Soilless Cultivation: Precise Nutrient Provision and Growth Environment Regulation Under Different Substrates
Abstract
1. Introduction
2. Solid Substrate Soilless Cultivation
2.1. Inorganic Solid Substrate Cultivation
2.2. Organic Solid Substrate Cultivation
3. Non-Solid Substrate Cultivation
3.1. Hydroponics
3.2. Aeroponics
3.3. Gel Culture
4. Nutrient Solutions in Soilless Cultivation
5. Microorganisms in Soilless Cultivation
6. Application of Soilless Culture Technology
7. New Path for Soilless Cultivation
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gu, D.; Andreev, K.; Dupre, M.E. Major trends in population growth worldwide. China CDC Wkly. 2021, 3, 604. [Google Scholar] [CrossRef] [PubMed]
- Wagena, M.B.; Easton, Z.M. Agricultural conservation practices can help mitigate the impact of climate change. Sci. Total Environ. 2018, 635, 132–143.s. [Google Scholar] [CrossRef] [PubMed]
- Roldán, A.; Salinas-García, J.R.; Alguacil, M.M.; Caravaca, F. Soil sustainability indicators following conservation tillage practices under subtropical maize and bean crops. Soil Till. Res. 2007, 93, 273–282. [Google Scholar] [CrossRef]
- Li, J.; Yang, J.; Liu, M.; Ma, Z.; Fang, W.; Bi, J. Quality matters: Pollution exacerbates water scarcity and sectoral output risks in China. Water Res. 2022, 224, 119059. [Google Scholar] [CrossRef] [PubMed]
- Fussy, A.; Papenbrock, J. An overview of soil and soilless cultivation techniques—Chances, challenges and the neglected question of sustainability. Plants 2022, 11, 1153. [Google Scholar] [CrossRef] [PubMed]
- De Haas, B.; Dhooghe, E.; Geelen, D. Root exudates in soilless culture conditions. Plants 2025, 14, 479. [Google Scholar] [CrossRef] [PubMed]
- Sonneveld, C.; Voogt, W.; Sonneveld, C. Nutrient solutions for soilless cultures. In Plant Nutrition of Greenhouse Crops; Springer: Dordrecht, The Netherlands, 2009; pp. 257–275. [Google Scholar]
- Vicente, R.; Pérez, P.; Martínez-Carrasco, R.; Gutiérrez, E.; Morcuende, R. Nitrate supply and plant development influence nitrogen uptake and allocation under elevated CO2 in durum wheat grown hydroponically. Acta Physiol. Plant. 2015, 37, 114. [Google Scholar] [CrossRef]
- Vallance, J.; Déniel, F.; Floch, G.L.; Guérin-Dubrana, L.; Blancard, D.; Rey, P. Pathogenic beneficial microorganisms in soilless cultures. J. Sustain. Agric. 2011, 2, 711–726. [Google Scholar]
- Roosta, H.R.; Sharifi Azad, H.; Mirdehghan, S.H. Comparison of the growth, fruit quality and physiological characteristics of cucumber fertigated by three different nutrient solutions in soil culture and soilless culture systems. Sci. Rep. 2025, 15, 203. [Google Scholar] [CrossRef] [PubMed]
- Baiyin, B.; Yang, Q. Applications of vertical farming in urban agriculture. Eur. J. Hortic. Sci. 2024, 89, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Falcon, W.P.; Naylor, R.L.; Shankar, N.D. Rethinking Global Food Demand for 2050. Popul. Dev. Rev. 2022, 48, 921–957. [Google Scholar] [CrossRef]
- Dutta, M.; Gupta, D.; Tharewal, S.; Goyal, D.; Kaur Sandhu, J.; Kaur, M.; Ali Alzubi, A.; Mutared Alanazi, J. Internet of things-based smart precision farming in soilless agriculture: Opportunities and challenges for global food security. IEEE Access 2025, 13, 34238–34268. [Google Scholar] [CrossRef]
