Screening and Comprehensive Evaluation of Drought Resistance in Cotton Germplasm Resources at the Germination Stage
Abstract
1. Introduction
2. Results
2.1. Effect of Drought Stress on Major Agronomic Traits
2.2. Phenotypic Drought Tolerance Coefficients and Correlation Analysis
2.3. Principal Component Analysis
2.4. Comprehensive Evaluation of Drought Tolerance and Cluster Analysis
2.5. Gray Correlation Analysis
2.6. Stepwise Regression Analysis
3. Discussion
4. Materials and Methods
4.1. Experimental Conditions and Plant Material
4.2. Measurement Indicators
4.3. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Egbuta, M.A.; McIntosh, S.; Waters, D.L.; Vancov, T.; Liu, L. Biological Importance of Cotton By-Products Relative to Chemical Constituents of the Cotton Plant. Molecules 2017, 22, 93. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Yu, J.; Kohel, R.J.; Percy, R.G.; Beavis, W.D.; Main, D.; Yu, J.Z. Distribution and evolution of cotton fiber development genes in the fibreless Gossypium raimondii genome. Genomics 2015, 106, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Sun, F.; Yang, Y.; Wang, P.; Ma, J.; Du, X. Quantitative trait loci and candidate genes for yield-related traits of upland cotton revealed by genome-wide association analysis under drought conditions. BMC Genom. 2023, 24, 531. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Huang, J.Q.; Chen, X.Y.; Zhu, Y.X. Recent Advances and Future Perspectives in Cotton Research. Annu. Rev. Plant Biol. 2021, 72, 437–462. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Liu, L.; Huang, Q.; Liu, W.H.; Si, A.J.; Kong, X.H.; Wang, X.W.; Zhao, F.X.; Mei, Y.J.; Yu, Y. Identification and screening of salt tolerance of cotton germplasm resources at germination stage. Acta Agron. Sin. 2024, 50, 1147–1157. [Google Scholar]
- Bohra, A.; Choudhary, M.; Bennett, D.; Joshi, R.; Mir, R.R.; Varshney, R.K. Drought-tolerant wheat for enhancing global food security. Funct. Integr. Genom. 2024, 24, 212. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Yan, N.; Tanveer, M.; Zhao, Z.; Jiang, L.; Wang, H. Seed Germination Ecology of the Medicinal Plant Peganum harmala (Zygophyllaceae). Plants 2023, 12, 2660. [Google Scholar] [CrossRef] [PubMed]
- Du, W.; Yu, D.; Fu, S. Detection of quantitative trait loci for yield and drought tolerance traits in soybean using a recombinant inbred line population. J. Integr. Plant Biol. 2009, 51, 868–878. [Google Scholar] [CrossRef] [PubMed]
- Billah, M.; Li, F.; Yang, Z. Regulatory Network of Cotton Genes in Response to Salt, Drought and Wilt Diseases (Verticillium and Fusarium): Progress and Perspective. Front. Plant Sci. 2021, 12, 759245. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, T.; Khalid, S.; Abdullah, M.; Ahmed, Z.; Shah, M.K.N.; Ghafoor, A.; Du, X. Insights into Drought Stress Signaling in Plants and the Molecular Genetic Basis of Cotton Drought Tolerance. Cells 2019, 9, 105. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Yang, W.; Ma, J.; Cheng, Z.; Zhang, X.; Liu, X.; Wu, X.; Zhang, J. An Integrated Framework for Drought Stress in Plants. Int. J. Mol. Sci. 2024, 25, 9347. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, A.; Dwivedi, S.; Bhagavatula, L.; Datta, S. Integration of light and ABA signaling pathways to combat drought stress in plants. Plant Cell Rep. 2023, 42, 829–841. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhu, J.; Gong, Z.; Zhu, J.K. Abiotic stress responses in plants. Nat. Rev. Genet. 2022, 23, 104–119. [Google Scholar] [CrossRef] [PubMed]
