Pectins as Brakes? Their Potential Implication in Adjusting Mesophyll Conductance Under Water Deficit and Salt Stresses
Abstract
1. Introduction
2. Results
2.1. Relative Effects of Short-Term Water Deficit Stress and Salt Stress on the Studied Parameters
2.2. Relationships Between Parameters: Pearson Correlation Matrices in Species Subjected to Salt Stress and Short-Term Water Deficit Stress
2.3. Relationships Among Combined Parameters
3. Discussion
4. Materials and Methods
4.1. Data Compilation
4.2. Statistical Analyses
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Farquhar, G.D.; Caemmerer, S.V.; Berry, J.A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 1980, 149, 78–90. [Google Scholar] [CrossRef] [PubMed]
- Flexas, J.; Cano, F.J.; Carriquí, M.; Coopman, R.E.; Mizokami, Y.; Tholen, D.; Xiong, D. CO2 diffusion inside photosynthetic organs. In The Leaf: A Platform for Performing Photosynthesis. Advances in Photosynthesis and Respiration (Including Bioenergy and Related Processes); Adams, W., III, Terashima, I., Eds.; Springer: Cham, Switzerland, 2018; Volume 44, pp. 163–208. [Google Scholar]
- Gago, J.; Carriquí, M.; Nadal, M.; Clemente-Moreno, M.J.; Coopman, R.E.; Fernie, A.R.; Flexas, J. Photosynthesis optimized acroos land plants phylogeny. Trends Plant Sci. 2019, 24, 947–958. [Google Scholar] [CrossRef] [PubMed]
- Grassi, G.; Magnani, F. Stomatal, mesophyll conductance and biochemical limitations to photosynthesis as affected by drought and leaf ontogeny in ash and oak trees. Plant Cell Environ. 2005, 28, 834–849. [Google Scholar] [CrossRef]
- Chaves, M.M.; Maroco, J.P.; Pereira, J.S. Understanding plant responses to drought—From genes to the whole plant. Funct. Plant Biol. 2003, 30, 239–264. [Google Scholar] [CrossRef]
- Xue, W.; Liu, D.D.; Tosens, T.; Xiong, D.L.; Carriquí, M.; Xiong, Y.C.; Ko, J. Cell wall thickness has phylogenetically consistent effects on the photosynthetic nitrogen-use efficiency of terrestrial plants. Plant Cell Environ. 2023, 46, 2323–2336. [Google Scholar] [CrossRef]
- Flexas, J.; Clemente-Moreno, M.J.; Bota, J.; Brodribb, T.J.; Gago, J.; Mizokami, Y.; Nadal, M.; Perera-Castro, A.V.; Roig-Oliver, M.; Sugiura, D.; et al. Cell wall thickness and composition are involved in photosynthetic limitation. J. Exp. Bot. 2021, 72, 3971–3986. [Google Scholar] [CrossRef]
- Mizokami, Y.; Oguchi, R.; Sugiura, D.; Yamori, W.; Noguchi, K.; Terashima, I. Cost-benefit analysis of mesophyll conductance: Diversities of anatomical, biochemical and environmental determinants. Ann. Bot. 2022, 130, 265–283. [Google Scholar] [CrossRef]
- Onoda, Y.; Wright, I.J.; Evans, J.R.; Hikosaka, K.; Kitajima, K.; Niinemets, Ü.; Poorter, H.; Tosens, T.; Westoby, M. Physiological and structural tradeoffs underlying the leaf economics spectrum. New Phytol. 2017, 214, 1447–1463. [Google Scholar] [CrossRef]
- Tholen, D.; Boom, C.; Noguchi, K.; Ueda, S.; Katase, T.; Terashima, I. The chloroplast avoidance response decreases internal conductance to CO2 diffusion in Arabidopsis thaliana leaves. Plant Cell Environ. 2008, 31, 1688–1700. [Google Scholar] [CrossRef]
- Terashima, I.; Hanba, Y.T.; Tholen, D.; Niinemets, Ü. Leaf functional anatomy in relation to photosynthesis. Plant Physiol. 2011, 155, 108–116. [Google Scholar] [CrossRef]
