Impact of Grassland Management System Intensity on Composition of Functional Groups and Soil Chemical Properties in Semi-Natural Grasslands
Abstract
1. Introduction
2. Results
2.1. Functional Group Composition and Diversity Indices in Different Management Systems
2.2. The Relationship Between Different Functional Groups and the Storage of Different Chemicals Properties in the Soil
2.3. The Effects of the Different Intensities of Management Systems on the Physical and Chemical Properties of Soil
3. Discussion
3.1. Functional Groups in Relation to Intensity of Grassland Management
3.2. Grassland Management Intensity: Effects on Soil Organic and Inorganic Carbon Storage
3.3. Nitrogen and Phosphorus Responses to Different Grassland Management Intensities
4. Materials and Methods
4.1. Experimental Site and Study Design
4.2. Field Sampling and Measurements
4.3. Laboratory Analyses
4.4. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lal, R. Soil carbon sequestration to mitigate climate change. Geoderma 2004, 123, 1–22. [Google Scholar] [CrossRef]
- Gilmullina, A.; Rumpel, C.; Blagodatskaya, E.; Chabbi, A. Management of grasslands by mowing versus grazing–impacts on soil organic matter quality and microbial functioning. Appl. Soil Ecol. 2020, 156, 103701. [Google Scholar] [CrossRef]
- Phukubye, K.; Mutema, M.; Buthelezi, N.; Muchaonyerwa, P.; Cerri, C.; Chaplot, V. On the impact of grassland management on soil carbon stocks: A worldwide meta-analysis. Geoderma Rég. 2022, 28, e00479. [Google Scholar] [CrossRef]
- Bai, Y.; Cotrufo, M.F. Grassland soil carbon sequestration: Current understanding, challenges, and solutions. Science 2022, 377, 603–608. [Google Scholar] [CrossRef] [PubMed]
- Yu, P.; Liu, S.; Ding, Z.; Zhang, A.; Tang, X. Changes in Storage and the Stratification Ratio of Soil Organic Carbon under Different Vegetation Types in Northeastern China. Agronomy 2020, 10, 290. [Google Scholar] [CrossRef]
- Conant, R.T.; Cerri, C.E.; Osborne, B.B.; Paustian, K. Grassland management impacts on soil carbon stocks: A new synthesis. Ecol. Appl. 2017, 27, 662–668. [Google Scholar] [CrossRef] [PubMed]
- Cotrufo, M.F.; Ranalli, M.G.; Haddix, M.L.; Six, J.; Lugato, E. Soil carbon storage informed by particulate and mineral-associated organic matter. Nat. Geosci. 2019, 12, 989–994. [Google Scholar] [CrossRef]
- Chang, J.; Ciais, P.; Gasser, T.; Smith, P.; Herrero, M.; Havlík, P.; Obersteiner, M.; Guenet, B.; Goll, D.S.; Li, W. Climate warming from managed grasslands cancels the cooling effect of carbon sinks in sparsely grazed and natural grasslands. Nat. Commun. 2021, 12, 118. [Google Scholar] [CrossRef] [PubMed]
- White, R. Grassland Ecosystems; World Resources Institute: Washington, DC, USA, 2000; p. 81. [Google Scholar]
- Abdalla, M.; Hastings, A.; Chadwick, D.R.; Jones, D.L.; Evans, C.D.; Jones, M.B.; Rees, R.M.; Smith, P. Critical review of the impacts of grazing intensity on soil organic carbon storage and other soil quality indicators in extensively managed grasslands. Agric. Ecosyst. Environ. 2018, 253, 62–81. [Google Scholar] [CrossRef] [PubMed]