- Hura, T.; Hura, K.; Ostrowska, A. Drought-Stress Induced Physiological and Molecular Changes in Plants. Int. J. Mol. Sci. 2022, 23, 4698. [Google Scholar] [CrossRef] [PubMed]
- Do, P.T.; Degenkolbe, T.; Erban, A.; Heyer, A.G.; Kopka, J.; Kohl, K.I.; Hincha, D.K.; Zuther, E. Dissecting rice polyamine metabolism under controlled long-term drought stress. PLoS ONE 2013, 8, e60325. [Google Scholar] [CrossRef] [PubMed]
- Mehta, R.H.; Ponnuchamy, M.; Kumar, J.; Reddy, N.R. Exploring drought stress-regulated genes in senna (Cassia angustifolia Vahl.): A transcriptomic approach. Funct. Integr. Genom. 2017, 17, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Long, J.; Dong, M.; Wang, C.; Miao, Y. Effects of drought and salt stress on seed germination and seedling growth of Elymus nutans. PeerJ 2023, 11, e15968. [Google Scholar] [CrossRef] [PubMed]
- Lesk, C.; Rowhani, P.; Ramankutty, N. Influence of extreme weather disasters on global crop production. Nature 2016, 529, 84–87. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Zhu, L.; Sun, H.; Han, Q.; Wang, S.; Zhu, J.; Zhang, Y.; Zhang, K.; Bai, Z.; Li, A.; et al. Evaluation of drought-tolerant varieties based on root system architecture in cotton (Gossypium hirsutum L.). BMC Plant Biol. 2024, 24, 127. [Google Scholar] [CrossRef] [PubMed]
- Niu, L.; Bo, L.; Chen, S.; Qin, Z.; Dondup, D.; Namgyal, L.; Quzong, X.; Ga, Z.; Zhang, Y.; Shi, Y.; et al. Comprehensive Evaluation and Construction of Drought Resistance Index System in Hulless Barley Seedlings. Int. J. Mol. Sci. 2025, 26, 3799. [Google Scholar] [CrossRef] [PubMed]
- Arif, T.; Chaudhary, M.T.; Majeed, S.; Rana, I.A.; Ali, Z.; Elansary, H.O.; Moussa, I.M.; Sun, S.; Azhar, M.T. Exploitation of various physio-morphological and biochemical traits for the identification of drought tolerant genotypes in cotton. BMC Plant Biol. 2023, 23, 508. [Google Scholar] [CrossRef] [PubMed]
- Ning, H.; Yuan, J.; Dong, Q.; Li, W.; Xue, H.; Wang, Y.; Tian, Y.; Li, W.X. Identification of QTLs related to the vertical distribution and seed-set of pod number in soybean [Glycine max (L.) Merri]. PLoS ONE 2018, 13, e0195830. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Liu, Z.; Li, H.; Zhang, Y.; Yu, L.; Qi, X.; Gao, H.; Li, Y.; Qiu, L. Identification of Drought-Tolerance Genes in the Germination Stage of Soybean. Biology 2022, 11, 1812. [Google Scholar] [CrossRef] [PubMed]
- Geng, S.; Gao, W.; Li, S.; Chen, Q.; Jiao, Y.; Zhao, J.; Wang, Y.; Wang, T.; Qu, Y.; Chen, Q. Rapidly mining candidate cotton drought resistance genes based on key indicators of drought resistance. BMC Plant Biol. 2024, 24, 129. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.P.; Chen, Q.J.; Zheng, K.; Pu, Y.C.; Xu, J.L.; Zhou, T.; Yang, Y.J.; Sun, G.Q. Cotton Drought Resistance Index Screening and Comprehensive Evaluation of Drought Resistance of Germplasm Resources During Germination Period. Curr. Biotechnol. 2023, 13, 556–564. [Google Scholar]