- Xiong, D.; Wang, D.; Liu, X.; Peng, S.; Huang, J.; Li, Y. Leaf density explains variation in leaf mass per area in rice between cultivars and nitrogen treatments. Ann. Bot. 2016, 117, 963–971. [Google Scholar] [CrossRef] [PubMed]
- Sugiura, D.; Terashima, I.; Evans, J.R. Decrease in mesophyll conductance by cell-wall thickening contributes to photosynthetic downregulation. Plant Physiol. 2020, 183, 1600–1611. [Google Scholar] [CrossRef]
- Zou, J.; Hu, W.; Li, Y.; Zhu, H.; He, J.; Wang, Y.; Meng, Y.; Chen, B.; Zhao, W.; Wang, S.; et al. Leaf anatomical alterations reduce cotton’s mesophyll conductance under dynamic drought stress conditions. Plant J. 2022, 111, 391–405. [Google Scholar] [CrossRef] [PubMed]
- Earles, J.M.; Théroux-Rancourt, G.; Roddy, A.B.; Gilbert, M.E.; McElrone, A.J.; Brodersen, C.R. Beyond porosity: 3D leaf intercellular airspace traits that impact mesophyll conductance. Plant Physiol. 2018, 178, 148–162. [Google Scholar] [CrossRef] [PubMed]
- Luo, D.; Huang, G.; Zhang, Q.; Zhou, G.; Peng, S.; Li, Y. Plasticity of mesophyll cell density and cell wall thickness and composition play a pivotal role in regulating plant growth and photosynthesis under shading in rapeseed. Ann. Bot. 2023, 132, 963–978. [Google Scholar] [CrossRef]
- Cao, Y.; Pan, Y.; Yang, Y.; Liu, T.; Wang, M.; Li, Y.; Guo, S. Variation of mesophyll conductance mediated by nitrogen form is related to changes in cell wall property and chloroplast number. Hortic. Res. 2024, 11, uhae112. [Google Scholar] [CrossRef]
- Lundgren, M.R.; Fleming, A.J. Cellular perspectives for improving mesophyll conductance. Plant J. 2020, 101, 845–847. [Google Scholar] [CrossRef]
- Tenhaken, R. Cell wall remodeling under abiotic stress. Front. Plant Sci. 2015, 5, 771. [Google Scholar] [CrossRef]
- De Lorenzo, G.; Ferrari, S.; Giovannoni, M.; Mattei, B.; Cervone, F. Cell wall traits that influence plant development, immunity, and bioconversion. Plant J. 2019, 97, 134–147. [Google Scholar] [CrossRef]
- Rui, Y.; Dinnery, J.R. A wall with integrity: Surveillance and maintenance of the plant cell wall under stress. New Phytol. 2019, 225, 1428–1439. [Google Scholar] [CrossRef]
- Anderson, C.T.; Kieber, J.J. Dynamic construction, perception, and remodelling of plant cell walls. Ann. Rev. Plant Biol. 2020, 71, 39–69. [Google Scholar] [CrossRef] [PubMed]
- Delmer, D.; Dixon, R.A.; Keegstra, K.; Mohnen, D. The plant cell wall-dynamic, strong, and adaptable-is a natural shapeshifter. Plant Cell 2024, 36, 1257–1311. [Google Scholar] [CrossRef] [PubMed]
- Somerville, C.; Bauer, S.; Brinistool, G.; Facette, M.; Hamann, T.; Milne, J.; Osborne, E.; Paredez, A.; Persson, S.; Raab, T. Toward a systems approach to understanding plant cell walls. Science 2004, 306, 2206–2211. [Google Scholar] [CrossRef] [PubMed]
- Cosgrove, D.J. Structure and growth of plant cell walls. Nat. Rev. Mol. Cell Biol. 2024, 25, 340–358. [Google Scholar] [CrossRef]
- Ochoa-Villarreal, M.; Aispuro-Hernández, E.; Vargas-Arispuro, I.; Martínez-Téllez, M.A. Plant Cell Wall Polymers: Function, Structure and Biological Activity of Their Derivatives. In Polymerization; De Souza Gomes, A., Ed.; InTechOpen: Rijeka, Croatia, 2012. [Google Scholar] [CrossRef]