- Conant, R.T.; Paustian, K.; Elliott, E.T. Grassland management and conversion into grassland: Effects on soil carbon. Ecol. Appl. 2001, 11, 343–355. [Google Scholar] [CrossRef]
- Soussana, J.-F.; Loiseau, P.; Vuichard, N.; Ceschia, E.; Balesdent, J.; Chevallier, T.; Arrouays, D. Carbon cycling and sequestration opportunities in temperate grasslands. Soil Use Manag. 2004, 20, 219–230. [Google Scholar] [CrossRef]
- Senapati, N.; Chabbi, A.; Gastal, F.; Smith, P.; Mascher, N.; Loubet, B.; Cellier, P.; Naisse, C. Net carbon storage measured in a mowed and grazed temperate sown grassland shows potential for carbon sequestration under grazed system. Carbon Manag. 2014, 5, 131–144. [Google Scholar] [CrossRef]
- Chen, L.; Wang, K.; Baoyin, T. Effects of grazing and mowing on vertical distribution of soil nutrients and their stoichiometry (C: N: P) in a semi-arid grassland of North China. Catena 2021, 206, 105507. [Google Scholar] [CrossRef]
- Seeber, J.; Seeber, G. Effects of land-use changes on humus forms on alpine pastureland (Central Alps, Tyrol). Geoderma 2005, 124, 215–222. [Google Scholar] [CrossRef]
- Whitehead, D. Management of grazed landscapes to increase soil carbon stocks in temperate, dryland grasslands. Front. Sustain. Food Syst. 2020, 4, 585913. [Google Scholar] [CrossRef]
- Piñeiro, G.; Paruelo, J.M.; Oesterheld, M.; Jobbágy, E.G. Pathways of Grazing Effects on Soil Organic Carbon and Nitrogen. Rangel. Ecol. Manag. 2010, 63, 109–119. [Google Scholar] [CrossRef]
- Cui, X.; Wang, Y.; Niu, H.; Wu, J.; Wang, S.; Schnug, E.; Rogasik, J.; Fleckenstein, J.; Tang, Y. Effect of long-term grazing on soil organic carbon content in semiarid steppes in Inner Mongolia. Ecol. Res. 2005, 20, 519–527. [Google Scholar] [CrossRef]
- Poeplau, C.; Marstorp, H.; Thored, K.; Kätterer, T. Effect of grassland cutting frequency on soil carbon storage–a case study on public lawns in three Swedish cities. Soil 2016, 2, 175–184. [Google Scholar] [CrossRef]
- Firbank, L.G. Striking a new balance between agricultural production and biodiversity. Ann. Appl. Biol. 2005, 146, 163–175. [Google Scholar] [CrossRef]
- Marriott, C.; Fothergill, M.; Jeangros, B.; Scotton, M.; Louault, F. Long-term impacts of extensification of grassland management on biodiversity and productivity in upland areas. A review. Agronomie 2004, 24, 447–462. [Google Scholar] [CrossRef]
- Plantureux, S.; Peeters, A.; McCracken, D. Biodiversity in intensive grasslands: Effect of management, improvement and challenges. Agron. Res. 2005, 3, 153–164. [Google Scholar]
- Allan, E.; Manning, P.; Alt, F.; Binkenstein, J.; Blaser, S.; Blüthgen, N.; Böhm, S.; Grassein, F.; Hölzel, N.; Klaus, V.H. Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecol. Lett. 2015, 18, 834–843. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.; Viovy, N.; Vuichard, N.; Ciais, P.; Campioli, M.; Klumpp, K.; Martin, R.; Leip, A.; Soussana, J.-F. Modeled changes in potential grassland productivity and in grass-fed ruminant livestock density in Europe over 1961–2010. PLoS ONE 2015, 10, e0127554. [Google Scholar] [CrossRef] [PubMed]
- Bardgett, R.; Leemans, D. The short-term effects of cessation of fertiliser applications, liming, and grazing on microbial biomass and activity in a reseeded upland grassland soil. Biol. Fertil. Soils 1995, 19, 148–154. [Google Scholar] [CrossRef]