- Jia, Q.; Zhou, M.; Xiong, Y.; Wang, J.; Xu, D.; Zhang, H.; Liu, X.; Zhang, W.; Wang, Q.; Sun, X.; et al. Development of KASP markers assisted with soybean drought tolerance in the germination stage based on GWAS. Front. Plant Sci. 2024, 15, 1352379. [Google Scholar] [CrossRef] [PubMed]
- Bao, X.; Hou, X.; Duan, W.; Yin, B.; Ren, J.; Wang, Y.; Liu, X.; Gu, L.; Zhen, W. Screening and evaluation of drought resistance traits of winter wheat in the North China Plain. Front. Plant Sci. 2023, 14, 1194759. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Zhou, Y.F.; Gao, Y.; Zhang, J.; Chen, B.R.; Xu, W.J.; Huang, R.D. Screening and Identification for Drought Resistance during Germination in Sorghum Cultivars. Acta Agron. Sin. 2016, 42, 1233–1246. [Google Scholar] [CrossRef]
- Tian, M.Y.; Li, D.D.; Dai, T.B.; Jiang, D.; Jing, Q.; Cao, W.X. Morphological and physiological differences of wheat genotypes at seedling stage under water stress. Ying Yong Sheng Tai Xue Bao 2010, 21, 41–47. [Google Scholar] [PubMed]
- Gao, S.; Luo, J.; Zhang, H.; Chen, R.; Lin, Y. Physiological and biochemical indexes of drought resistance of sugarcane (Saccharum spp.). Ying Yong Sheng Tai Xue Bao 2006, 17, 1051–1054. [Google Scholar] [PubMed]
- Cai, J.G.; Zhang, Y.; Sun, O.W.; Yang, Q.Q. Comprehensive evaluation and construction of drought resistance index system in Hydrangea macrophylla. Ying Yong Sheng Tai Xue Bao 2018, 29, 3175–3182. [Google Scholar] [PubMed]
- Li, G.; Zhang, H.Y.; Ji, L.; Zhao, E.; Liu, J.; Li, L.; Zhang, J. Comprehensive evaluation on drought-resistance of different soybean varieties. Ying Yong Sheng Tai Xue Bao 2006, 17, 2408–2412. [Google Scholar] [PubMed]
- Yang, J.W.; Zhu, J.G.; Wang, S.G.; Sun, D.Z.; Shi, I.Y.; Chen, W.G. Drought-resistance of local wheat varieties in Shanxi Province of China: A comprehensive evaluation by using GGE biplot and subordinate function. Ying Yong Sheng Tai Xue Bao 2013, 24, 1031–1038. [Google Scholar] [PubMed]
- Gutierrez, N.; Pegard, M.; Balko, C.; Torres, A.M. Genome-wide association analysis for drought tolerance and associated traits in faba bean (Vicia faba L.). Front. Plant Sci. 2023, 14, 1091875. [Google Scholar] [CrossRef] [PubMed]
- Ren, K.; Tang, T.; Kong, W.; Su, Y.; Wang, Y.; Cheng, H.; Yang, Y.; Zhao, X. Response of Watermelon to Drought Stress and Its Drought-Resistance Evaluation. Plants 2025, 14, 1289. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.N.; Zhuang, Y.; Wang, X.G.; Wang, X.D. Evaluation of growth, physiological response, and drought resistance of different flue-cured tobacco varieties under drought stress. Front. Plant Sci. 2024, 15, 1442618. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z.G.; Wang, F.; Zhang, W.E.; Zhao, X.M. Drought-resistance evaluation of marigold cultivars based on multiple statistics analysis. Ying Yong Sheng Tai Xue Bao 2011, 22, 3315–3320. [Google Scholar] [PubMed]
