Rhizospheric Bacterial Distribution Influencing the Accumulation of Isoflavones, Phenolics, Flavonoids, and Antioxidant Activity in Soybean Roots Within Hydroponic System
Abstract
1. Introduction
2. Results
2.1. Length and Biomass of SWR and SBR
2.2. Comparison of Isoflavone Contents in SWR and SBR
2.3. Comparison of Bacterial Distribution in SWR and SBR
2.4. Comparison of Pearson’s Correlation Coefficient in SWR and SBR
2.5. Comparison of Total Phenolic (TP) and Total Flavonoid (TF) Contents in SWR and SBR
2.6. Comparison of Radical Scavenging Activities in SWR and SBR
3. Discussion
4. Materials and Methods
4.1. Plant Materials, Reagents, and Equipment
4.2. Plant Growth Conditions by Hydroponic Cultivation
4.3. Isolation and Identification of Rhizospheric Bacteria
4.4. Preparation of Sample Extracts
4.5. Determination of Isoflavone Contents in Soybean Root Extracts
4.6. Determination of TP Contents in Soybean Root Extracts
4.7. Determination of TF Contents in Soybean Root Extracts
4.8. Determination of Radical Scavenging Activities of Soybean Root Extracts
4.8.1. Analysis of DPPH Radical Scavenging Activity
4.8.2. Analysis of ABTS Radical Scavenging Activity
4.9. Statistical and Data Processing
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ABTS | 2,4,6-Azino-Bis (3-Ethylbenzothiazoline-6-Sulfonic acid) |
ACN | Acetonitrile |
DPPH | 2,2-diphenyl-1-picrylhydrazyl |
HPLC | High-Performance Liquid Chromatography |
NFT | Nutrient Film Technique |
PCR | Polymerase Chain Reaction |
SWR | Soybean-White Root |
SBR | Soybean-Brown Root |
TF | Total Flavonoid |
TP | Total Phenolic |
TSB | Tryptic Soy Broth |
References
- Kim, I.-S. Current Perspectives on the Beneficial Effects of Soybean Isoflavones and Their Metabolites for Humans. Antioxidants 2021, 10, 1064. [Google Scholar] [CrossRef] [PubMed]
- Sugiyama, A. The soybean rhizosphere: Metabolites, microbes, and beyond—A review. J. Adv. Res. 2019, 19, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Sugiyama, A.; Yamazaki, Y.; Yamashita, K.; Takahashi, S.; Nakayama, T.; Yazaki, K. Developmental and nutritional regulation of isoflavone secretion from soybean roots. Biosci. Biotechnol. Biochem. 2016, 80, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Pang, Z.; Chen, J.; Wang, T.; Gao, C.; Li, Z.; Guo, L.; Xu, J.; Cheng, Y. Linking Plant Secondary Metabolites and Plant Microbiomes: A Review. Front. Plant Sci. 2021, 12, 621276. [Google Scholar] [CrossRef] [PubMed]
- Kyoko, T.; Keizo, U.; Yoko, S.; Yuko, T.; Kaori, E.; Shaw, W. Soy isoflavones lower serum total and LDL cholesterol in humans: A meta-analysis of 11 randomized controlled trials. Am. J. Clin. Nutr. 2007, 84, 1148–1156. [Google Scholar] [CrossRef]
- Barańska, A.; Błaszczuk, A.; Kanadys, W.; Baczewska, B.; Jędrych, M.; Wawryk-Gawda, E.; Polz-Dacewicz, M. Effects of Soy Protein Containing of Isoflavones and Isoflavones Extract on Plasma Lipid Profile in Postmenopausal Women as a Potential Prevention Factor in Cardiovascular Diseases: Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2021, 13, 2531. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Tang, S.; Dengzeng, Z.; Zhang, D.; Zhang, T.; Ma, X. Root exudates contribute to belowground ecosystem hotspots: A review. Front. Microbiol. 2022, 13, 937940. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Jiang, H.; Bu, J.; Adnan, M.; Gillani, S.W.; Hussain, M.A.; Zhang, M. Untangling the Rhizosphere Bacterial Community Composition and Response of Soil Physiochemical Properties to Different Nitrogen Applications in Sugarcane Field. Front. Microbiol. 2022, 13, 856078. [Google Scholar] [CrossRef] [PubMed]