- Gavrichkova, O.; Moscatelli, M.; Grego, S.; Valentini, R. Soil carbon mineralization in a Mediterranean pasture: Effect of grazing and mowing management practices. Agrochimica 2008, 52, 285. [Google Scholar]
- Yang, Y.; Tilman, D.; Furey, G.; Lehman, C. Soil carbon sequestration accelerated by restoration of grassland biodiversity. Nat. Commun. 2019, 10, 718. [Google Scholar] [CrossRef] [PubMed]
- Prommer, J.; Walker, T.W.N.; Wanek, W.; Braun, J.; Zezula, D.; Hu, Y.; Hofhansl, F.; Richter, A. Increased microbial growth, biomass, and turnover drive soil organic carbon accumulation at higher plant diversity. Glob. Change Biol. 2020, 26, 669–681. [Google Scholar] [CrossRef] [PubMed]
- Leifeld, J.; Meyer, S.; Budge, K.; Sebastia, M.T.; Zimmermann, M.; Fuhrer, J. Turnover of grassland roots in mountain ecosystems revealed by their radiocarbon signature: Role of temperature and management. PLoS ONE 2015, 10, e0119184. [Google Scholar] [CrossRef] [PubMed]
- Jackson, R.B.; Lajtha, K.; Crow, S.E.; Hugelius, G.; Kramer, M.G.; Piñeiro, G. The ecology of soil carbon: Pools, vulnerabilities, and biotic and abiotic controls. Annu. Rev. Ecol. Evol. Syst. 2017, 48, 419–445. [Google Scholar] [CrossRef]
- Tilman, D.; Wedin, D.; Knops, J. Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 1996, 379, 718–720. [Google Scholar] [CrossRef]
- McSherry, M.E.; Ritchie, M.E. Effects of grazing on grassland soil carbon: A global review. Glob. Change Biol. 2013, 19, 1347–1357. [Google Scholar] [CrossRef] [PubMed]
- Nyfeler, D.; Huguenin-Elie, O.; Suter, M.; Frossard, E.; Lüscher, A. Grass–legume mixtures can yield more nitrogen than legume pure stands due to mutual stimulation of nitrogen uptake from symbiotic and non-symbiotic sources. Agric. Ecosyst. Environ. 2011, 140, 155–163. [Google Scholar] [CrossRef]
- Gregorich, E.G.; Rochette, P.; VandenBygaart, A.J.; Angers, D.A. Greenhouse gas contributions of agricultural soils and potential mitigation practices in Eastern Canada. Soil Tillage Res. 2005, 83, 53–72. [Google Scholar] [CrossRef]
- Rodríguez, A.; Canals, R.M.; Sebastià, M.-T. Positive effects of legumes on soil organic carbon stocks disappear at high legume proportions across natural grasslands in the Pyrenees. Ecosystems 2022, 25, 960–975. [Google Scholar] [CrossRef]
- Pirhofer-Walzl, K.; Rasmussen, J.; Høgh-Jensen, H.; Eriksen, J.; Søegaard, K.; Rasmussen, J. Nitrogen transfer from forage legumes to nine neighbouring plants in a multi-species grassland. Plant Soil 2012, 350, 71–84. [Google Scholar] [CrossRef]
- Lisec, U.; Prevolnik Povše, M.; Gselman, A.; Kramberger, B. Sustainable Grassland-Management Systems and Their Effects on the Physicochemical Properties of Soil. Plants 2024, 13, 838. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Delgado-Baquerizo, M.; Shan, D.; Yang, X.; Eldridge, D.J. Grazing impacts on ecosystem functions exceed those from mowing. Plant Soil 2021, 464, 579–591. [Google Scholar] [CrossRef]
