7th International Conference on Duckweed Research and Applications: Depicting an Era of Advancing Research Translation Toward Practical Applications
Abstract
1. Introduction
2. Genomics and Cell Biology
3. Diversity, Ecology, Evolution
4. Physiology, Reproduction, Metabolomics
5. Microbiome and Interactions
6. Applications
7. Future of Duckweeds: Nine “Famous” Problems in Duckweed Research and Applications
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Oláh, V.; Appenroth, K.J.; Sree, K.S. Duckweed: Research Meets Applications. Plants 2023, 12, 3307. [Google Scholar] [CrossRef]
- Buendía-Ávila, D.; Marí-Ordóñez, A. 10 years of duckweed genomes; current achievements and future challenges. Duckweed Form. 2024, 12, 34–37. [Google Scholar]
- Ernst, E.; Abramson, B.; Acosta, K.; Hoang, P.T.N.; Mateo-Elizalde, C.; Schubert, V.; Pasaribu, B.; Hartwick, N.; Colt, K.; Aylward, A.; et al. The genomes and epigenomes of aquatic plants (Lemnaceae) promote triploid hybridization and clonal reproduction. bioRxiv 2023. [Google Scholar] [CrossRef]
- Michael, T.P.; Ernst, E.; Hartwick, N.; Chu, P.; Bryant, D.; Gilbert, S.; Ortleb, S.; Baggs, E.L.; Sree, K.S.; Appenroth, K.J.; et al. Genome and time-of-day transcriptome of Wolffia australiana link morphological minimization with gene loss and less growth control. Genome Res. 2021, 31, 225–238. [Google Scholar] [CrossRef]
- Sree, K.S.; Maheshwari, S.C.; Boka, K.; Khurana, J.P.; Keresztes, A.; Appenroth, K.J. The duckweed Wolffia microscopica: A unique aquatic monocot. Flora 2015, 210, 31–39. [Google Scholar] [CrossRef]
- Landolt, E. The family of Lemnaceae—A monographic study. In Biosystematic Investigations in the Family of Duckweeds (Lemnaceae); Veroffentlichungen Geobotanisches Institut Rubel ETH, Stiftung Ruebel: Zurich, Switzerland, 1986; Volume 1. [Google Scholar]
- Chmilar, S.L.; Laird, R.A. Demographic senescence in the aquatic plant Lemna gibba L. (Araceae). Aquat. Bot. 2019, 153, 29–32. [Google Scholar] [CrossRef]
- Ware, A.; Jones, D.H.; Flis, P.; Chrysanthou, E.; Smith, K.; Kümpers, B.M.C.; Yant, L.; Atkinson, J.; Wells, D.M.; Bhosale, R.; et al. Loss of ancestral function in duckweed roots is accompanied by progressive anatomical reduction and a re-distribution of nutrient transporters. Curr. Biol. 2023, 33, 1795–1802. [Google Scholar] [CrossRef]
- Braglia, L.; Lauria, M.; Appenroth, K.J.; Bog, M.; Breviario, D.; Grasso, A.; Gavazzi, F.; Morello, L. Duckweed Species Genotyping and Interspecific Hybrid Discovery by Tubulin-Based Polymorphism Fingerprinting. Front. Plant Sci. 2021, 12, 625670. [Google Scholar] [CrossRef]
- Hoang, P.T.N.; Schubert, V.; Meister, A.; Fuchs, J.; Schubert, I. Variation in genome size, cell and nucleus volume; chromosome number and rDNA loci among duckweeds. Sci. Rep. 2019, 9, 3234. [Google Scholar] [CrossRef]
- Acosta, K.; Appenroth, K.J.; Borisjuk, L.; Edelman, M.; Heinig, U.; Jansen, M.A.K.; Oyama, T.; Pasaribu, B.; Schubert, I.; Sorrels, S.; et al. Return of the Lemnaceae: Duckweed as a model plant system in the genomics and postgenomics era. Plant Cell 2021, 33, 3207–3234. [Google Scholar] [CrossRef]