- Sharma, A.; Hazarika, M.; Heisnam, P.; Pandey, H.; Devadas, V.S.; Wangsu, M. Controlled environment ecosystem: A plant growth system to combat climate change through soilless culture. Crop Des. 2024, 3, 100044. [Google Scholar] [CrossRef]
- Ahn, T.I.; Shin, J.H.; Son, J.E. Theoretical and experimental analyses of nutrient control in electrical conductivity-based nutrient recycling soilless culture system. Front. Plant Sci. 2021, 12, 656403. [Google Scholar] [CrossRef] [PubMed]
- Ciriello, M.; Campana, E.; Kyriacou, M.C.; El-Nakhel, C.; Graziani, G.; Cardarelli, M.; Colla, G.; De Pascale, S.; Rouphael, Y. Plant-derived biostimulant as priming agents enhanced antioxidant and nutritive properties in brassicaceous microgreens. J. Sci. Food Agric. 2024, 104, 5921–5929. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Lu, C.; Hu, R.; Shi, W.; Zhou, L.; Wen, P.; Jiang, Y.; Lo, Y.M. Nutritional and microbiological effects of vermicompost tea in hydroponic cultivation of maple peas (Pisum sativum var. arvense L.). Food Sci. Nutr. 2023, 11, 3184–3202. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Wang, L.; Zhang, H.; Sun, X.; Yang, S.; Li, J.; Tan, L.; Zhong, Q. The interaction between rhizosphere microbial community structure and metabolites significantly affects the growth and development of hydroponically cultivated chives. Rhizosphere 2025, 33, 101020. [Google Scholar] [CrossRef]
- Alghamdi, H.; Shoukry, H.; Hossain, M.U.; Perumal, P.; Adediran, A.; Abadel, A.A.; Youssef, A.S. Reuse of waste rockwool for improving the performance of LC3-based mortars made with natural and recycled aggregates for sustainable building solutions. J. Build. Eng. 2024, 93, 109881. [Google Scholar] [CrossRef]
- Gumisiriza, M.S.; Ndakidemi, P.; Nalunga, A.; Mbega, E.R. Building sustainable societies through vertical soilless farming: A cost-effectiveness analysis on a small-scale non-greenhouse hydroponic system. Sustain. Cities Soc. 2022, 83, 103923. [Google Scholar] [CrossRef]
- Plocek, G.; Rueda Kunz, D.; Simpson, C. Impacts of Bacillus amyloliquefaciens and Trichoderma spp. on Pac Choi (Brassica rapa var. chinensis) grown in different hydroponic systems. Front. Plant Sci. 2024, 15, 1438038. [Google Scholar] [CrossRef] [PubMed]
- Asaduzzaman, M. (Ed.) Soilless Culture-Use of Substrates for the Production of Quality Horticultural Crops; InTech: Bucheon-si, Republic of Korea, 2015. [Google Scholar]
- Xiong, J.; Tian, Y.; Wang, J.; Liu, W.; Chen, Q. Comparison of coconut coir, rockwool, and peat cultivations for tomato production: Nutrient balance, plant growth and fruit quality. Front. Plant Sci. 2017, 8, 1327. [Google Scholar] [CrossRef] [PubMed]
- Alqardaeai, T.; Alharbi, A.; Alenazi, M.; Alomran, A.; Elfeky, A.; Osman, M.; Obadi, A.; Aldubai, A.; Ortiz, N.R.; Melino, V.; et al. Effect of tomato grafting onto novel and commercial rootstocks on improved salinity tolerance and enhanced growth, physiology, and yield in soilless culture. Agronomy 2024, 14, 1526. [Google Scholar] [CrossRef]
- Haskell, D.E.; Bales, A.L.; Webster, C.R.; Meyer, M.W.; Flaspohler, D.J. Effectiveness of bare-root and gravel-culture shrubs used in wildlife habitat restoration on lakeshores in northern Wisconsin. Ecol. Restor. 2018, 36, 134–144. [Google Scholar] [CrossRef]
- Gong, J.; Chen, N.; Feng, C.; An, N.; Li, Y.; Zhan, Y.; Yue, Y.; Liu, S. Exploring the role of sewage phosphorus-recycling ceramsite in promoting hydroponic growth of narcissus: Mechanistic insights. Sci. Hortic. 2025, 341, 114005. [Google Scholar] [CrossRef]