- Dubeux, J., Jr.; Sollenberger, L.; Vendramini, J.; Interrante, S.; Lira, M., Jr. Stocking method, animal behavior, and soil nutrient redistribution: How are they linked? Crop Sci. 2014, 54, 2341–2350. [Google Scholar] [CrossRef]
- Quan, Q.; Nianpeng, H.; Zhen, Z.; Yunhai, Z.; Yang, G. Nitrogen enrichment and grazing accelerate vegetation restoration in degraded grassland patches. Ecol. Eng. 2015, 75, 172–177. [Google Scholar] [CrossRef]
- Herrero-Jáuregui, C.; Oesterheld, M. Effects of grazing intensity on plant richness and diversity: A meta-analysis. Oikos 2018, 127, 757–766. [Google Scholar] [CrossRef]
- Waters, C.M.; Orgill, S.E.; Melville, G.J.; Toole, I.D.; Smith, W.J. Management of grazing intensity in the semi-arid rangelands of Southern Australia: Effects on soil and biodiversity. Land Degrad. Dev. 2017, 28, 1363–1375. [Google Scholar] [CrossRef]
- Lange, M.; Eisenhauer, N.; Sierra, C.A.; Bessler, H.; Engels, C.; Griffiths, R.I.; Mellado-Vázquez, P.G.; Malik, A.A.; Roy, J.; Scheu, S. Plant diversity increases soil microbial activity and soil carbon storage. Nat. Commun. 2015, 6, 6707. [Google Scholar] [CrossRef] [PubMed]
- Henneron, L.; Cros, C.; Picon-Cochard, C.; Rahimian, V.; Fontaine, S. Plant economic strategies of grassland species control soil carbon dynamics through rhizodeposition. J. Ecol. 2020, 108, 528–545. [Google Scholar] [CrossRef]
- Lynch, M.J.; Mulvaney, M.J.; Hodges, S.C.; Thompson, T.L.; Thomason, W.E. Decomposition, nitrogen and carbon mineralization from food and cover crop residues in the central plateau of Haiti. SpringerPlus 2016, 5, 973. [Google Scholar] [CrossRef] [PubMed]
- Orwin, K.H.; Buckland, S.M.; Johnson, D.; Turner, B.L.; Smart, S.; Oakley, S.; Bardgett, R.D. Linkages of plant traits to soil properties and the functioning of temperate grassland. J. Ecol. 2010, 98, 1074–1083. [Google Scholar] [CrossRef]
- Ibañez, M.; Altimir, N.; Ribas, A.; Eugster, W.; Sebastià, M.T. Phenology and plant functional type dominance drive CO2 exchange in seminatural grasslands in the Pyrenees. J. Agric. Sci. 2020, 158, 3–14. [Google Scholar] [CrossRef]
- Duffková, R.; Hakrová, P.; Brom, J.; Novotná, K. Effects of management practices in highland pastures on agronomic and environmental objectives. Appl. Ecol. Environ. Res. 2017, 15, 1677–1695. [Google Scholar] [CrossRef]
- Newton, P.C.D.; Lieffering, M.; Parsons, A.J.; Brock, S.C.; Theobald, P.W.; Hunt, C.L.; Luo, D.; Hovenden, M.J. Selective grazing modifies previously anticipated responses of plant community composition to elevated CO2 in a temperate grassland. Glob. Change Biol. 2014, 20, 158–169. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Hooper, D.U.; Wu, L.; Bakker, J.D.; Gianuca, A.T.; Wu, X.B.; Taube, F.; Wang, C.; Bai, Y. Grazing regime alters plant community structure via patch-scale diversity in semiarid grasslands. Ecosphere 2021, 12, e03547. [Google Scholar] [CrossRef]
- Ciavattini, M.; Tognetti, P.M.; Campana, S.; Yahdjian, L. Livestock grazing promotes legume abundance under increased nutrient loads: Mechanistic evidence from a temperate grassland. Appl. Veg. Sci. 2023, 26, e12751. [Google Scholar] [CrossRef]
