorongbam, Nutritional properties of bamboo shoots: Potential and prospects for utilization as a health food. Compr. Rev. Food Sci. Food Saf. 2011, 10, 153–168. [Google Scholar] [CrossRef]
- Park, E.-J.; Jhon, D.-Y. Effects of bamboo shoot consumption on lipid profiles and bowel function in healthy young women. Nutrition 2009, 25, 723–728. [Google Scholar] [CrossRef]
- Wu, W.; Hu, J.; Gao, H.; Chen, H.; Fang, X.; Mu, H.; Han, Y.; Liu, R. The potential cholesterol-lowering and prebiotic effects of bamboo shoot dietary fibers and their structural characteristics. Food Chem. 2020, 332, 127372. [Google Scholar] [CrossRef]
- Tariga, J.N. Standardization and Nutritional Content Determination of Ready-To-Eat Bamboo Shoot Dishes. J. Crit. Rev. 2019, 7, 2020. [Google Scholar]
- Satya, S.; Bal, L.M.; Singhal, P.; Naik, S. Bamboo shoot processing: Food quality and safety aspect (a review). Trends Food Sci. Technol. 2010, 21, 181–189. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, L.; Bing, F.; Pan, X.; Sai-Juan, J. Nutrition components in shoots of different provenance of Chimonobambusa hejiangensis and C. pachystachys. J. Zhejiang For. Sci. Technol. 2012, 32, 37–41. [Google Scholar]
- Nirmala, C.; Bisht, M.S.; Laishram, M. Bioactive compounds in bamboo shoots: Health benefits and prospects for developing functional foods. Int. J. Food Sci. Technol. 2014, 49, 1425–1431. [Google Scholar] [CrossRef]
- Changchai, S.; Sumrit, T.; Kitpot, T.; Inrirai, P. Impact of storage condition on postharvest preservation of fresh Bambusa sp. Shoot. Food Res. 2020, 4, 57–63. [Google Scholar] [CrossRef]
- Wang, Y.; Qu, H.; Bai, T.; Chen, Q.; Li, X.; Luo, Z.; Lv, B.; Jiang, M. Effects of variations in color and organ of color expression in urban ornamental bamboo landscapes on the physiological and psychological responses of college students. Int. J. Environ. Res. Public Health 2021, 18, 1151. [Google Scholar] [CrossRef]
- Ma, T.; Mo, W.; Lv, B.; Wang, W.; He, H.; Jian, C.; Liu, X.; Li, S.; Guo, Y. A Review of the Nutritional Composition, Storage Challenges, Processing Technology and Widespread Use of Bamboo Shoots. Foods 2024, 13, 3539. [Google Scholar] [CrossRef]
- Huang, L.; He, J.; Tian, C.-M.; Li, D.-W. Bambusicolous fungi, diseases, and insect pests of bamboo. For. Microbiol. 2023, 3, 415–440. [Google Scholar]
- Chen, K.; Wu, X.-Q.; Huang, M.-X.; Han, Y.-Y. First report of brown culm streak of Phyllostachys praecox caused by Arthrinium arundinis in Nanjing, China. Plant Dis. 2014, 98, 1274. [Google Scholar] [CrossRef]
- Fan, L.; Li, B.; Han, Y.; Chen, L.; He, T.; Zheng, Y.; Rong, J. Lower Light Intensities Increase Shoot Germination with Improved Leaf Biosynthesis in Ma Bamboo (Dendrocalamus latiflorus Munro). Forests 2022, 13, 1723. [Google Scholar] [CrossRef]
- Long, L.; Minghui, Y.; Wenjing, Y.; Yulong, D.; Shuyan, L. Research advance in growth and development of bamboo organs. Ind. Crops Prod. 2023, 205, 117428. [Google Scholar] [CrossRef]
- Xu, J.; Ji, N.; Wang, R.; Zhang, N.; Liu, R.; Li, Y.; Lei, J. Transcriptome Profiling Reveals the Molecular Mechanisms Governing Postharvest Senescence in Fresh Bamboo Shoots (Chimonobambusa quadrangularis) upon SNP Treatment. Res. Sq. 2024, 3–39. [Google Scholar]
- Hu, J.; Yu, X.; Zhao, Y. Bamboo defect classification based on improved transformer network. Wood Res. 2022, 67, 501–510. [Google Scholar] [CrossRef]
- Minaee, S.; Boykov, Y.; Porikli, F.; Plaza, A.; Kehtarnavaz, N.; Terzopoulos, D. Image segmentation using deep learning: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 3523–3542. [Google Scholar] [CrossRef]