- Kim, I. Current perspectives on the beneficial effects of soybean isoflavones and their metabolites on plants. Food Sci. Biotechnol. 2022, 31, 515–526. [Google Scholar] [CrossRef] [PubMed]
- Dong, Q.; Zhao, X.; Zhou, D.; Liu, Z.; Shi, X.; Yuan, Y.; Jia, P.; Liu, Y.; Song, P.; Wang, X.; et al. Maize and peanut intercropping improves the nitrogen accumulation and yield per plant of maize by promoting the secretion of flavonoids and abundance of Bradyrhizobium in rhizosphere. Front. Plant Sci. 2022, 13, 957336. [Google Scholar] [CrossRef] [PubMed]
- Vessey, J.K. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 2003, 255, 571–586. [Google Scholar] [CrossRef]
- De-Bashan, L.E.; Hernandez, J.; Bashan, Y. The potential contribution of plant growth-promoting bacteria to reduce environmental degradation—A comprehensive evaluation. Appl. Soil Ecol. 2012, 61, 171–189. [Google Scholar] [CrossRef]
- Nitu, O.A.; Ivan, E.Ş.; Tronac, A.S.; Arshad, A. Optimizing Lettuce Growth in Nutrient Film Technique Hydroponics: Evaluating the Impact of Elevated Oxygen Concentrations in the Root Zone under LED Illumination. Agronomy 2024, 14, 1896. [Google Scholar] [CrossRef]
- Delaide, B.; Goddek, S.; Gott, J.; Soyeurt, H.; Jijakli, M. Lettuce (Lactuca sativa L. var. Sucrine) Growth Performance in Complemented Aquaponic Solution Outperforms Hydroponics. Water 2016, 8, 467. [Google Scholar] [CrossRef]
- Palmitessa, O.D.; Signore, A.; Santamaria, P. Advancements and future perspectives in nutrient film technique hydroponic system: A comprehensive review and bibliometric analysis. Front. Plant Sci. 2024, 15, 1504792. [Google Scholar] [CrossRef] [PubMed]
- Fussy, A.; Papenbrock, J. An Overview of Soil and Soilless Cultivation Techniques—Chances, Challenges and the Neglected Question of Sustainability. Plants 2022, 11, 1153. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Ali, M.M.; Pan, K.; Su, S.; Xu, J.; Chen, F. Ebb-and-Flow Subirrigation Improves Seedling Growth and Root Morphology of Tomato by Influencing Root-Softening Enzymes and Transcript Profiling of Related Genes. Agronomy 2022, 12, 494. [Google Scholar] [CrossRef]
- Chiaranunt, P.; White, J.F. Plant Beneficial Bacteria and Their Potential Applications in Vertical Farming Systems. Plants 2023, 12, 400. [Google Scholar] [CrossRef] [PubMed]
- Han, Q.; Ma, Q.; Chen, Y.; Tian, B.; Xu, L.; Bai, Y.; Chen, W.; Li, W. Variation in rhizosphere microbial communities and its association with the symbiotic efficiency of rhizobia in soybean. ISME J. 2020, 14, 1915–1928. [Google Scholar] [CrossRef] [PubMed]
- Glick, B.R. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol. Res. 2013, 169, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Rosier, A.; Medeiros, F.H.V.; Bais, H.P. Defining plant growth promoting rhizobacteria molecular and biochemical networks in beneficial plant-microbe interactions. Plant Soil 2018, 428, 35–55. [Google Scholar] [CrossRef]