- Talbot, J.M.; Treseder, K.K. Interactions among lignin, cellulose, and nitrogen drive litter chemistry-decay relationships. Ecology 2012, 93, 345–354. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Zhou, G.; Yuan, T.; van Groenigen, K.J.; Shao, J.; Zhou, X. Grazing intensity significantly changes the C: N: P stoichiometry in grassland ecosystems. Glob. Ecol. Biogeogr. 2020, 29, 355–369. [Google Scholar] [CrossRef]
- Heyburn, J.; McKenzie, P.; Crawley, M.J.; Fornara, D.A. Effects of grassland management on plant C: N: P stoichiometry: Implications for soil element cycling and storage. Ecosphere 2017, 8, e01963. [Google Scholar] [CrossRef]
- Lai, L.; Kumar, S. A global meta-analysis of livestock grazing impacts on soil properties. PLoS ONE 2020, 15, e0236638. [Google Scholar] [CrossRef] [PubMed]
- Manzoni, S.; Jackson, R.B.; Trofymow, J.A.; Porporato, A. The Global Stoichiometry of Litter Nitrogen Mineralization. Science 2008, 321, 684–686. [Google Scholar] [CrossRef] [PubMed]
- Craine, J.M.; Morrow, C.; Fierer, N. Microbial nitrogen limitation increases decomposition. Ecology 2007, 88, 2105–2113. [Google Scholar] [CrossRef] [PubMed]
- McNally, S.R.; Laughlin, D.C.; Rutledge, S.; Dodd, M.B.; Six, J.; Schipper, L.A. Root carbon inputs under moderately diverse sward and conventional ryegrass-clover pasture: Implications for soil carbon sequestration. Plant Soil 2015, 392, 289–299. [Google Scholar] [CrossRef]
- Zhou, X.; Zhou, G.; Zhou, L. Effects of Grazing Intensity on Belowground Carbon and Nitrogen Cycling. In Grasses and Grassland Aspects; Kindomihou, V., Ed.; IntechOpen: Rijeka, Croatia, 2020. [Google Scholar]
- Chaplot, V.; Dlamini, P.; Chivenge, P. Potential of grassland rehabilitation through high density-short duration grazing to sequester atmospheric carbon. Geoderma 2016, 271, 10–17. [Google Scholar] [CrossRef]
- Gao, Q.; Li, Y.; Wan, Y.; Qin, X.; Jiangcun, W.; Liu, Y. Dynamics of alpine grassland NPP and its response to climate change in Northern Tibet. Clim. Change 2009, 97, 515–528. [Google Scholar] [CrossRef]
- Carlsson, G.; Huss-Danell, K. Nitrogen fixation in perennial forage legumes in the field. Plant Soil 2003, 253, 353–372. [Google Scholar] [CrossRef]
- von Felten, S.; Hector, A.; Buchmann, N.; Niklaus, P.A.; Schmid, B.; Scherer-Lorenzen, M. Belowground nitrogen partitioning in experimental grassland plant communities of varying species richness. Ecology 2009, 90, 1389–1399. [Google Scholar] [CrossRef] [PubMed]
- Gilmullina, A.; Rumpel, C.; Klumpp, K.; Chabbi, A. Do grassland management practices affect soil lignin chemistry by changing the composition of plant-derived organic matter input? Plant Soil 2021, 469, 443–455. [Google Scholar] [CrossRef]
- Tälle, M.; Fogelfors, H.; Westerberg, L.; Milberg, P. The conservation benefit of mowing vs grazing for management of species-rich grasslands: A multi-site, multi-year field experiment. Nord. J. Bot. 2015, 33, 761–768. [Google Scholar] [CrossRef]
- Han, Y.; Zhang, Z.; Wang, C.; Jiang, F.; Xia, J. Effects of mowing and nitrogen addition on soil respiration in three patches in an oldfield grassland in Inner Mongolia. J. Plant Ecol. 2012, 5, 219–228. [Google Scholar] [CrossRef]
- Byrnes, R.C.; Eastburn, D.J.; Tate, K.W.; Roche, L.M. A global meta-analysis of grazing impacts on soil health indicators. J. Environ. Qual. 2018, 47, 758–765. [Google Scholar] [CrossRef] [PubMed]