- Hemanth, D.J.; Estrela, V.V. Deep Learning for Image Processing Applications; IOS Press: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Wan, Y.; Wei, Q.; Sun, H.; Wu, H.; Zhou, Y.; Bi, C.; Li, J.; Li, L.; Liu, B.; Wang, D. Machine learning assisted biomimetic flexible SERS sensor from seashells for pesticide classification and concentration prediction. Chem. Eng. J. 2025, 507, 160813. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Gkioxari, G.; Hariharan, B.; Girshick, R.; Malik, J. R-cnns for pose estimation and action detection. arXiv 2014, arXiv:1406.5212. [Google Scholar]
- Gibert, D.; Planes, J.; Mateu, C.; Le, Q. Fusing feature engineering and deep learning: A case study for malware classification. Expert Syst. Appl. 2022, 207, 117957. [Google Scholar] [CrossRef]
- Mumuni, A.; Mumuni, F. Automated data processing and feature engineering for deep learning and big data applications: A survey. J. Inf. Intell. 2024, 3, 113–153. [Google Scholar] [CrossRef]
- Su, D.; Kong, H.; Qiao, Y.; Sukkarieh, S. Data augmentation for deep learning based semantic segmentation and crop-weed classification in agricultural robotics. Comput. Electron. Agric. 2021, 190, 106418. [Google Scholar] [CrossRef]
- Qi, F.; Wang, Y.; Tang, Z.; Chen, S. Real-time and effective detection of agricultural pest using an improved YOLOv5 network. J. Real-Time Image Process. 2023, 20, 33. [Google Scholar] [CrossRef]
- Tao, Z.; Li, K.; Rao, Y.; Li, W.; Zhu, J. Strawberry maturity recognition based on improved YOLOv5. Agronomy 2024, 14, 460. [Google Scholar] [CrossRef]
- Kholiya, D.; Mishra, A.K.; Pandey, N.K.; Tripathi, N. Plant detection and counting using YOLO based technique. In Proceedings of the 2023 3rd Asian Conference on Innovation in Technology (ASIANCON), Ravet, India, 25–27 August 2023; pp. 1–5. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Xu, D.; Liang, H.; Bai, Y.; Li, X.; Zhou, J.; Su, C.; Wei, W. Advances in deep learning applications for plant disease and pest detection: A review. Remote Sens. 2025, 17, 698. [Google Scholar] [CrossRef]
- Wang, D.; Cao, W.; Zhang, F.; Li, Z.; Xu, S.; Wu, X. A review of deep learning in multiscale agricultural sensing. Remote Sens. 2022, 14, 559. [Google Scholar] [CrossRef]
- Lin, Y.; Ma, J.; Wang, Q.; Sun, D.-W. Applications of machine learning techniques for enhancing nondestructive food quality and safety detection. Crit. Rev. Food Sci. Nutr. 2023, 63, 1649–1669. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Ge, Z.; Liu, S.; Wang, F.; Li, Z.; Sun, J. Yolox: Exceeding yolo series in 2021. arXiv 2021, arXiv:2107.08430. [Google Scholar]
- Jocher, G.; Stoken, A.; Borovec, J.; Changyu, L.; Hogan, A.; Diaconu, L.; Poznanski, J.; Yu, L.; Rai, P.; Ferriday, R. Ultralytics/Yolo, v5: v3.0; Zenodo: Geneva, Switzerland, 2020. [Google Scholar]
- Jiong, Y.; Wenfeng, L.; Zhiming, L.; Xiaoyan, W.; Rongyue, Z.; Hongli, S.; Xiaoyan, C.; Jie, L.; Yingkun, H. New Occurrence Characteristics and Control Strategies of Sugarcane Diseases and Insect Pests in Yunnan. Chin. Agric. Sci. Bull. 2018, 34, 119–124. [Google Scholar]
- Yang, X. Machine Vision Technologies for Evaluating Key Production and Welfare Indicators of Cage-Free Layers. Ph.D. Thesis, University of Georgia, Athens, GA, USA, 2024. [Google Scholar]
- Gui, S.; Song, S.; Qin, R.; Tang, Y. Remote sensing object detection in the deep learning era—A review. Remote Sens. 2024, 16, 327. [Google Scholar] [CrossRef]
- Wang, C.-Y.; Bochkovskiy, A.; Liao, H.-Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 24 June 2023; pp. 7464–7475. [Google Scholar]
- Rakhmatulin, I.; Kamilaris, A.; Andreasen, C. Deep neural networks to detect weeds from crops in agricultural environments in real-time: A review. Remote Sens. 2021, 13, 4486. [Google Scholar] [CrossRef]