- Zhang, M.; Zhao, L.; He, Y.; Hu, J.; Hu, G.; Zhu, Y.; Khan, A.; Xiong, Y.; Zhang, J. Potential roles of iron nanomaterials in enhancing growth and nitrogen fixation and modulating rhizomicrobiome in alfalfa (Medicago sativa L.). Bioresour. Technol. 2024, 391, 129987. [Google Scholar] [CrossRef] [PubMed]
- Al-Turki, A.; Murali, M.; Omar, A.F.; Rehan, M.; Sayyed, R.Z. Recent advances in PGPR-mediated resilience toward interactive effects of drought and salt stress in plants. Front. Microbiol. 2023, 14, 1214845. [Google Scholar] [CrossRef] [PubMed]
- Orozco-Mosqueda, M.D.C.; Santoyo, G.; Glick, B.R. Recent Advances in the Bacterial Phytohormone Modulation of Plant Growth. Plants 2023, 12, 606. [Google Scholar] [CrossRef] [PubMed]
- Mhlongo, M.I.; Piater, L.A.; Madala, N.E.; Labuschagne, N.; Dubery, I.A. The Chemistry of Plant–Microbe Interactions in the Rhizosphere and the Potential for Metabolomics to Reveal Signaling Related to Defense Priming and Induced Systemic Resistance. Front. Plant Sci. 2018, 9, 112. [Google Scholar] [CrossRef] [PubMed]
- Seleiman, M.F.; Al-Suhaibani, N.; Ali, N.; Akmal, M.; Alotaibi, M.; Refay, Y.; Dindaroglu, T.; Abdul-Wajid, H.H.; Battaglia, M.L. Drought Stress Impacts on Plants and Different Approaches to Alleviate Its Adverse Effects. Plants 2021, 10, 259. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Kong, C.; Wang, J.; Wang, Y. Rhizosphere isoflavones (daidzein and genistein) levels and their relation to the bacterial community structure of mono-cropped soybean soil in field and controlled conditions. Soil Biol. Biochem. 2011, 43, 2257–2264. [Google Scholar] [CrossRef]
- Subramanian, S.; Stacey, G.; Yu, O. Endogenous isoflavones are essential for the establishment of symbiosis between soybean and Bradyrhizobium japonicum. Plant J. 2006, 48, 261–273. [Google Scholar] [CrossRef] [PubMed]
- Dudeja, S.S.; Giri, R.; Saini, R.; Suneja-madan, P.; Kothe, E. Interaction of endophytic microbes with legumes. J. Basic Microbiol. 2011, 52, 248–260. [Google Scholar] [CrossRef] [PubMed]
- Backer, R.; Rokem, J.S.; Ilangumaran, G.; Lamont, J.; Praslickova, D.; Ricci, E.; Subramanian, S.; Smith, D.L. Plant Growth-Promoting Rhizobacteria: Context, Mechanisms of Action, and Roadmap to Commercialization of Biostimulants for Sustainable Agriculture. Front. Plant Sci. 2018, 9, 1473. [Google Scholar] [CrossRef] [PubMed]
- Suchan, D.M.; Bergsveinson, J.; Manzon, L.; Pierce, A.; Kryachko, Y.; Korber, D.; Tan, Y.; Tambalo, D.D.; Khan, N.H.; Whiting, M.; et al. Transcriptomics reveal core activities of the plant growth-promoting bacterium Delftia acidovorans RAY209 during interaction with canola and soybean roots. Microb. Genom. 2020, 6, e000462. [Google Scholar] [CrossRef] [PubMed]
- Jamil, F.; Mukhtar, H.; Fouillaud, M.; Dufossé, L. Rhizosphere Signaling: Insights into Plant–Rhizomicrobiome Interactions for Sustainable Agronomy. Microorganisms 2022, 10, 899. [Google Scholar] [CrossRef] [PubMed]