- Mchunu, C.; Chaplot, V. Land degradation impact on soil carbon losses through water erosion and CO2 emissions. Geoderma 2012, 177, 72–79. [Google Scholar] [CrossRef]
- Barrena-González, J.; Antoneli, V.; Contador, J.F.L.; Fernández, M.P. Assessing how Grazing Intensity Affects the Spatial Distribution of Soil Properties. Earth Syst. Environ. 2024, 1–20. [Google Scholar] [CrossRef]
- Sanderman, J. Can management induced changes in the carbonate system drive soil carbon sequestration? A review with particular focus on Australia. Agric. Ecosyst. Environ. 2012, 155, 70–77. [Google Scholar] [CrossRef]
- Monger, H.C.; Kraimer, R.A.; Khresat, S.e.; Cole, D.R.; Wang, X.; Wang, J. Sequestration of inorganic carbon in soil and groundwater. Geology 2015, 43, 375–378. [Google Scholar] [CrossRef]
- Raza, S.; Miao, N.; Wang, P.; Ju, X.; Chen, Z.; Zhou, J.; Kuzyakov, Y. Dramatic loss of inorganic carbon by nitrogen-induced soil acidification in Chinese croplands. Glob. Change Biol. 2020, 26, 3738–3751. [Google Scholar] [CrossRef] [PubMed]
- McClelland, S.C.; Cotrufo, M.F.; Haddix, M.L.; Paustian, K.; Schipanski, M.E. Infrequent compost applications increased plant productivity and soil organic carbon in irrigated pasture but not degraded rangeland. Agric. Ecosyst. Environ. 2022, 333, 107969. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, C.; Zuo, S.; Ji, Y.; Liu, W.; Huang, D. Heavy grazing reduces soil bacterial diversity by increasing soil pH in a semi-arid steppe. PeerJ 2024, 12, e17031. [Google Scholar] [CrossRef] [PubMed]
- Kohler, F.; Hamelin, J.; Gillet, F.; Gobat, J.-M.; Buttler, A. Soil microbial community changes in wooded mountain pastures due to simulated effects of cattle grazing. Plant Soil 2005, 278, 327–340. [Google Scholar] [CrossRef]
- Reeder, J.D.; Schuman, G.E.; Morgan, J.A.; LeCain, D.R. Response of organic and inorganic carbon and nitrogen to long-term grazing of the shortgrass steppe. Environ. Manag. 2004, 33, 485–495. [Google Scholar] [CrossRef] [PubMed]
- Vannucchi, F.; Malorgio, F.; Pezzarossa, B.; Pini, R.; Bretzel, F. Effects of compost and mowing on the productivity and density of a purpose-sown mixture of native herbaceous species to revegetate degraded soil in anthropized areas. Ecol. Eng. 2015, 74, 60–67. [Google Scholar] [CrossRef]
- Ingram, L.; Stahl, P.; Schuman, G.; Buyer, J.; Vance, G.; Ganjegunte, G.; Welker, J.; Derner, J. Grazing impacts on soil carbon and microbial communities in a mixed-grass ecosystem. Soil Sci. Soc. Am. J. 2008, 72, 939–948. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, H.; Zhao, X.; Zhang, T.; Li, Y.; Cui, J. Effects of grazing and livestock exclusion on soil physical and chemical properties in desertified sandy grassland, Inner Mongolia, northern China. Environ. Earth Sci. 2011, 63, 771–783. [Google Scholar] [CrossRef]
- Han, G.; Hao, X.; Zhao, M.; Wang, M.; Ellert, B.H.; Willms, W.; Wang, M. Effect of grazing intensity on carbon and nitrogen in soil and vegetation in a meadow steppe in Inner Mongolia. Agric. Ecosyst. Environ. 2008, 125, 21–32. [Google Scholar] [CrossRef]