- Yan, K.; Ma, Y.; Bao, S.; Li, W.; Wang, Y.; Sun, C.; Lu, X.; Ran, J. Exploring the impact of Coconut Peat and vermiculite on the rhizosphere microbiome of pre-basic seed potatoes under soilless cultivation conditions. Microorganisms 2024, 12, 584. [Google Scholar] [CrossRef] [PubMed]
- Savvas, D.; Gruda, N. Application of soilless culture technologies in the modern greenhouse industry—A review. Eur. J. Hortic. Sci. 2018, 83, 280–293. [Google Scholar] [CrossRef]
- Pérez-Urrestarazu, L.; Fernández-Cañero, R.; Campos-Navarro, P.; Sousa-Ortega, C.; Egea, G. Assessment of perlite, expanded clay and pumice as substrates for living walls. Sci. Hortic. 2019, 254, 48–54. [Google Scholar] [CrossRef]
- Thomas, P.; Knox, O.G.G.; Powell, J.R.; Sindel, B.; Winter, G. The hydroponic rockwool root microbiome: Under control or underutilised? Microorganisms 2023, 11, 835. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Saravaiya, S.N.; Pandey, A.K. Systems of Soil-Less cultivation. In Precision Farming and Protected Cultivation: Concepts and Applications; CRC Press: Boca Raton, FL, USA, 2021; pp. 264–273. [Google Scholar]
- Qaryouti, M.; Osman, M.; Alharbi, A.; Voogt, W.; Abdelaziz, M.E. Using date palm waste as an alternative for rockwool: Sweet pepper performance under both soilless culture substrates. Plants 2023, 13, 44. [Google Scholar] [CrossRef] [PubMed]
- An, C.B.; Lee, J.S.; Shin, J.H. Comparison of the effects of rockwool and coir medium on the growth, fruit quality, and productivity of strawberry (Fragaria × ananassa) in greenhouse soilless culture. Hortic. Environ. Biotechnol. 2025, 66, 449–455. [Google Scholar] [CrossRef]
- Wallach, R. Physical characteristics of soilless media. In Soilless Culture; Elsevier: Amsterdam, The Netherlands, 2019; pp. 33–112. [Google Scholar]
- Maitra, P.; Al-Rashid, J.; Barman, N.C.; Khan, M.N.M.; Mandal, D.; Rasul, N.M.; Chowdhury, A.; El-Sappah, A.H.; Li, J. Sand particle size and phosphorus amount affect Rhizophagus irregularis spore production using in vitro propagated spore as a starter inoculum in rhizosphere of maize (Zea mays) plantlets. J. Fungi 2021, 7, 846. [Google Scholar] [CrossRef] [PubMed]
- Giroto, A.S.; do Valle, S.F.; Guimarães, G.G.F.; Wuyts, N.; Ohrem, B.; Jablonowski, N.D.; Ribeiro, C.; Mattoso, L.H.C. Zinc loading in urea-formaldehyde nanocomposites increases nitrogen and zinc micronutrient fertilization efficiencies in poor sand substrate. Sci. Total Environ. 2022, 841, 156688. [Google Scholar] [CrossRef] [PubMed]
- Cassimiro, C.A.L.; Henschel, J.M.; Gomes, V.G.N.; Alves, R.C.; da Silva, P.K.; Pereira, E.M.; Cavalcanti, M.T.; Batista, D.S.; da Costa Batista, F.R. Irrigation level and substrate type on the acclimatization and development of mandacaru (Cereus jamacaru DC.): An emblematic cactus from Brazilian semiarid region. Sci. Rep. 2023, 13, 20547. [Google Scholar] [CrossRef] [PubMed]
- Harper, J.E. Canopy and seasonal profiles of nitrate reductase in soybeans (Glycine max L. Merr.). Plant Physiol. 1972, 49, 146–154. [Google Scholar] [CrossRef] [PubMed]
- Angelopoulos, P.M. Insights in the physicochemical and mechanical properties and characterization methodology of perlites. Minerals 2024, 14, 113. [Google Scholar] [CrossRef]