- Bajaj, R.; Huang, Y.; Gebrechristos, S.; Mikolajczyk, B.; Brown, H.; Prasad, R.; Varma, A.; Bushley, K.E. Transcriptional responses of soybean roots to colonization with the root endophytic fungus Piriformospora indica reveals altered phenylpropanoid and secondary metabolism. Sci. Rep. 2018, 8, 10227. [Google Scholar] [CrossRef] [PubMed]
- Wei, D.; Zhang, X.; Guo, Y.; Saleem, K.; Jia, J.; Li, M.; Yu, H.; Hu, Y.; Yao, X.; Wang, Y.; et al. CuO nanoparticles facilitate soybean suppression of Fusarium root rot by regulating antioxidant enzymes, isoflavone genes, and rhizosphere microbiome. Plant Physiol. Biochem. 2025, 222, 109788. [Google Scholar] [CrossRef] [PubMed]
- Muflihah, Y.M.; Gollavelli, G.; Ling, Y. Correlation Study of Antioxidant Activity with Phenolic and Flavonoid Compounds in 12 Indonesian Indigenous Herbs. Antioxidants 2021, 10, 1530. [Google Scholar] [CrossRef] [PubMed]
- Chiappero, J.; Cappellari, L.D.R.; Sosa Alderete, L.G.; Palermo, T.B.; Banchio, E. Plant growth promoting rhizobacteria improve the antioxidant status in Mentha piperita grown under drought stress leading to an enhancement of plant growth and total phenolic content. Ind. Crops Prod. 2019, 139, 111553. [Google Scholar] [CrossRef]
- Cho, K.M.; Hong, S.Y.; Math, R.K.; Lee, J.H.; Kambiranda, D.M.; Kim, J.M.; Islam, S.A.; Yun, M.G.; Cho, J.J.; Lim, W.J.; et al. Biotransformation of phenolics (isoflavones, flavanols and phenolic acids) during the fermentation of cheonggukjang by Bacillus pumilus HY1. Food Chem. 2009, 114, 413–419. [Google Scholar] [CrossRef]
- Cho, K.M.; Jeon, S.H.; Ko, E.J.; Park, D.H.; Jeong, Y.R.; Cho, D.Y.; Kim, J.H.; Lee, J.H. Multivariate Evaluation of Biofunctional Metabolites in Korean Soybean Cultivars by Use Categories: Assessment of Antioxidant and Enzyme Inhibition Activities. Antioxidants 2025, 14, 683. [Google Scholar] [CrossRef] [PubMed]
- Agyekum, D.V.A.; Kobayashi, T.; Dastogeer, K.M.G.; Yasuda, M.; Sarkodee-Addo, E.; Ratu, S.T.N.; Xu, Q.; Miki, T.; Matsuura, E.; Okazaki, S. Diversity and function of soybean rhizosphere microbiome under nature farming. Front. Microbiol. 2023, 14, 1130969. [Google Scholar] [CrossRef] [PubMed]
- Thomas, B.O.; Lechner, S.L.; Ross, H.C.; Joris, B.R.; Glick, B.R.; Stegelmeier, A.A. Friends and Foes: Bacteria of the Hydroponic Plant Microbiome. Plants 2024, 13, 3069. [Google Scholar] [CrossRef] [PubMed]
- Narayanan, M.; Ahmad, N.; Shivanand, P.; Metali, F. The Role of Endophytes in Combating Fungal- and Bacterial-Induced Stress in Plants. Molecules 2022, 27, 6549. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.Y.; Haque, M.A.; Cho, D.Y.; Jeong, J.B.; Lee, J.H.; Lee, G.Y.; Jang, M.Y.; Lee, J.H.; Cho, K.M. Comparison of bacterial diversity and metabolites on household and commercial doenjang. Food Chem. X 2023, 21, 101101. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.; Cho, D.; Lee, H.; Lee, A.; Lee, G.; Jang, M.; Son, K.; Cho, K. Comprehensive Comparison of the Nutrient and Phytochemical Compositions and Antioxidant Activities of Different Kiwifruit Cultivars in Korea. Plants 2025, 14, 757. [Google Scholar] [CrossRef] [PubMed]
Contents 1 (μg/g) | Hydroponic Cultivation System | |||||
---|---|---|---|---|---|---|
Roots | Leaves | Stems | ||||