- Schiraldi, A.; Fessas, D.; Signorelli, M. Water activity in biological systems—A review. Pol. J. Food Nutr. Sci. 2012, 62, 5–13. [Google Scholar] [CrossRef]
- Houston, K.; Tucker, M.R.; Chowdhury, J.; Shirley, N.; Little, A. The plant cell wall: A complex and dynamic structure as revealed by the responses of genes under stress conditions. Front. Plant Sci. 2016, 7, 984. [Google Scholar] [CrossRef]
- Novaković, L.; Guo, T.; Bacic, A.; Sampathkumar, A.; Johnson, K. Hitting the wall—Sensing and signaling pathways involved in plant cell wall remodeling in response to abiotic stress. Plants 2018, 7, 89. [Google Scholar] [CrossRef]
- Boerjan, W.; Ralphm, J.; Baucher, M. Lignin biosynthesis. Ann. Rev. Plant Biol. 2003, 54, 519–546. [Google Scholar] [CrossRef]
- Émonet, A.; Hay, A. Development and diversity of lignin patterns. Plant Physiol. 2022, 190, 31–43. [Google Scholar] [CrossRef]
- Terrett, O.M.; Dupree, P. Covalent interactions between lignin and hemicelluloses in plant secondary cell walls. Curr. Opi. Biotech. 2019, 56, 97–104. [Google Scholar] [CrossRef]
- Dixon, R.A.; Barros, J. Lignin biosynthesis: Old roads revisited and new roads explored. Open Biol. 2019, 9, 190215. [Google Scholar] [CrossRef] [PubMed]
- Iiyama, K.; Lam, T.; Stone, B.A. Covalent cross-links in the cell wall. Plant Physiol. 1994, 104, 315–320. [Google Scholar] [CrossRef] [PubMed]
- Wallace, G.; Fry, S.C. Phenolic components of the plant cell wall. Int. Rev. Cytol. 1994, 151, 229–267. [Google Scholar]
- Ellsworth, P.V.; Ellsworth, P.Z.; Koteyeva, N.K.; Cousins, A.B. Cell wall properties in Oryza sativa influence mesophyll CO2 conductance. New Phytol. 2018, 219, 66–76. [Google Scholar] [CrossRef]
- Vogel, J. Unique aspects of the grass cell wall. Curr. Opin. Plant Biol. 2008, 11, 301–307. [Google Scholar] [CrossRef]
- Carriquí, M.; Nadal, M.; Clemente-Moreno, M.J.; Gago, J.; Miedes, E.; Flexas, J. Cell wall composition strongly influences mesophyll conductance in gymnosperms. Plant J. 2020, 103, 1372–1385. [Google Scholar] [CrossRef]
- Roig-Oliver, M.; Douthe, C.; Bota, J.; Flexas, J. Cell wall thickness and composition are related to photosynthesis in Antarctic mosses. Physiol. Plant. 2021, 173, 1914–1925. [Google Scholar] [CrossRef]
- Zhang, R.; Hu, H.; Wang, Y.; Hu, Z.; Ren, S.; Li, J.; He, B.; Wang, Y.; Xia, T.; Chen, P.; et al. A novel rice fragile culm 24 mutant encodes a UDP-glucose epimerase that affects cell wall property and photosynthesis. J. Exp. Bot. 2020, 71, 2956–2969. [Google Scholar] [CrossRef]
- Roig-Oliver, M.; Rayon, C.; Roulard, R.; Fournet, F.; Bota, J.; Flexas, J. Reduced photosynthesis in Arabidopsis thaliana atpme17.2 and atpae11.1 mutants is associated to altered cell wall composition. Physiol. Plant. 2021, 172, 1439–1451. [Google Scholar] [CrossRef]
- Salesse-Smith, C.E.; Lochocki, E.B.; Doran, L.; Haas, B.E.; Stutz, S.S.; Long, S.P. Greater mesophyll conductance and leaf photosynthesis in the field through modified cell wall porosity and thickness via AtCGR3 expression in tobacco. Plant Biotechnol. J. 2024, 22, 2504–2517. [Google Scholar] [CrossRef]