- De Haas, B.R.; Oburger, E.; Van Labeke, M.C.; Dhooghe, E.; Geelen, D. Light and substrate composition control root exudation rates at the initial stages of soilless lettuce cultivation. Sci. Hortic. 2025, 341, 114006. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Kim, K.H. Physical Properties of the Horticultural Substrate According to Mixing Ratio of Peatmoss, Perlite and Vermiculite. Korean J. Soil Sci. Fert. 2011, 44, 321–330. [Google Scholar] [CrossRef]
- Zhou, R.; Wang, Y.; Tian, M.; Shah Jahan, M.; Shu, S.; Sun, J.; Li, P.; Ahammed, G.J.; Guo, S. Mixing of biochar, vinegar and mushroom residues regulates soil microbial community and increases cucumber yield under continuous cropping regime. Appl. Soil Ecol. 2021, 161, 103883. [Google Scholar] [CrossRef]
- Parra, M.; Abrisqueta, I.; Hortelano, D.; Alarcón, J.J.; Intrigliolo, D.S.; Rubio-Asensio, J.S. Open field soilless system using cocopeat substrate bags improves tree performance in a young Mediterranean persimmon orchard. Sci. Hortic. 2022, 291, 110614. [Google Scholar] [CrossRef]
- Gruda, N.S.; Bragg, N. Developments in Alternative Organic Materials for Growing Media in Soilless Culture Systems. In Advances in Horticultural Soilless Culture; Burleigh Dodds Science Publishing: Sawston, UK, 2021; pp. 73–106. [Google Scholar]
- Nerlich, A.; Dannehl, D. Soilless cultivation: Dynamically changing chemical properties and physical conditions of organic substrates influence the plant phenotype of lettuce. Front. Plant Sci. 2020, 11, 601455. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Dai, J.; Zhang, Y.; Wang, X.; Zhu, W.; Yuan, X.; Yuan, H.; Cui, Z. Composted biogas residue and spent mushroom substrate as a growth medium for tomato and pepper seedlings. J. Environ. Manag. 2018, 216, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Hassan, S.A.M.; Taha, R.A.; Zaied, N.S.M.; Essa, E.M.; Kh, M.A.E.R. Effect of vermicompost on vegetative growth and nutrient status of acclimatized Grand Naine banana plants. Heliyon 2022, 8, e10914. [Google Scholar] [CrossRef] [PubMed]
- Kingston, P.H.; Scagel, C.F.; Bryla, D.R.; Strik, B. Suitability of sphagnum moss, coir, and Douglas fir bark as soilless substrates for container production of highbush blueberry. Hortscience 2017, 52, 1692–1699. [Google Scholar] [CrossRef]
- Lu, Z.; Liu, L.; Ren, Z.; Hu, S.; Wang, Y.; Ji, S.; Wang, X.; Du, Z.; Liu, Y.; Yang, Y.; et al. Optimization of substrate formulation for Hericium erinaceus by replacing wood by straw and their effect on enzyme activities. Front. Plant Sci. 2024, 15, 1436385. [Google Scholar] [CrossRef] [PubMed]
- Kaur, G.; Upadhyaya, P.; Chawla, P. Comparative analysis of IoT-based controlled environment and uncontrolled environment plant growth monitoring system for hydroponic indoor vertical farm. Environ. Res. 2023, 222, 115313. [Google Scholar] [CrossRef] [PubMed]
- De Castro Silva, M.G.; Hüther, C.M.; Ramos, B.B.; Da Silva Araújo, P.; Da Silva Hamacher, L.; Pereira, C.R. A global overview of hydroponics: Nutrient film technique. Rev. Eng. Agric. REVENG 2021, 29, 138–145. [Google Scholar]
- Riggio, G.; Jones, S.; Gibson, K. Risk of human pathogen internalization in leafy vegetables during lab-scale hydroponic cultivation. Horticulturae 2019, 5, 25. [Google Scholar] [CrossRef]
- Chowdhury, M.; Samarakoon, U.C.; Altland, J.E. Evaluation of hydroponic systems for organic lettuce production in controlled environment. Front. Plant Sci. 2024, 15, 1401089. [Google Scholar] [CrossRef] [PubMed]