SWR | SBR | SWR | SBR | SWR | SBR | |
Glycosides | ||||||
Daidzin | 93.39 ± 8.76 d | 1608.13 ± 14.01 a | 535.14 ± 66.88 b | 486.46 ± 58.98 b | 153.20 ± 6.82 c | 150.65 ± 9.00 c |
Glycitin | 30.28 ± 1.01 b | 421.30 ± 5.02 a | nd 2 | nd | nd | nd |
Genistin | 18.08 ± 0.66 c | 92.17 ± 1.82 b | 320.96 ± 31.85 a | 338.95 ± 22.83 a | 10.05 ± 0.95 e | 13.83 ± 0.52 d |
Total | 141.75 | 2121.59 | 856.10 | 825.41 | 163.25 | 164.49 |
Malonyl-β-glycosides | ||||||
Malonyl-β-daidzin | 70.31 ± 1.42 b | 662.29 ± 8.60 a | 355.77 ± 41.69 c | 428.03 ± 68.12 b | 189.70 ± 2.80 e | 255.77 ± 3.84 d |
Malonyl-β-glycitin | 21.85 ± 1.22 b | 146.76 ± 3.48 a | nd | nd | nd | nd |
Malonyl-β-genistin | 35.36 ± 1.50 d | 121.40 ± 5.38 b | 601.11 ± 35.01 a | 607.32 ± 20.21 a | 96.14 ± 6.41 c | 129.80 ± 11.09 b |
Total | 127.52 | 930.45 | 956.88 | 1035.35 | 285.84 | 385.56 |
Aglycones | ||||||
Daidzein | 1636.0 ± 5.28 b | 4035.27 ± 9.33 a | 65.49 ± 2.99 d | 188.43 ± 0.81 c | 63.90 ± 1.89 d | 57.64 ± 2.08 d |
Glycitein | 105.93 ± 4.75 b | 558.21 ± 13.05 a | nd | nd | nd | nd |
Genistein | 83.96 ± 1.61 c | 551.73 ± 13.84 a | 34.13 ± 0.65 d | 92.80 ± 0.72 b | 16.55 ± 0.81 e | 13.97 ± 1.96 e |
Total | 1825.90 | 5145.21 | 99.61 | 281.23 | 80.45 | 71.61 |
Sum of isoflavones | 2095.16 | 8197.26 | 1912.59 | 2141.99 | 529.54 | 621.66 |
Isolates | Phylum | Result of NCBI Search (Accession No.) 1 | Identity (%) | Cell Numbers (log cfu/g) |
---|---|---|---|---|
Soybean-white roots | ||||
SWR01 | γ-Proteobacteria | Stenotrophomonas maltophilia C2-6 (KY910070) | 99 | 7.88 |
SWR02 | Firmicutes | Bacillus subtilis ZIM3 (MT539995) | 100 | 7.7 |
SWR03 | γ-Proteobacteria | Pseudomonas putida HN2013 (MT515799) | 99 | 9.16 |
SWR04 | γ-Proteobacteria | Pseudomonas putida TS312 (AP022324) | 99 | 9.67 |
SWR05 | Firmicutes | Enterococcus casseliflavus AdM3 (MN213350) | 97 | 9.22 |
SWR06 | γ-Proteobacteria | Stenotrophomonas maltophilia OsEnbHZG5 (MN889390) | 99 | 8.57 |
SWR07 | γ-Proteobacteria | Enterobacter asburiae FDAARGOS1056 (CP066278) | 99 | 8.97 |
SWR08 | γ-Proteobacteria | Pseudomonas mosselii R10 (DQ073452) | 100 | 7.88 |
SWR09 | γ-Proteobacteria | Pseudomonas fulva Z67zhy (AM411071) | 99 | 9.59 |
SWR10 | γ-Proteobacteria | Klebsiella michiganensis CCMMB1233 (MW303474) | 99 | 8.82 |
SWR11 | γ-Proteobacteria | Acinetobacter baumannii 10B0D1-C1 (MN250320) | 99 | 7.7 |
SWR12 | γ-Proteobacteria | Acinetobacter rhizosphaerae Atecer9I (MT386200) | 100 | 8.98 |
SWR13 | γ-Proteobacteria | Acinetobacter baumannii APP173 (MT544603) | 99 | 7.82 |
SWR14 | γ-Proteobacteria | Pseudomonas guariconensis QH16-20 (MT078617) | 99 | 7.4 |
SWR15 | Firmicutes | Lysinibacillus sp. QT417 (MT033087) | 100 | 7.4 |
SWR16 | γ-Proteobacteria | Stenotrophomonas maltophilia AS1 (MT291866) | 99 | 7.4 |
SWR17 | Firmicutes | Bacillus sp. C7-7 (KY910114) | 99 | 7.4 |
Soybean-brown roots | ||||
SBR01 | γ-Proteobacteria | Klebsiella sp. NTA-4 (MK886623) | 98 | 9.86 |
SBR02 | γ-Proteobacteria | Pseudomonas sp. JG 10 (EU937753) | 99 | 11.5 |
SBR03 | γ-Proteobacteria | Pantoea sp. NJ-32 (AM421978) | 99 | 10.1 |
SBR04 | γ-Proteobacteria | Acinetobacter sp. KL1 (GU566317) | 99 | 9.97 |
SBR05 | Firmicutes | Enterococcus gallinarum GI13 (MT158590) | 100 | 10.26 |