- Jin, X.X.; Song, Y.H.; Su, Q.; Yang, Y.Q.; Li, Y.R.; Wang, J. Identification and comprehensive evaluation of drought resistance in high oleic acid Jihua peanut varieties. Acta Agron. Sin. 2025, 51, 797–811. [Google Scholar]
- Gedam, P.A.; Thangasamy, A.; Shirsat, D.V.; Ghosh, S.; Bhagat, K.P.; Sogam, O.A.; Gupta, A.J.; Mahajan, V.; Soumia, P.S.; Salunkhe, V.N.; et al. Screening of Onion (Allium cepa L.) Genotypes for Drought Tolerance Using Physiological and Yield Based Indices Through Multivariate Analysis. Front. Plant Sci. 2021, 12, 600371. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Xiong, L. General mechanisms of drought response and their application in drought resistance improvement in plants. Cell Mol. Life Sci. 2015, 72, 673–689. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.P.; Zhang, J.F.; Chen, Y.; Zhang, H.S.; Yan, K.; Mu, Z.X. Identification and Evaluation of Soybean Germplasm Resources for Drought Tolerance During Germination Stage. J. Plant Genet. Resour. 2021, 22, 130–138. [Google Scholar]
- Ma, Y.; Li, Y.S.; Wang, F.; Xu, H.J.; Song, Y.; Jiang, C.Y. Comprehensive Evaluation and Screening of Drought Resistance of Tomato Germplasm Resources during Germination Period. J. Plant Genet. Resour. 2024, 25, 1056–1069. [Google Scholar]
- Wang, Y.; Sha, B.P.; Li, M.Y.; Li, X.; Gao, X.Q.; Fu, B.Z. Indices Screening and Comprehensive Evaluation of Drought Resistance in Alfalfa Germplasm Resources at Germinating Stage. J. Plant Genet. Resour. 2019, 20, 598–609+623. [Google Scholar]
- Bai, J.S.; Wang, X.C.; Wang, Y.Q. Screening of drought-resistance index and drought-resistance evaluation ofcommon vetch (Vicia sativa L.) germplasms at germination stage. J. Plant Nutr. Fertil. 2020, 26, 2253–2263. [Google Scholar]
- Tan, U.; Goren, H.K. Comprehensive evaluation of drought stress on medicinal plants: A meta-analysis. PeerJ 2024, 12, e17801. [Google Scholar] [CrossRef] [PubMed]
- Sun, F.; Chen, Q.; Chen, Q.; Jiang, M.; Gao, W.; Qu, Y. Screening of Key Drought Tolerance Indices for Cotton at the Flowering and Boll Setting Stage Using the Dimension Reduction Method. Front. Plant Sci. 2021, 12, 619926. [Google Scholar] [CrossRef] [PubMed]
- Badr, A.; El-Shazly, H.H.; Tarawneh, R.A.; Borner, A. Screening for Drought Tolerance in Maize (Zea mays L.) Germplasm Using Germination and Seedling Traits under Simulated Drought Conditions. Plants 2020, 9, 565. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Abbas, K.; Wang, L.; Gong, B.; Hou, S.; Wang, W.; Dai, B.; Xia, H.; Wu, X.; Lu, G.; et al. Drought resistance index screening and evaluation of lettuce under water deficit conditions on the basis of morphological and physiological differences. Front. Plant Sci. 2023, 14, 1228084. [Google Scholar] [CrossRef] [PubMed]
- Mehari, T.G.; Hou, Y.; Xu, Y.; Umer, M.J.; Shiraku, M.L.; Wang, Y.; Wang, H.; Peng, R.; Wei, Y.; Cai, X.; et al. Overexpression of cotton GhNAC072 gene enhances drought and salt stress tolerance in transgenic Arabidopsis. BMC Genom. 2022, 23, 648. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Dong, S.Q.; Yuan, X.Y.; Yang, X.P.; Yao, X.; Guo, P.Y.; Yang, X.F. Comprehensive evaluation of drought resistance of foxtail millet germplasm resources during germination period and drought resistance index screening. J. China Agric. Univ. 2022, 27, 42–54. [Google Scholar]