- Rumpel, C.; Crème, A.; Ngo, P.; Velásquez, G.; Mora, M.; Chabbi, A. The impact of grassland management on biogeochemical cycles involving carbon, nitrogen and phosphorus. J. Soil Sci. Plant Nutr. 2015, 15, 353–371. [Google Scholar] [CrossRef]
- Delgado-Baquerizo, M.; Maestre, F.T.; Gallardo, A.; Bowker, M.A.; Wallenstein, M.D.; Quero, J.L.; Ochoa, V.; Gozalo, B.; García-Gómez, M.; Soliveres, S.; et al. Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature 2013, 502, 672–676. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.M. Field and Laboratory Methods for Grassland and Animal Production Research; CABI Publishing: Wallingford, UK, 2000. [Google Scholar]
- Morris, E.K.; Caruso, T.; Buscot, F.; Fischer, M.; Hancock, C.; Maier, T.S.; Meiners, T.; Müller, C.; Obermaier, E.; Prati, D. Choosing and using diversity indices: Insights for ecological applications from the German Biodiversity Exploratories. Ecol. Evol. 2014, 4, 3514–3524. [Google Scholar] [CrossRef] [PubMed]
- Blake, G. Particle density. In Methods of Soil Analysis: Part 1 Physical and Mineralogical Properties, Including Statistics of Measurement and Sampling; American Society of Agronomy, Inc.: Madison, WI, USA, 1965; Volume 9, pp. 371–373. [Google Scholar]
- Egner, H.; Riehm, H.; Domingo, W. Investigations on chemical soil analysis as the basis for estimating the nutrient status of soils. II. Chemical methods of extraction for phosphorus and potassium determinations. K. Lantbrukshogskolans Ann. 1960, 26, 199–215. [Google Scholar]
Management System | Legumes (%) | Grasses (%) | Forbs (%) | S | H |
---|---|---|---|---|---|
CG | 10.42 ± 2.26 ab | 63.03 ± 6.10 a | 25.59 ± 4.42 | 24.42 ± 2.82 | 2.99 ± 0.16 b |
Cut3 | 13.51 ± 1.92 a | 56.00 ± 5.68 b | 30.00 ± 3.66 | 27.34 ± 2.14 | 2.78 ± 0.13 bc |
Cut4 | 6.63 ± 2.13 bc | 62.86 ± 5.91 a | 29.13 ± 4.03 | 25.94 ± 2.50 | 3.33 ± 0.14 a |
LGI | 15.03 ± 2.46 a | 45.51 ± 6.28 c | 37.26 ± 4.78 | 30.31 ± 2.86 | 2.84 ± 0.15 bc |
HGI | 5.38 ± 2.28 c | 60.98 ± 6.18 a | 32.40 ± 4.51 | 22.34 ± 2.84 | 2.50 ± 0.16 c |
p-value | <0.001 | 0.009 | 0.289 | 0.286 | <0.001 |
Management System | Soil Depths | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Soil Properties | CG | Cut3 | Cut4 | LGI | HGI | p-Value | 0–10 | 10–20 | 20–30 | p-Value |
Physical | ||||||||||
VWC | 37.62 ± 3.73 | 40.68 ± 3.54 | 37.96 ± 3.63 | 39.25 ± 3.93 | 41.94 ± 3.74 | 0.285 | 43.54 ± 3.52 | 38.72 ± 3.52 | 36.21 ± 3.52 | ≤0.001 |
POR | 46.77 ± 3.44 | 48.14 ± 3.18 | 43.85 ± 3.31 | 46.18 ± 3.69 | 48.49 ± 3.46 | 0.278 | 55.51 ± 3.17 | 44.29 ± 3.17 | 40.26 ± 3.14 | ≤0.001 |
BD | 1.26 ± 0.05 | 1.22 ± 0.04 | 1.26 ± 0.05 | 1.25 ± 0.06 | 1.24 ± 0.05 | 0.834 | 1.05 ± 0.05 | 1.31 ± 0.04 | 1.39 ± 0.05 | ≤0.001 |
Chemical | ||||||||||
SOC | 27.56 ± 2.47 | 22.86 ± 2.24 | 27.04 ± 2.36 | 23.81 ± 2.62 | 27.37 ± 2.48 | 0.037 | 33.63 ± 2.24 | 24.58 ± 2.23 | 18.98 ± 2.24 | ≤0.001 |
SIC | 2.11 ± 0.69 | 17.26 ± 4.42 | 1.58 ± 0.58 | 14.76 ± 6.71 | - | ≤0.001 | 4.16 ± 1.38 | 5.48 ± 1.66 | 6.92 ± 2.06 | 0.523 |
STC | 25.15 ± 2.99 | 28.74 ± 2.68 | 26.24 ± 2.81 | 29.70 ± 3.06 | 26.07 ± 2.98 | 0.427 | 34.52 ± 2.67 | 26.08 ± 2.66 | 20.94 ± 2.67 | ≤0.001 |