SBR06 | γ-Proteobacteria | Atlantibacter hermannii H2 (MK544072) | 99 | 10.27 |
SBR07 | γ-Proteobacteria | Acinetobacter soli IILSFSP371 (MN082084) | 99 | 9.97 |
SBR08 | γ-Proteobacteria | Pseudomonas sp. LYX (MN598629) | 99 | 10.72 |
SBR09 | γ-Proteobacteria | Pseudomonas fulva Z67zhy (AM411071) | 99 | 10.41 |
SBR10 | Firmicutes | Enterococcus gallinarum ZX1-1 (MG694659) | 99 | 10.18 |
SBR11 | Firmicutes | Lactococcus lactis 4355 (MT645510) | 99 | 9.57 |
SBR12 | γ-Proteobacteria | Enterobacter sp. AN3 (MT557019) | 99 | 8.7 |
SBR13 | γ-Proteobacteria | Pseudomonas sp. ANA71 (HQ219902) | 99 | 10.71 |
SBR14 | γ-Proteobacteria | Pseudomonas sp. PN-F1 (FJ463405) | 99 | 9.57 |
SBR15 | γ-Proteobacteria | Pseudomonas oleovorans PR51-16 (EU440977) | 99 | 10.53 |
SBR16 | γ-Proteobacteria | Pseudomonas sp. Z62zhy (AM410621) | 99 | 10.78 |
SBR17 | γ-Proteobacteria | Acinetobacter sp. MemClNew (KJ920201) | 99 | 10.26 |
SBR18 | γ-Proteobacteria | Pseudomonas sp. KFWK (MT397006) | 99 | 9.21 |
SBR19 | α-Proteobacteria | Paracoccus yeei MGA26-2 (HM218000) | 99 | 8.4 |
SBR20 | γ-Proteobacteria | Acinetobacter calcoaceticus EH52 (GU339280) | 99 | 8.4 |
SBR21 | γ-Proteobacteria | Enterobacter asburiae PSB6 (HQ242719) | 99 | 9 |
SBR22 | γ-Proteobacteria | Stenotrophomonas maltophilia C2-6 (KY910070) | 99 | 9.1 |
SBR23 | Firmicutes | Bacillus sp. Ce.BL.R.3 (MT126515) | 98 | 9.18 |
SBR24 | β-Proteobacteria | Delftia tsuruhatensis D9 (MT374262) | 99 | 8.7 |
SBR25 | γ-Proteobacteria | Stenotrophomonas acidaminiphila B4 (MN904905) | 99 | 9.6 |
SBR26 | α-Proteobacteria | Brevundimonas sp. 19D2A5 (MN620407) | 99 | 8.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, D.Y.; Jang, M.Y.; Lee, H.Y.; Jeong, J.B.; Kim, D.H.; Bang, D.Y.; Kim, H.R.; Jeong, Y.R.; Haque, M.A.; Lee, J.H.; et al. Rhizospheric Bacterial Distribution Influencing the Accumulation of Isoflavones, Phenolics, Flavonoids, and Antioxidant Activity in Soybean Roots Within Hydroponic System. Plants 2025, 14, 2238. https://doi.org/10.3390/plants14142238
Cho DY, Jang MY, Lee HY, Jeong JB, Kim DH, Bang DY, Kim HR, Jeong YR, Haque MA, Lee JH, et al. Rhizospheric Bacterial Distribution Influencing the Accumulation of Isoflavones, Phenolics, Flavonoids, and Antioxidant Activity in Soybean Roots Within Hydroponic System. Plants. 2025; 14(14):2238. https://doi.org/10.3390/plants14142238
Chicago/Turabian StyleCho, Du Yong, Mu Yeun Jang, Hee Yul Lee, Jong Bin Jeong, Da Hyun Kim, Do Yun Bang, Hye Rim Kim, Ye Rim Jeong, Md. Azizul Haque, Jin Hwan Lee, and et al. 2025. "Rhizospheric Bacterial Distribution Influencing the Accumulation of Isoflavones, Phenolics, Flavonoids, and Antioxidant Activity in Soybean Roots Within Hydroponic System" Plants 14, no. 14: 2238. https://doi.org/10.3390/plants14142238
APA StyleCho, D. Y., Jang, M. Y., Lee, H. Y., Jeong, J. B., Kim, D. H., Bang, D. Y., Kim, H. R., Jeong, Y. R., Haque, M. A., Lee, J. H., & Cho, K. M. (2025). Rhizospheric Bacterial Distribution Influencing the Accumulation of Isoflavones, Phenolics, Flavonoids, and Antioxidant Activity in Soybean Roots Within Hydroponic System. Plants, 14(14), 2238. https://doi.org/10.3390/plants14142238