- Liu, Y.; Mao, J.; Xu, Y.; Ren, J.; Wang, M.; Wang, S.; Liu, S.; Wang, R.; Wang, L.; Wang, L.; et al. Effects of Rehydration on Bacterial Diversity in the Rhizosphere of Broomcorn Millet (Panicum miliaceum L.) after Drought Stress at the Flowering Stage. Microorganisms 2024, 12, 1534. [Google Scholar] [CrossRef] [PubMed]
- Xiong, S.; Wang, Y.; Chen, Y.; Gao, M.; Zhao, Y.; Wu, L. Effects of Drought Stress and Rehydration on Physiological and Biochemical Properties of Four Oak Species in China. Plants 2022, 11, 679. [Google Scholar] [CrossRef] [PubMed]
- Fang, S.; Yang, H.; Duan, L.; Shi, J.; Guo, L. Potassium fertilizer improves drought stress alleviation potential in sesame by enhancing photosynthesis and hormonal regulation. Plant Physiol. Biochem. 2023, 200, 107744. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.H.; Ye, S.; Wang, Q.; Wang, L.Y.; Wang, R.L.; Chen, L.Y.; Tang, Z.L.; Li, J.N.; Zhou, Q.Y.; Cui, C. Screening and comprehensive evaluation of aluminum-toxicity tolerance during seed germination in Brassca napus. Acta Agron. Sin. 2019, 45, 1416–1430. [Google Scholar]
- Guo, C.; Liu, L.; Sun, H.; Wang, N.; Zhang, K.; Zhang, Y.; Zhu, J.; Li, A.; Bai, Z.; Liu, X.; et al. Predicting F(v)/F(m) and evaluating cotton drought tolerance using hyperspectral and 1D-CNN. Front. Plant Sci. 2022, 13, 1007150. [Google Scholar] [CrossRef] [PubMed]
Treatment | Coefficient | Seeds Water Absorption Rate | Germination Potential | Germination Rate | Drought Tolerance Index | Fresh Weight | Seedling Length | Hypocotyl Length | Root Length |
---|---|---|---|---|---|---|---|---|---|
CK | Max | 0.9 | 1 | 1 | 0.43 | 0.8 | 20.7 | 8.6 | 14.6 |
Min | 0.09 | 0.3 | 0.6 | 0.19 | 0.44 | 9.7 | 2.6 | 6.3 | |
Average | 0.47 | 0.82 | 0.95 | 0.35 | 0.63 | 16.29 | 6.25 | 10.05 | |
SD | 0.15 | 0.15 | 0.06 | 0.05 | 0.07 | 1.78 | 0.9 | 1.36 | |
CV | 32.79% | 18.02% | 6.04% | 13.20% | 10.46% | 10.91% | 14.38% | 13.51% | |
DS | Max | 0.55 | 0.78 | 0.83 | 0.35 | 0.44 | 18.8 | 4 | 14.9 |
Min | −0.06 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Average | 0.21 | 0.19 | 0.32 | 0.1 | 0.24 | 8.83 | 1.27 | 7.55 | |
SD | 0.1 | 0.16 | 0.17 | 0.06 | 0.07 | 3.25 | 0.69 | 2.74 | |
CV | 50.22% | 85.60% | 53.60% | 62.27% | 28.16% | 36.78% | 53.97% | 36.35% | |
Comparison with the control | Variation | −0.26 | −0.62 | −0.62 | −0.26 | −0.39 | −7.46 | −4.98 | −2.5 |
Percentage variation | −55.46% | −76.49% | −65.83% | −72.73% | −61.49% | −45.80% | −79.63% | −24.87% |
Treatment | Coefficient | Seeds Water Absorption Rate | Germination Potential | Germination Rate | Drought Tolerance Index | Fresh Weight | Seedling Length | Hypocotyl Length | Root Length |
---|---|---|---|---|---|---|---|---|---|
CK | Max | 1.066 | 1.000 | 1.000 | 0.42 | 0.948 | 21.1 | 10.1 | 12.8 |
Min | 0.065 | 0.317 | 0.617 | 0.16 | 0.278 | 10.4 | 3.9 | 6.1 | |
Average | 0.609 | 0.816 | 0.931 | 0.343 | 0.63 | 16.2 | 6.9 | 9.2 | |