- Lakhiar, I.A.; Gao, J.; Syed, T.N.; Chandio, F.A.; Buttar, N.A. Modern plant cultivation technologies in agriculture under controlled environment: A review on aeroponics. J. Plant Interact. 2018, 13, 338–352. [Google Scholar] [CrossRef]
- Eldridge, B.M.; Manzoni, L.R.; Graham, C.A.; Rodgers, B.; Farmer, J.R.; Dodd, A.N. Getting to the roots of aeroponic indoor farming. New Phytol. 2020, 228, 1183–1192. [Google Scholar] [CrossRef] [PubMed]
- Farqani, A.A.; Cheng, L.; Robinson, T.L.; Fazio, G. Effect of solution pH on root architecture of four apple rootstocks grown in an aeroponics nutrient misting system. Front. Plant Sci. 2024, 15, 1351679. [Google Scholar] [CrossRef] [PubMed]
- Jamshidi, A.R.; Ghazanfari Moghaddam, A.; Ommani, A.R. Effect of ultrasonic atomizer on the yield and yield components of tomato grown in a vertical aeroponic planting system. Int. J. Hortic. Sci. Technol. 2019, 6, 237–246. [Google Scholar]
- Weingarten, M.; Mattson, N.; Grab, H. Evaluating propagation techniques for Cannabis sativa L. cultivation: A comparative analysis of soilless methods and aeroponic parameters. Plants 2024, 13, 1256. [Google Scholar] [CrossRef] [PubMed]
- Montesano, F.F.; Parente, A.; Santamaria, P.; Sannino, A.; Serio, F. Biodegradable superabsorbent hydrogel increases water retention properties of growing media and plant growth. Agric. Agric. Sci. Procedia 2015, 4, 451–458. [Google Scholar] [CrossRef]
- Kanagalakshmi, M.; Devi, S.G.; Subasini, S.; Amalan, A.J.; Pius, A. Experimental assessment of biostimulants on mung bean growth on a soilless culture system using superabsorbent pectin based hydrogel. Int. J. Biol. Macromol. 2024, 273, 133058. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhu, J.; Li, N. Substrate-fertilizer-integrated agarose-based hydrogel as a growth substrate for selenium-enriched cultivation of mature pakchoi (Brassica chinensis L.). Int. J. Food Eng. 2024, 20, 629–640. [Google Scholar] [CrossRef]
- Dai, Z.; Jie, J.; Li, J.; Xie, J.; Men, Y. Accelerated rapeseed germination and robust root growth facilitated by porous carbon within gellan gum hydrogel beads. Int. J. Biol. Macromol. 2025, 305, 141337. [Google Scholar] [CrossRef] [PubMed]
- Majidi, A.; Shahhoseini, R.; Salehi-Arjmand, H.; Roosta, H.R. Effect of Hoagland’s nutrient solution strengths and sodium silicate on growth, yield and biochemical parameters of Carla (Momordica charantia L.) under hydroponic conditions. Sci. Rep. 2025, 15, 7838. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Xu, W.; Zhou, D.; Yan, J.; Jin, H.; Zhang, H.; Cui, J.; Miao, C.; Zhang, Y.; Zhou, Q.; et al. The impact of nutrient solution electrical conductivity on leaf transcriptome contributing to the fruit quality of cucumber grown in coir cultivation. Int. J. Mol. Sci. 2024, 25, 11864. [Google Scholar] [CrossRef] [PubMed]
- Hershkowitz, J.A.; Westmoreland, F.M.; Bugbee, B. Elevated root-zone P and nutrient concentration do not increase yield or cannabinoids in medical cannabis. Front. Plant Sci. 2025, 16, 1433985. [Google Scholar] [CrossRef] [PubMed]
- Vought, K.; Bayabil, H.K.; Pompeo, J.; Crawford, D.; Zhang, Y.; Correll, M.; Martin-Ryals, A. Dynamics of micro and macronutrients in a hydroponic nutrient film technique system under lettuce cultivation. Heliyon 2024, 10, e32316. [Google Scholar] [CrossRef] [PubMed]