- Pathare, V.S.; Panahabadi, R.; Sonawane, B.V.; Apalla, A.J.; Koteyeva, N.; Bartley, L.E.; Cousins, A.B. Altered cell wall hydroxycinnamate composition impacts leaf- and canopy-level CO2 uptake and water use in rice. Plant Physiol. 2024, 194, 190–208. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Loka, D.A.; Luo, Y.; Yu, H.; Wang, S.; Zhou, Z. CYTOKININ DEHIDROGENASE suppresion increases intrinsic water-use efficiency and photosynthesis under drought. Plant Physiol. 2025, 197, kiaf081. [Google Scholar] [CrossRef] [PubMed]
- Ye, M.; Zhang, Z.; Huang, G.; Xiong, Z.; Peng, S.; Li, Y. High leaf mass per area Oryza genotypes invest more leaf mass to cell wall and show a low mesophyll conductance. AoB Plants 2020, 12, plaa028. [Google Scholar] [CrossRef] [PubMed]
- Roig-Oliver, M.; Fullana-Pericàs, M.; Bota, J.; Flexas, J. Genotype-dependent changes of cell wall composition influence physiological traits of a long and a non-long shelf-life tomato genotypes under distinct water regimes. Plant J. 2022, 112, 1396–1412. [Google Scholar] [CrossRef]
- Clemente-Moreno, M.J.; Gago, J.; Díaz-Vivancos, P.; Bernal, A.; Miedes, E.; Bresta, P.; Liakopoulos, G.; Fernie, A.R.; Hernández, J.A.; Flexas, J. The apoplastic antioxidant system and altered cell wall dynamics influence mesophyll conductance and the rate of photosynthesis. Plant J. 2019, 99, 1031–1046. [Google Scholar] [CrossRef]
- Roig-Oliver, M.; Bresta, P.; Nadal, M.; Liakopoulos, G.; Nikolopoulos, D.; Karabourniotis, G.; Bota, J.; Flexas, J. Cell wall composition and thickness affect mesophyll conductance to CO2 diffusion in Helianthus annuus under water deprivation. J. Exp. Bot. 2020, 71, 7198–7209. [Google Scholar] [CrossRef]
- Roig-Oliver, M.; Nadal, M.; Bota, J.; Flexas, J. Ginkgo biloba and Helianthus annuus show different strategies to adjust photosynthesis, leaf water relations, and cell wall composition under water deficit stress. Photosynthetica 2020, 58, 1098–1106. [Google Scholar] [CrossRef]
- Roig-Oliver, M.; Nadal, M.; Clemente-Moreno, M.J.; Bota, J.; Flexas, J. Cell wall components regulate photosynthesis and leaf water relations of Vitis vinifera cv. Grenache acclimated to contrasting environmental conditions. J. Plant Physiol. 2020, 244, 153084. [Google Scholar] [CrossRef]
- Roig-Oliver, M.; Bresta, P.; Nikolopoulos, D.; Bota, J.; Flexas, J. Dynamic changes in cell wall composition of mature sunflower leaves under distinct water regimes affect photosynthesis. J. Exp. Bot. 2021, 72, 7863–7875. [Google Scholar] [CrossRef]
- Roig-Oliver, M.; Fullana-Pericàs, M.; Bota, J.; Flexas, J. Adjustments in photosynthesis and leaf water relations are related to changes in cell wall composition in Hordeum vulgare and Triticum aestivum subjected to water deficit stress. Plant Sci. 2021, 311, 111015. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, X.; Dai, K.; He, S.; Zhao, W.; Wang, S.; Zhou, Z.; Hu, W. Nanoceria-induced variations in leaf anatomy and cell wall composition drive the increase in mesophyll conductance of salt-stressed cotton leaves. Plant Physiol. Biochem. 2024, 216, 109111. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Lei, Z.; Carriquí, M.; Zhang, Y.; Liu, T.; Wang, S.; Song, K.; Zhu, L.; Zhang, W.; Zhang, Y. Reductions in mesophyll conductance under drought stress are influenced by increases in cell wall chelator-soluble pectin content and denser microfibril alignment in cotton. J. Exp. Bot. 2025, 76, 1116–1130. [Google Scholar] [CrossRef] [PubMed]