- Liu, Z.; Abeyrathna, R.R.D.; Sampurno, R.M.; Nakaguchi, V.M.; Ahamed, T. Faster-YOLO-AP: A lightweight apple detection algorithm based on improved YOLOv8 with a new efficient PDWConv in orchard. Comput. Electron. Agric. 2024, 223, 109118. [Google Scholar] [CrossRef]
- Rahman, Z.U.; Asaari, M.S.M.; Ibrahim, H.; Abidin, I.S.Z.; Ishak, M.K. Generative Adversarial Networks (GANs) for Image Augmentation in Farming: A Review. IEEE Access 2024, 12, 179912–179943. [Google Scholar] [CrossRef]
- Mowla, M.N.; Mowla, N.; Shah, A.S.; Rabie, K.M.; Shongwe, T. Internet of Things and wireless sensor networks for smart agriculture applications: A survey. IEEE Access 2023, 11, 145813–145852. [Google Scholar] [CrossRef]
- Sun, H.; Wang, J.; Li, H.; Li, T.; Gao, Z. Advancements and challenges in bamboo breeding for sustainable development. Tree Physiol. 2023, 43, 1705–1717. [Google Scholar] [CrossRef]
- Russell, B.C.; Torralba, A.; Murphy, K.P.; Freeman, W.T. LabelMe: A database and web-based tool for image annotation. Int. J. Comput. Vis. 2008, 77, 157–173. [Google Scholar] [CrossRef]
- Sohan, M.; Ram, T.S.; Reddy, C.V.R. A review on yolov8 and its advancements. In Proceedings of the International Conference on Data Intelligence and Cognitive Informatics, Tirunelveli, India, 18–20 November 2024; pp. 529–545. [Google Scholar]
- Yu, Q.; Xie, S.; Xu, K.; Luo, H.; Zhou, X. CSPNet: A Lightweight and Efficient Convolutional Neural Network for Fault Diagnosis. In Proceedings of the 2024 4th International Conference on Control and Intelligent Robotics, Guangzhou, China, 21–23 June 2024; pp. 201–206. [Google Scholar]
- Ding, X.; Zhang, X.; Ma, N.; Han, J.; Ding, G.; Sun, J. Repvgg: Making vgg-style convnets great again. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 13733–13742. [Google Scholar]
- Li, C.; Li, L.; Jiang, H.; Weng, K.; Geng, Y.; Li, L.; Ke, Z.; Li, Q.; Cheng, M.; Nie, W. YOLOv6: A single-stage object detection framework for industrial applications. arXiv 2022, arXiv:2209.02976. [Google Scholar]
- Kim, K.; Lee, H.S. Probabilistic anchor assignment with iou prediction for object detection. In Proceedings of the Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020; pp. 355–371. [Google Scholar]
- Li, K.; Wan, G.; Cheng, G.; Meng, L.; Han, J. Object detection in optical remote sensing images: A survey and a new benchmark. ISPRS J. Photogramm. Remote Sens. 2020, 159, 296–307. [Google Scholar] [CrossRef]
- Du, S.; Zhang, B.; Zhang, P.; Xiang, P. An improved bounding box regression loss function based on CIOU loss for multi-scale object detection. In Proceedings of the 2021 IEEE 2nd International Conference on Pattern Recognition and Machine Learning (PRML), Chengdu, China, 16–18 July 2022; pp. 92–98. [Google Scholar]
- Bożko, A.; Ambroziak, L. Influence of insufficient dataset augmentation on IoU and detection threshold in CNN training for object detection on aerial images. Sensors 2022, 22, 9080. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, Y.; Jia, D.; Tao, J. Species distribution modeling of Sassafras tzumu and implications for forest management. Sustainability 2020, 12, 4132. [Google Scholar] [CrossRef]
- Tian, J.; Lee, S.; Kang, K. Faster R-CNN in Healthcare and Disease Detection: A Comprehensive Review. In Proceedings of the 2025 International Conference on Electronics, Information, and Communication (ICEIC), Yokohama, Japan, 16 June 2025; pp. 1–6. [Google Scholar]
- Kamilaris, A.; Prenafeta-Boldú, F.X. Deep learning in agriculture: A survey. Comput. Electron. Agric. 2018, 147, 70–90. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, C. Convolutional neural networks for image-based high-throughput plant phenotyping: A review. Plant Phenomics 2020, 2020, 4152816. [Google Scholar] [CrossRef]