- Behtash, F.; Amini, T.; Mousavi, S.B.; Seyed Hajizadeh, H.; Kaya, O. Efficiency of zinc in alleviating cadmium toxicity in hydroponically grown lettuce (Lactuca sativa L. cv. Ferdos). BMC Plant Biol. 2024, 24, 648. [Google Scholar] [CrossRef] [PubMed]
- Behtash, F.; Ramezani, R.; Seyed Hajizadeh, H.; Eghlima, G. Optimum concentrations of potassium and zinc for better performance, nutritional, and biochemical quality of hydroponically cultivated Spinacia oleracea Cv. Virofly. Sci. Rep. 2025, 15, 12845. [Google Scholar] [CrossRef] [PubMed]
- Thomas, B.O.; Lechner, S.L.; Ross, H.C.; Joris, B.R.; Glick, B.R.; Stegelmeier, A.A. Friends and foes: Bacteria of the hydroponic plant microbiome. Plants 2024, 13, 3069. [Google Scholar] [CrossRef] [PubMed]
- Resendiz-Nava, C.N.; Alonso-Onofre, F.; Silva-Rojas, H.V.; Rebollar-Alviter, A.; Rivera-Pastrana, D.M.; Stasiewicz, M.J.; Nava, G.M.; Mercado-Silva, E.M. Tomato plant microbiota under conventional and organic fertilization regimes in a soilless culture system. Microorganisms 2023, 11, 1633. [Google Scholar] [CrossRef] [PubMed]
- Van Gerrewey, T.; Navarrete, O.; Vandecruys, M.; Perneel, M.; Boon, N.; Geelen, D. Bacterially enhanced plant-growing media for controlled environment agriculture. Microb. Biotechnol. 2024, 17, e14422. [Google Scholar] [CrossRef] [PubMed]
- İkiz, B.; Dasgan, H.Y.; Balik, S.; Kusvuran, S.; Gruda, N.S. The use of biostimulants as a key to sustainable hydroponic lettuce farming under saline water stress. BMC Plant Biol. 2024, 24, 808. [Google Scholar] [CrossRef] [PubMed]
- Ikiz, B.; Dasgan, H.Y.; Gruda, N.S. Utilizing the power of plant growth promoting rhizobacteria on reducing mineral fertilizer, improved yield, and nutritional quality of Batavia lettuce in a floating culture. Sci. Rep. 2024, 14, 1616. [Google Scholar] [CrossRef] [PubMed]
- Stouvenakers, G.; Massart, S.; Depireux, P.; Jijakli, M.H. Microbial origin of aquaponic water suppressiveness against Pythium aphanidermatum lettuce root rot disease. Microorganisms 2020, 8, 1683. [Google Scholar] [CrossRef] [PubMed]
- Stouvenakers, G.; Massart, S.; Jijakli, M.H. First study case of microbial biocontrol agents isolated from aquaponics through the mining of high-throughput sequencing data to control Pythium aphanidermatum on lettuce. Microb. Ecol. 2023, 86, 1107–1119. [Google Scholar] [CrossRef] [PubMed]
- Karagöz, F.P.; Dursun, A.; Karaşal, M. A review: Use of soilless culture techniques in ornamental plants. Ornam. Hortic. 2022, 28, 172–180. [Google Scholar] [CrossRef]
- Piñero, M.C.; Otálora, G.; Collado-González, J.; López-Marín, J.; Del Amor, F.M. Effects triggered by foliar selenium application on growth, enzyme activities, mineral nutrients and carbohydrates in lettuce under an aquaculture system. Plant Physiol. Biochem. 2022, 180, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Tzortzakis, N.; Neofytou, G.; Chrysargyris, A. Nitrogen Fertilization Coupled with Zinc Foliar Applications Modulate the Production, Quality, and Stress Response of Sideritis cypria Plants Grown Hydroponically Under Excess Copper Concentrations. Plants 2025, 14, 691. [Google Scholar] [CrossRef] [PubMed]
- Nie, H.; Zhou, W.; Zheng, Z.; Deng, Y.; Zhang, W.; Zhang, M.; Jiang, Z.; Zheng, H.; Yuan, L.; Yang, J.; et al. Exploring plant responses to altered gravity for advancing space agriculture. Plant Commun. 2025, 6, 101370. [Google Scholar] [CrossRef] [PubMed]