SD | 0.16 | 0.13 | 0.066 | 0.047 | 0.069 | 1.3 | 0.9 | 1.1 | |
CV | 26.26% | 15.94% | 7.06% | 13.68% | 10.98% | 8.04% | 13.58% | 12.17% | |
DS | Max | 0.809 | 0.692 | 0.792 | 0.27 | 0.694 | 18.1 | 6.7 | 14.8 |
Min | 0.005 | 0 | 0.042 | 0.01 | 0.098 | 2.7 | 0.2 | 2.4 | |
Average | 0.286 | 0.214 | 0.328 | 0.093 | 0.295 | 10.6 | 2.2 | 8.5 | |
SD | 0.107 | 0.128 | 0.141 | 0.045 | 0.097 | 3.7 | 1.5 | 2.5 | |
CV | 37.31% | 59.89% | 42.88% | 48.93% | 32.70% | 34.50% | 67.46% | 29.30% | |
Comparison with the control | Variation | −0.32 | −0.60 | −0.60 | −0.25 | −0.33 | −5.53 | −4.76 | −0.77 |
Percentage variation | −53.10% | −73.82% | −64.78% | −72.93% | −53.15% | −34.21% | −68.79% | −8.33% |
Coefficient | RAR | RGP | RGR | RDT | RFW | RSL | RHL | RRL |
---|---|---|---|---|---|---|---|---|
Max | 1.62 | 1.03 | 0.83 | 0.87 | 0.75 | 1.31 | 0.73 | 1.90 |
Min | −0.22 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Average | 0.46 | 0.24 | 0.34 | 0.27 | 0.39 | 0.55 | 0.21 | 0.76 |
SD | 0.25 | 0.20 | 0.18 | 0.16 | 0.11 | 0.21 | 0.12 | 0.30 |
CV | 54.03% | 84.37% | 52.19% | 58.59% | 28.68% | 38.22% | 56.63% | 38.98% |
Coefficient | RAR | RGP | RGR | RDT | RFW | RSL | RHL | RRL |
---|---|---|---|---|---|---|---|---|
Max | 2.21 | 0.88 | 0.83 | 0.75 | 0.86 | 1.20 | 0.88 | 1.67 |
Min | 0.01 | 0.00 | 0.05 | 0.04 | 0.17 | 0.18 | 0.03 | 0.27 |
Average | 0.50 | 0.26 | 0.35 | 0.27 | 0.47 | 0.66 | 0.30 | 0.93 |
SD | 0.23 | 0.15 | 0.14 | 0.12 | 0.14 | 0.22 | 0.19 | 0.31 |
CV | 46.29% | 58.47% | 40.22% | 43.40% | 28.96% | 33.76% | 63.08% | 32.84% |
Index | RAR | RGP | RGR | RDT | RFW | RSL | RHL | RRL |
---|---|---|---|---|---|---|---|---|
RAR | 1 | |||||||
RGP | −0.268 ** | 1 | ||||||
RGR | −0.117 ** | 0.802 ** | 1 | |||||
RDT | −0.192 ** | 0.915 ** | 0.929 ** | 1 | ||||
RFW | −0.007 | 0.464 ** | 0.595 ** | 0.556 ** | 1 | |||
RSL | −0.027 | 0.509 ** | 0.613 ** | 0.576 ** | 0.826 ** | 1 | ||
RHL | −0.040 | 0.453 ** | 0.490 ** | 0.493 ** | 0.740 ** | 0.769 ** | 1 | |
RRL | −0.020 | 0.476 ** | 0.600 ** | 0.549 ** | 0.757 ** | 0.969 ** | 0.617 ** | 1 |
Index | RAR | RGP | RGR | RDT | RFW | RSL | RHL | RRL |
---|---|---|---|---|---|---|---|---|
RAR | 1 | |||||||
RGP | −0.318 ** | 1 | ||||||
RGR | −0.365 ** | 0.850 ** | 1 | |||||
RDT | −0.349 ** | 0.920 ** | 0.951 ** | 1 | ||||
RFW | −0.198 ** | 0.636 ** | 0.696 ** | 0.690 ** | 1 | |||
RSL | −0.199 ** | 0.632 ** | 0.711 ** | 0.698 ** | 0.858 ** | 1 | ||
RHL | −0.242 ** | 0.657 ** | 0.696 ** | 0.699 ** | 0.935 ** | 0.869 ** | 1 | |
RRL | −0.178 ** | 0.541 ** | 0.646 ** | 0.618 ** | 0.707 ** | 0.943 ** | 0.682 ** | 1 |
Principle Factor | REP1 | REP2 | ||||
---|---|---|---|---|---|---|
PC 1 | PC 2 | PC 3 | PC 1 | PC 2 | PC 3 | |
Eigenvalues | 4.940 | 1.348 | 0.848 | 5.581 | 1.058 | 0.693 |
Contribution ratio% | 41.799 | 34.656 | 12.751 | 69.761 | 13.229 | 8.66 |
Cumulative contribution ratio% | 41.799 | 76.455 | 89.206 | 69.761 | 82.99 | 91.649 |
Factor weight | 0.692 | 0.189 | 0.119 | 0.761 | 0.144 | 0.095 |
Eigenvector | ||||||
RAR | −0.063 | 0.543 | 0.826 | −0.151 | 0.736 | 0.657 |
RGP | 0.355 | −0.429 | 0.199 | 0.359 | −0.265 | 0.430 |
RGR | 0.386 | −0.264 | 0.306 | 0.382 | −0.225 | 0.281 |