- De Nart, D.; Gardiman, M.; Alba, V.; Tarricone, L.; Storchi, P.; Roccotelli, S.; Ammoniaci, M.; Tosi, V.; Perria, R.; Carraro, R. Vine variety identification through leaf image classification: A large-scale study on the robustness of five deep learning models. J. Agric. Sci. 2024, 162, 19–32. [Google Scholar] [CrossRef]
- Yin, X.; Li, W.; Li, Z.; Yi, L. Recognition of grape leaf diseases using MobileNetV3 and deep transfer learning. Int. J. Agric. Biol. Eng. 2022, 15, 184–194. [Google Scholar] [CrossRef]
- Lin, J.; Chen, Y.; Pan, R.; Cao, T.; Cai, J.; Yu, D.; Chi, X.; Cernava, T.; Zhang, X.; Chen, X. CAMFFNet: A novel convolutional neural network model for tobacco disease image recognition. Comput. Electron. Agric. 2022, 202, 107390. [Google Scholar] [CrossRef]
- Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path aggregation network for instance segmentation. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition 2018, Salt Lake City, UT, USA, 18–23 June 2018; pp. 8759–8768. [Google Scholar]
- Du, S.; Zhang, B.; Zhang, P. Scale-sensitive IOU loss: An improved regression loss function in remote sensing object detection. IEEE Access 2021, 9, 141258–141272. [Google Scholar] [CrossRef]
- Sun, X.; Wu, P.; Hoi, S.C. Face detection using deep learning: An improved faster RCNN approach. Neurocomputing 2018, 299, 42–50. [Google Scholar] [CrossRef]
- VijayaLakshmi, B.; Mohan, V. Kernel-based PSO and FRVM: An automatic plant leaf type detection using texture, shape, and color features. Comput. Electron. Agric. 2016, 125, 99–112. [Google Scholar] [CrossRef]
- Yu, L.; Yue, J.; Dai, Y.; Zhang, L.; Wang, Q.; Yuan, J. Characterization of color variation in bamboo sheath of Chimonobambusa hejiangensis by UPLC-ESI-MS/MS and RNA sequencing. BMC Plant Biol. 2023, 23, 466. [Google Scholar] [CrossRef]
Model | Threshold = 0.5 | Threshold = 0.75 | ||||||
---|---|---|---|---|---|---|---|---|
P/% | R/% | F1/% | AP/% | P/% | R/% | F1/% | AP/% | |
YOLOv8-BS | 85.9 | 83.4 | 84.6 | 86.8 | 79.3 | 68.3 | 73.4 | 73.2 |
YOLOv7 | 73.6 | 74.5 | 74.0 | 75.4 | 65.1 | 71.4 | 68.1 | 62.2 |
YOLOv5 | 70.6 | 69.8 | 70.2 | 71.2 | 68.5 | 65.2 | 67.1 | 52.6 |
YOLOX | 61.0 | 66.9 | 63.6 | 58.2 | 51.2 | 57.6 | 53.9 | 43.8 |
Faster R-CNN | 67.3 | 56.5 | 59.6 | 48.3 | 59.1 | 46.5 | 52.0 | 31.9 |
Model | Threshold = 0.5 | Threshold = 0.75 | ||||||
---|---|---|---|---|---|---|---|---|
P/% | R/% | F1/% | AP/% | P/% | R/% | F1/% | AP/% | |
YOLOv8-BS | 90.1 | 92.5 | 91.1 | 96.1 | 73.5 | 83.8 | 78.3 | 86.7 |
YOLOv7 | 72.3 | 73.6 | 72.9 | 78.6 | 63.9 | 66.0 | 64.9 | 72.1 |
YOLOv5 | 67.0 | 64.8 | 65.9 | 74.6 | 58.6 | 57.2 | 57.9 | 68.1 |
YOLOX | 60.3 | 71.9 | 63.6 | 53.4 | 60.0 | 65.3 | 61.4 | 49.8 |
Faster R-CNN | 49.5 | 58.8 | 53.7 | 49.2 | 41.3 | 51.2 | 45.7 | 42.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Nie, T.; Zeng, Q.; Chen, L.; Liu, W.; Zhang, W.; Tong, L. Improving the Recognition of Bamboo Color and Spots Using a Novel YOLO Model. Plants 2025, 14, 2287. https://doi.org/10.3390/plants14152287
Zhang Y, Nie T, Zeng Q, Chen L, Liu W, Zhang W, Tong L. Improving the Recognition of Bamboo Color and Spots Using a Novel YOLO Model. Plants. 2025; 14(15):2287. https://doi.org/10.3390/plants14152287
Chicago/Turabian StyleZhang, Yunlong, Tangjie Nie, Qingping Zeng, Lijie Chen, Wei Liu, Wei Zhang, and Long Tong. 2025. "Improving the Recognition of Bamboo Color and Spots Using a Novel YOLO Model" Plants 14, no. 15: 2287. https://doi.org/10.3390/plants14152287
APA StyleZhang, Y., Nie, T., Zeng, Q., Chen, L., Liu, W., Zhang, W., & Tong, L. (2025). Improving the Recognition of Bamboo Color and Spots Using a Novel YOLO Model. Plants, 14(15), 2287. https://doi.org/10.3390/plants14152287