- Fuentes-Peñailillo, F.; Gutter, K.; Vega, R.; Silva, G.C. New Generation Sustainable Technologies for Soilless Vegetable Production. Horticulturae 2024, 10, 49. [Google Scholar] [CrossRef]
- Qureshi, W.A.; Gao, J.; Elsherbiny, O.; Mosha, A.H.; Tunio, M.H.; Qureshi, J.A. Boosting Aeroponic System Development with Plasma and High-Efficiency Tools: AI and IoT—A Review. Agronomy 2025, 15, 546. [Google Scholar] [CrossRef]
Type | Name | Origin | Advantage | Disadvantage |
---|---|---|---|---|
Inorganic | Sand | Rivers, seas, lake shores and deserts, and other places. | Affordable prices and strong drainage. | Low carbon, nitrogen content, and water holding capacity. No salt exchange capacity. Poor water retention capacity |
Coal cinder | Coal-fired boilers (such as industrial boilers, heating boilers) waste residue after combustion. | Good aeration and moderate bulk density are beneficial for fixing crop roots. | Slightly alkaline, poor water retention and absorption capacity, uneven texture, and small heat capacity. | |
Vermiculite | Porous particles formed by natural mica minerals after high temperature expansion treatment. | Good gas permeability, water absorption, and water holding capacity. | When used multiple times, its physical properties will change. | |
Perlite | The porous white particles formed by high temperature (about 1000 °C) calcination and expansion of natural volcanic rocks. | Stable, sturdy, lightweight, clean and sterile, with good drainage and gas permeability. | Poor water and fertilizer retention. | |
Rockwool | A fibrous inorganic material made from natural ores such as basalt or diabase by high temperature (about 1600 °C) melting and centrifugal spinning. | Chemical stability, excellent physical properties, pH stability, and no pathogenic bacteria carried. | Extremely difficult to decompose in soil after abandonment. | |
Organic | Peat | Semi-decomposed organic matter formed by incomplete decomposition of plant residues in swamps or wetlands for thousands of years under anaerobic conditions. | Lightweight texture, excellent water retention, good breathability, high nutritional content. | Non-renewable natural resources, long-term use will lead to resource depletion. |
Rice hull | Grain shell removed during rice processing. | Good permeability. | The water and fertilizer retention performance is ordinary, with low nutrient content and high pH. | |
Sawdust | Sawdust or particle waste from wood processing (e.g., sawmills, furniture factories). | Rich sources, light bulk density, good water absorption and retention properties. | The carbon to nitrogen ratio is too high, with mixed bacteria and pathogenic microorganisms. | |
Bagasse | The remaining fibrous residue after sugarcane juice in sugar industry. | The by-products of the sugar industry come from a wide range of sources. | Fresh sugarcane bagasse has a high carbon to nitrogen ratio and cannot be used directly. | |
Coir | Fine powder produced during the processing of coconut shell fiber. | Long fiber, loose and porous, with good water retention and gas permeability. | Need to develop and utilize molded products. |
Index | Soil Culture | Soilless Culture | |||
---|---|---|---|---|---|
Substrate | Hydroponic | Aeroponics | Gel Culture | ||
Investment costs | Low | Medium | High | High | Highest |