- Roig-Oliver, M.; Bresta, P.; Nikolopoulos, D.; Bota, J.; Flexas, J. Dynamics of Pectins and Photosynthetic Traits in Sunflower and Tomato Subjected to Gradual Recoveries Preceded by Water Deprivation. Physiol. Plant. 2025, 177, e70338. [Google Scholar] [CrossRef] [PubMed]
- Roig-Oliver, M.; Flexas, J.; Clemente-Moreno, M.J.; Carriquí, M. Cell wall composition in relation to photosynthesis across land plants’ phylogeny: Crops as outliers. New Phytol. 2025, 246, 2384–2391. [Google Scholar] [CrossRef]
- Centritto, M.; Loreto, F.; Chartzoulakis, K. The use of low [CO2] to estimate diffusional and non-diffusional limitations of photosynthetic capacity of salt-stressed olive saplings. Plant Cell Environ. 2003, 26, 585–594. [Google Scholar] [CrossRef]
- Loreto, F.; Centritto, M.; Chartzoulakis, K. Photosynthetic limitations in olive cultivars with different sensitivity to salt stress. Plant Cell Environ. 2003, 26, 595–601. [Google Scholar] [CrossRef]
- Flexas, J.; Bota, J.; Loreto, F.; Cornic, G.; Sharkey, T.D. Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biol. 2004, 6, 269–279. [Google Scholar] [CrossRef]
- Flexas, J.; Ribas-Carbó, M.; Bota, J.; Galmés, J.; Henkle, M.; Martínez-Cañellas, S.; Medrano, H. Decreased Rubisco activity during water stress is not induced by decreased relative water content but related to conditions of low stomatal conductance and chloroplast CO2 concentration. New Phytol. 2006, 172, 73–82. [Google Scholar] [CrossRef]
- Chaves, M.M.; Flexas, J.; Pinheiro, C. Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell. Ann. Bot. 2009, 103, 551–560. [Google Scholar] [CrossRef]
- Poorter, H.; Niinemets, Ü.; Poorter, L.; Wright, I.J.; Villar, R. Causes and consequences of variation in leaf mass per area (LMA): A meta-analysis. New Phytol. 2009, 182, 565–588. [Google Scholar] [CrossRef]
- Binks, O.; Meir, P.; Rowland, L.; Lola da Costa, A.C.; Vasconcelos, S.S.; Ribeiro de Oliveira, A.A.; Ferreira, L.; Mencuccini, M. Limited acclimation in leaf anatomy to experimental drought in tropical rainforest trees. Tree Physiol. 2016, 36, 1550–1561. [Google Scholar] [CrossRef] [PubMed]
- Bushey, J.A.; Hoffman, A.M.; Gleason, S.M.; Smith, M.D.; Ocheltree, T.W. Water limitation reveals local adaptation and plasticity in the drought tolerance strategies of Boutelouagracilis. Ecosphere 2023, 14, e4335. [Google Scholar] [CrossRef]
- Nadal, M.; Roig-Oliver, M.; Bota, J.; Flexas, J. Leaf age-dependent elastic adjustment and photosynthetic performance under drought stress in Arbutus unedo seedlings. Flora 2020, 271, 151662. [Google Scholar] [CrossRef]
- Chartzoulakis, K.; Patakas, A.; Kofidis, G.; Bosabalidis, A.; Nastou, A. Water stress affects leaf anatomy, gas exchange, water relations and growth of two avocado cultivars. Sci. Hortic. 2002, 95, 39–50. [Google Scholar] [CrossRef]
- Tosens, T.; Niinemets, Ü.; Vislap, V.; Eichelmann, H.; Castro-Díez, P. Developmental changes in mesophyll diffusion conductance and photosynthetic capacity under different light and water availabilities in Populus tremula: How structure constrains function. Plant Cell Environ. 2012, 35, 839–856. [Google Scholar] [CrossRef]