RDT | 0.385 | −0.362 | 0.276 | 0.383 | −0.245 | 0.361 |
RFW | 0.378 | 0.282 | −0.125 | 0.376 | 0.242 | −0.149 |
RSL | 0.404 | 0.303 | −0.173 | 0.388 | 0.300 | −0.233 |
RHL | 0.347 | 0.264 | −0.210 | 0.378 | 0.198 | −0.169 |
RRL | 0.382 | 0.282 | −0.138 | 0.348 | 0.300 | −0.262 |
Index | D Correlation Degree | Rank | WDC Correlation Degree | Rank | CDC Correlation Degree | Rank |
---|---|---|---|---|---|---|
RAR | 0.808 | 7 | 0.74 | 5 | 0.741 | 5 |
RGP | 0.758 | 8 | 0.72 | 8 | 0.721 | 8 |
RGR | 0.843 | 5 | 0.738 | 6 | 0.738 | 6 |
RDT | 0.828 | 6 | 0.735 | 7 | 0.736 | 7 |
RFW | 0.944 | 1 | 0.764 | 1 | 0.764 | 1 |
RSL | 0.939 | 2 | 0.756 | 2 | 0.756 | 2 |
RHL | 0.868 | 4 | 0.742 | 4 | 0.742 | 4 |
RRL | 0.923 | 3 | 0.754 | 3 | 0.754 | 3 |
Index | D Correlation Degree | Rank | WDC Correlation Degree | Rank | CDC Correlation Degree | Rank |
---|---|---|---|---|---|---|
RAR | 0.826 | 1 | 0.820 | 3 | 0.817 | 3 |
RGP | 0.821 | 4 | 0.818 | 4 | 0.816 | 4 |
RGR | 0.820 | 6 | 0.817 | 6 | 0.815 | 5 |
RDT | 0.822 | 3 | 0.817 | 5 | 0.814 | 6 |
RFW | 0.812 | 7 | 0.808 | 7 | 0.806 | 7 |
RSL | 0.821 | 5 | 0.821 | 1 | 0.819 | 1 |
RHL | 0.806 | 8 | 0.802 | 8 | 0.801 | 8 |
RRL | 0.822 | 2 | 0.820 | 2 | 0.819 | 2 |
REP | Dependent Variable | Multiple Stepwise Regression Equation | r | R2 | Correlation Coefficient | ||
---|---|---|---|---|---|---|---|
D-Value | WDC-Value | CDC-Value | |||||
REP1 | D-value | Y = 0.056 + 0.587 × RFW + 0.37 × RHL + 0.067 × RAR + 0.064 × RGR | 0.949 | 0.901 | 1 | 0.930 ** | 0.918 ** |
WDC-value | Y = 0.002 + 0.458 × RFW + 0.255 × RGR + 0.12 × RAR + 0.241 × RHL + 0.156 × RGP | 0.950 | 0.903 | 1 | 0.999 ** | ||
CDC-value | Y = 0.002 + 0.255 × RGR + 0.425 × RDT + 0.128 × RAR + 0.173 × RGP + 0.232 × RHL | 0.954 | 0.911 | 1 | |||
REP2 | D-value | Y = 0.62 × RFW − 0.027 + 0.25 × RGP + 0.108 × RAR | 0.952 | 0.906 | 1 | 0.996 ** | 0.996 ** |
WDC-value | Y = 0.74 × RDT − 0.018 + 0.332 × RGP + 0.133 × RAR | 0.934 | 0.873 | 1 | 0.999 ** | ||
CDC-value | Y = 0.013 + 0.663 × RDT + 0.351 × RGP + 0.107 × RAR | 0.938 | 0.879 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Huang, Q.; Liu, L.; Li, H.; Wang, X.; Si, A.; Yu, Y. Screening and Comprehensive Evaluation of Drought Resistance in Cotton Germplasm Resources at the Germination Stage. Plants 2025, 14, 2191. https://doi.org/10.3390/plants14142191
Wang Y, Huang Q, Liu L, Li H, Wang X, Si A, Yu Y. Screening and Comprehensive Evaluation of Drought Resistance in Cotton Germplasm Resources at the Germination Stage. Plants. 2025; 14(14):2191. https://doi.org/10.3390/plants14142191
Chicago/Turabian StyleWang, Yan, Qian Huang, Li Liu, Hang Li, Xuwen Wang, Aijun Si, and Yu Yu. 2025. "Screening and Comprehensive Evaluation of Drought Resistance in Cotton Germplasm Resources at the Germination Stage" Plants 14, no. 14: 2191. https://doi.org/10.3390/plants14142191
APA StyleWang, Y., Huang, Q., Liu, L., Li, H., Wang, X., Si, A., & Yu, Y. (2025). Screening and Comprehensive Evaluation of Drought Resistance in Cotton Germplasm Resources at the Germination Stage. Plants, 14(14), 2191. https://doi.org/10.3390/plants14142191