Technical difficulty | Low | Medium | High | Very high | Medium |
Management and maintenance workload | High | Medium | Medium | High | Low |
Yield and growth rate | Low | Medium | High | Very high | high |
Energy consumption (water, electricity, etc.) | High | Medium | High | Very High | Low |
Disease transmission risk | Very high | Medium | High | Very High | Low |
Economic Benefit | Low | Medium | High | High | Medium |
Substrates | Bulk Density (g·cm−3) | Total Porosity (%) | Aeration Porosity (%) | Water Holding Porosity (%) | Air-Water Ratio |
---|---|---|---|---|---|
Soil | 1.10 | 66.00 | 21.00 | 45.00 | 0.47 |
Sand | 1.49 | 30.50 | 29.50 | 1.00 | 29.50 |
Vermiculite | 0.13 | 95.00 | 30.00 | 65.00 | 0.46 |
Perlite | 0.16 | 93.00 | 53.00 | 40.00 | 1.33 |
Rockwool | 0.11 | 96.00 | 2.00 | 94.00 | 0.02 |
Peat | 0.21 | 84.40 | 7.10 | 77.30 | 0.09 |
Vinegar residue | 0.21 | 84.52 | 46.40 | 38.10 | 1.22 |
Sawdust | 0.19 | 78.30 | 34.50 | 43.80 | 0.79 |
Carbonized rice husk | 0.15 | 82.50 | 57.50 | 25.00 | 2.30 |
Index | Traditional Soil | Substrate | Hydroponic | Aeroponics | Gel Culture |
---|---|---|---|---|---|
Chemical stability | Low | Medium | Low | Very Low | Very High |
Nutrient control precision | Low | Medium | High | Very High | High |
pH buffering capacity | Very High | Medium-High | Low | Very Low | Medium |
Cation Exchange Capacity (CEC) | High | Variable ** | None | None | Controlled |
Salinity control | Low | Medium | High | Very High | Medium-High |
Synthesized rating | Low | Medium | High | High | Very High |
Nutrient Element | Available Forms of Plants | Compound of Fertilizer | |
---|---|---|---|
Macro elements | C | CO2 | - |
O | O2, H2O | - | |
H | H2O | - | |
N | , | NH4NO3, (NH4)2SO4, CO(NH2)2, Ca(NO3)2·4H2O | |
K | K+ | KNO3, K2SO4, KCl | |
Ca | Ca2+ | CaSO4·2H2O, CaCl2 | |
Mg | Mg2+ | MgSO4·7H2O | |
P | H2, | Ca(H2PO4)2, Ca(H2PO4)2·H2O, CaSO4·2H2O | |
S | KH2PO4, NH4H2PO4, (NH4)2HPO4 | ||
Micro elements | Cl | Cl− | FeCl3·6H2O |
Fe | Fe3+, Fe2+ | FeSO4·7H2O | |
Mn | Mn2+ | MnSO4·4H2O or MnSO4·H2O | |
B | , B4 | H3BO3, Na2B4O7·10H2O | |
Zn | Zn2+ | ZnSO4·7H2O, ZnCl2 | |
Cu | Cu2+, Cu+ | CuSO4·5H2O, CuCl2·2H2O | |
Mo | (NH4)6Mo7O24·4H2O |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tuxun, A.; Xiang, Y.; Shao, Y.; Son, J.E.; Yamada, M.; Yamada, S.; Tagawa, K.; Baiyin, B.; Yang, Q. Soilless Cultivation: Precise Nutrient Provision and Growth Environment Regulation Under Different Substrates. Plants 2025, 14, 2203. https://doi.org/10.3390/plants14142203
Tuxun A, Xiang Y, Shao Y, Son JE, Yamada M, Yamada S, Tagawa K, Baiyin B, Yang Q. Soilless Cultivation: Precise Nutrient Provision and Growth Environment Regulation Under Different Substrates. Plants. 2025; 14(14):2203. https://doi.org/10.3390/plants14142203
Chicago/Turabian StyleTuxun, Arezigu, Yue Xiang, Yang Shao, Jung Eek Son, Mina Yamada, Satoshi Yamada, Kotaro Tagawa, Bateer Baiyin, and Qichang Yang. 2025. "Soilless Cultivation: Precise Nutrient Provision and Growth Environment Regulation Under Different Substrates" Plants 14, no. 14: 2203. https://doi.org/10.3390/plants14142203
APA StyleTuxun, A., Xiang, Y., Shao, Y., Son, J. E., Yamada, M., Yamada, S., Tagawa, K., Baiyin, B., & Yang, Q. (2025). Soilless Cultivation: Precise Nutrient Provision and Growth Environment Regulation Under Different Substrates. Plants, 14(14), 2203. https://doi.org/10.3390/plants14142203