STN | 2.80 ± 0.21 | 2.28 ± 0.17 | 2.94 ± 0.19 | 2.23 ± 0.23 | 2.87 ± 0.21 | 0.002 | 3.45 ± 0.17 | 2.55 ± 0.16 | 1.87 ± 0.17 | ≤0.001 |
P | 1.02 ± 0.35 | 1.17 ± 0.27 | 1.01 ± 0.29 | 1.53 ± 0.38 | 1.79 ± 0.35 | 0.282 | 1.86 ± 0.27 | 0.99 ± 0.26 | 1.05 ± 0.26 | 0.012 |
K | 8.57 ± 5.15 | 11.81 ± 4.79 | 14.10 ± 4.98 | 12.98 ± 5.47 | 12.27 ± 5.17 | 0.591 | 16.66 ± 4.79 | 10.41 ± 4.79 | 8.78 ± 4.78 | 0.004 |
SOM | 4.53 ± 0.46 | 3.92 ± 0.42 | 4.23 ± 0.45 | 3.90 ± 0.49 | 4.32 ± 4.46 | 0.407 | 6.15 ± 0.42 | 3.65 ± 0.43 | 2.74 ± 0.42 | ≤0.001 |
pH | 6.07 ± 0.51 | 6.63 ± 0.49 | 6.06 ± 0.50 | 6.59 ± 0.52 | 6.06 ± 0.51 | 0.945 | 6.26 ± 0.49 | 6.28 ± 0.49 | 6.31 ± 0.49 | 0.013 |
C/N | 7.46 ± 3.34 | 13.78 ± 3.19 | 7.34 ± 3.27 | 20.13 ± 3.44 | 6.89 ± 3.35 | ≤0.001 | 9.54 ± 3.18 | 10.42 ± 3.17 | 13.41 ± 3.18 | 0.010 |
Soil Depth (cm) | ||||
---|---|---|---|---|
Management System | 0–10 | 10–20 | 20–30 | p-Value |
VWC (%) | ||||
CG | 38.06 ± 6.60 | 37.31 ± 3.80 | 37.48 ± 3.35 | 0.980 |
Cut3 | 46.14 ± 5.09 a | 38.87 ± 3.28 b | 37.04 ± 2.93 b | 0.005 |
Cut4 | 42.95 ± 5.29 a | 36.77 ± 3.38 a | 34.15 ± 3.06 b | 0.017 |
LGI | 43.01 ± 6.09 | 40.48 ± 4.28 | 34.06 ± 3.73 | 0.106 |
HGI | 47.52 ± 5.63 a | 40.17 ± 3.86 ab | 38.11 ± 3.39 b | 0.044 |
p-value | 0.131 | 0.827 | 0.746 | |
POR (%) | ||||
CG | 54.97 ± 4.31 a | 45.81 ± 3.93 b | 39.54 ± 3.42 | 0.002 |
Cut3 | 60.43 ± 3.53 a | 42.46 ± 3.37 b | 41.53 ± 2.63 | <0.001 |
Cut4 | 52.12 ± 3.74 a | 41.45 ± 3.56 b | 37.98 ± 2.86 | <0.001 |
LGI | 54.40 ± 4.91 a | 45.55 ± 4.39 ab | 38.59 ± 3.91 | 0.004 |
HGI | 55.62 ± 4.38 a | 46.19 ± 3.98 b | 43.67 ± 3.47 | 0.015 |
p-value | 0.163 | 0.636 | 0.625 | 0.002 |
BD (g cm−3) | ||||
CG | 1.08 ± 0.09 b | 1.31 ± 0.06 a | 1.38 ± 0.05 a | <0.001 |
Cut3 | 0.94 ± 0.07 b | 1.35 ± 0.05 a | 1.38 ± 0.04 a | <0.001 |
Cut4 | 1.08 ± 0.07 b | 1.31 ± 0.05 a | 1.40 ± 0.04 a | <0.001 |
LGI | 1.07 ± 0.98 b | 1.27 ± 0.07 a | 1.43 ± 0.06 a | <0.001 |
HGI | 1.08 ± 0.08 b | 1.30 ± 0.06 a | 1.36 ± 0.05 a | 0.001 |
p-value | 0.094 | 0.816 | 0.937 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lisec, U.; Prevolnik Povše, M.; Podvršnik, M.; Kramberger, B. Impact of Grassland Management System Intensity on Composition of Functional Groups and Soil Chemical Properties in Semi-Natural Grasslands. Plants 2025, 14, 2274. https://doi.org/10.3390/plants14152274
Lisec U, Prevolnik Povše M, Podvršnik M, Kramberger B. Impact of Grassland Management System Intensity on Composition of Functional Groups and Soil Chemical Properties in Semi-Natural Grasslands. Plants. 2025; 14(15):2274. https://doi.org/10.3390/plants14152274
Chicago/Turabian StyleLisec, Urška, Maja Prevolnik Povše, Miran Podvršnik, and Branko Kramberger. 2025. "Impact of Grassland Management System Intensity on Composition of Functional Groups and Soil Chemical Properties in Semi-Natural Grasslands" Plants 14, no. 15: 2274. https://doi.org/10.3390/plants14152274
APA StyleLisec, U., Prevolnik Povše, M., Podvršnik, M., & Kramberger, B. (2025). Impact of Grassland Management System Intensity on Composition of Functional Groups and Soil Chemical Properties in Semi-Natural Grasslands. Plants, 14(15), 2274. https://doi.org/10.3390/plants14152274