- Tomás, M.; Medrano, H.; Brugnoli, E.; Escalona, J.M.; Martorell, S.; Pou, A.; Ribas-Carbó, M.; Flexas, J. Genotypic variability of mesophyll conductance. Aust. J. Grape Wine Res. 2014, 20, 272–280. [Google Scholar] [CrossRef]
- Sweet, W.J.; Morrison, J.C.; Labavitch, J.; Matthews, M.A. Altered synthesis and composition of cell wall of grape (Vitis vinifera L.) leaves during expansion and growth inhibiting water deficits. Plant Cell Physiol. 1900, 31, 407–414. [Google Scholar]
- Rondeau-Mouro, C.; Defer, D.; Lahaye, M. Assessment of cell wall porosity in Arabidopsisthaliana by NMR spectroscopy. Int. J. Biol. Macromol. 2008, 42, 83–92. [Google Scholar] [CrossRef]
- Cosgrove, D.J. Diffusive growth of plant cell walls. Plant Physiol. 2018, 176, 16–27. [Google Scholar] [CrossRef]
- Solecka, D.; Zebrowski, J.; Kacperska, A. Are pectins involved in cold acclimation and de-acclimation of winter oil-seed rape plants? Ann. Bot. 2008, 101, 521–530. [Google Scholar] [CrossRef]
- Baldwin, L.; Domon, J.M.; Klimek, J.F.; Fournet, F.; Sellier, H.; Gillet, F.; Pelloux, J.; Lejeune-Hénaut, I.; Carpita, N.C.; Rayon, C. Structural alteration of cell wall pectins accompanies pea development in response to cold. Phytochemistry 2014, 104, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Weraduwage, S.M.; Kim, S.J.; Renna, L.; Anozie, F.C.; Sharkey, T.D.; Brandizzi, F. Pectin methylesterification impacts the relationship between photosynthesis and plant growth in Arabidopsis thaliana. Plant Physiol. 2016, 171, 833–848. [Google Scholar] [CrossRef] [PubMed]
- Fonollá, A.; Hormaza, J.I.; Losada, J.M. Foliar pectins and physiology of diploid and autotetraploid mango genotypes under water stress. Plants 2023, 12, 3738. [Google Scholar] [CrossRef] [PubMed]
- Ren, T.; Weraduwage, S.M.; Sharkey, T.D. Prospects for enhancing leaf photosynthetic capacity by manipulating mesophyll cell morphology. J. Exp. Bot. 2019, 70, 1153–1165. [Google Scholar] [CrossRef]
- Knauer, J.; Cuntz, M.; Evans, J.R.; Niinemets, Ü.; Tosens, T.; Veromann-Jürgenson, L.L.; Werner, C.; Zaehle, S. Contrasting anatomical and biochemical controls on mesophyll conductance across plant functional types. New Phytol. 2022, 236, 357–368. [Google Scholar] [CrossRef]
- Bok-Rye, L.; Kil-Yong, K.; Woo-Jin, J.; Jean-Christophe, A.; Alain, O.; Tae-Hwan, K. Peroxidases and lignification in relation to the intensity of water-deficit stress in white clover (Trifolium repens L.). J. Exp. Bot. 2007, 58, 1271. [Google Scholar]
- Vincent, D.; Lapierre, C.; Pollet, B.; Cornic, G.; Negroni, L.; Zivy, M. Water deficits affect caffeate O-methyltransferase, lignification, and related enzymes in maize leaves. A proteomic investigation. Plant Physiol. 2005, 137, 949–960. [Google Scholar] [CrossRef]
- Flexas, J.; Niinemets, Ü.; Gallé, A.; Barbour, M.M.; Centritto, M.; Díaz-Espejo, A.; Douthe, C.; Galmés, J.; Ribas-Carbó, M.; Rodríguez, P.L.; et al. Diffusional conductances to CO2 as a target for increasing photosynthesis and photosynthetic water-use efficiency. Photosynt. Res. 2013, 117, 45–59. [Google Scholar] [CrossRef]
- Théroux-Rancourt, G.; Éthier, G.; Pepin, S. Greater efficiency of water use in poplar clones having a delayed response of mesophyll conductance to drought. Tree Physiol. 2015, 35, 172–184. [Google Scholar] [CrossRef]
- Fabre, N.; Reiter, I.M.; Becuwe-Linka, N.; Genty, B.; Rumeau, D. Characterization and expression analysis of genes encoding alpha and beta carbonic anhydrases in Arabidopsis. Plant Cell Environ. 2007, 30, 617–629. [Google Scholar] [CrossRef]
- Groszmann, M.; Osborn, H.L.; Evans, J.R. Carbon dioxide and water transport through plant aquaporins. Plant Cell Environ. 2017, 40, 938–961. [Google Scholar] [CrossRef] [PubMed]
- Salesse-Smith, C.E.; Xiao, Y. Mesophyll conductance and cell wall composition: Insights from a meta-analysis across species. New Phytol. 2025, 246, 2375–2376. [Google Scholar] [CrossRef]
(A) Significant and highly significant correlations considering absolute values for control, salt stress and short-term water deficit stress treatments. | ||||||||||||||||
AN | gs | gm | ETR | WUE | gm/gs | LMA | LD | Tleaf | fias | Tcw | Sc/S | Cel. | Hemicel. | Pectins | P/(C + H) | |
AN | 0.87 | 0.85 | 0.87 | −0.56 | −0.38 | −0.42 | 0.53 | 0.61 | −0.35 | −0.51 | ||||||
gs | 0.63 | 0.74 | −0.78 | −0.57 | −0.41 | −0.38 | 0.61 | −0.48 | ||||||||
gm | 0.72 | −0.49 | 0.53 | −0.54 | −0.46 | |||||||||||
ETR | −0.45 | −0.41 | ||||||||||||||
WUE | 0.81 | 0.37 | 0.64 | 0.4 | ||||||||||||
gm/gs | 0.51 | 0.36 | 0.75 | |||||||||||||
LMA | 0.69 | −0.69 | ||||||||||||||
LD | −0.53 | |||||||||||||||
Tleaf | −0.68 | 0.5 | 0.43 | |||||||||||||
fias | ||||||||||||||||
Tcw | −0.49 | |||||||||||||||
Sc/S | ||||||||||||||||
Cel. | −0.54 | |||||||||||||||
Hemicel. | −0.74 | |||||||||||||||
Pectins | ||||||||||||||||
P/(C + H) | ||||||||||||||||
(B) Significant and highly significant correlations considering relativized to control values for salt and short-term water deficit stresses conditions. | ||||||||||||||||
AN | gs | gm | ETR | WUE | gm/gs | LMA | LD | Tleaf | fias | Tcw | Sc/S | Cel. | Hemicel. | Pectins | P/(C + H) | |
AN | 0.61 | −0.52 | ||||||||||||||
gs | ||||||||||||||||
gm | −0.57 | |||||||||||||||
ETR | ||||||||||||||||
WUE | 0.6 | |||||||||||||||
gm/gs | ||||||||||||||||
LMA | 0.88 | 0.82 | −0.73 | |||||||||||||
LD | 0.71 | −0.55 | 0.77 | −0.63 | ||||||||||||
Tleaf | ||||||||||||||||
fias | ||||||||||||||||
Tcw | ||||||||||||||||
Sc/S | −0.82 | |||||||||||||||
Cel. | ||||||||||||||||
Hemicel. | −0.68 | |||||||||||||||
Pectins | 0.62 | |||||||||||||||
P/(C + H) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roig-Oliver, M.; Bota, J.; Flexas, J. Pectins as Brakes? Their Potential Implication in Adjusting Mesophyll Conductance Under Water Deficit and Salt Stresses. Plants 2025, 14, 2180. https://doi.org/10.3390/plants14142180
Roig-Oliver M, Bota J, Flexas J. Pectins as Brakes? Their Potential Implication in Adjusting Mesophyll Conductance Under Water Deficit and Salt Stresses. Plants. 2025; 14(14):2180. https://doi.org/10.3390/plants14142180
Chicago/Turabian StyleRoig-Oliver, Margalida, Josefina Bota, and Jaume Flexas. 2025. "Pectins as Brakes? Their Potential Implication in Adjusting Mesophyll Conductance Under Water Deficit and Salt Stresses" Plants 14, no. 14: 2180. https://doi.org/10.3390/plants14142180
APA StyleRoig-Oliver, M., Bota, J., & Flexas, J. (2025). Pectins as Brakes? Their Potential Implication in Adjusting Mesophyll Conductance Under Water Deficit and Salt Stresses. Plants, 14(14), 2180. https://doi.org/10.3390/plants14142180