- Bai, S.N. Plant Morphogenesis 123: A renaissance in modern botany? Sci. China Life Sci. 2019, 62, 453–466. [Google Scholar] [CrossRef]
- Sarin, L.S.; Sree, K.S.; Bóka, K.; Keresztes, Á.; Fuchs, J.; Tyagi, A.K.; Khurana, J.P.; Appenroth, K.J. Characterisation of a spontaneous mutant of Lemna gibba G3 (Lemnaceae). Plants 2023, 12, 2525. [Google Scholar] [CrossRef] [PubMed]
- Oláh, V.; Kosztankó, K.; Irfan, M.; Szabó, Z.B.; Jansen, M.A.K.; Szabó, S.; Mészáros, I. Frond-level analyses reveal functional heterogeneity within heavy metal-treated duckweed colonies. Plant Stress 2024, 11, 100405. [Google Scholar] [CrossRef]
- Peterson, A.; Kishchenko, O.; Kuhlmann, M.; Tschiersch, H.; Fuchs, J.; Tikhenko, N.; Schubert, I.; Nagel, M. Cryopreservation of duckweed genetic diversity as model for long-term preservation of aquatic flowering plants. Plants 2023, 12, 3302. [Google Scholar] [CrossRef] [PubMed]
- Petersen, F.; Demann, J.; von Salzen, J.; Olfs, H.W.; Westendarp, H.; Wolf, P.; Appenroth, K.J.; Ulbrich, A. Re-circulating indoor vertical farm: Technicalities of an automated duckweed biomass production system and protein feed product quality evaluation. J. Clean. Prod. 2022, 380, 134894. [Google Scholar] [CrossRef]
- Szabó, S.; Zavanyi, G.; Koleszár, G.; del Castillo, D.; Oláh, V.; Braun, M. Phytoremediation, recovery and toxic effects of ionic gadolinium using the free-floating plant Lemna gibba. J. Hazard. Mater. 2023, 458, 131930. [Google Scholar] [CrossRef]
- Ziegler, P.; Sree, K.S.; Appenroth, K.J. Duckweed biomarkers for identifying toxic water contaminants? Environ. Sci. Pollut. Res. 2019, 26, 14797–14822. [Google Scholar] [CrossRef]
- Romano, L.E.; van Loon, J.J.W.A.; Izzo, L.G.; Iovane, M.; Aronne, G. Effects of altered gravity on growth and morphology in Wolffia globosa implications for bioregenerative life support systems and space-based agriculture. Sci. Rep. 2024, 14, 410. [Google Scholar] [CrossRef]
- Romano, L.E.; Iovane, M.; Izzo, L.G.; Aronne, G. A machine-learning method to assess growth patterns in plants of the family Lemnaceae. Plants 2022, 11, 1910. [Google Scholar] [CrossRef]
- Ishizawa, H.; Tada, M.; Kuroda, M.; Inoue, D.; Futamata, H.; Ike, M. Synthetic bacterial community of duckweed: A simple and stable system to study plant-microbe interactions. Microbes Environ. 2020, 35, ME20112. [Google Scholar] [CrossRef]
- Ishizawa, H.; Tashiro, Y.; Inoue, D.; Ike, M.; Futamata, H. Learning beyond-pairwise interactions enables the bottom-up prediction of microbial community structure. Proc. Natl. Acad. Sci. USA 2024, 121, e2312396121. [Google Scholar] [CrossRef] [PubMed]
- Acosta, K.; Sorrels, S.; Chrisler, W.; Huang, W.; Gilbert, S.; Brinkman, T.; Michael, T.P.; Lebeis, S.L.; Lam, E. Optimization of molecular methods for detecting duckweed-associated bacteria. Plants 2023, 12, 872. [Google Scholar] [CrossRef] [PubMed]
- Acosta, K.; Xu, J.; Gilbert, S.; Denison, E.; Brinkman, T.; Lebeis, S.; Lam, E. Duckweed hosts a taxonomically similar bacterial assemblage as the terrestrial leaf microbiome. PLoS ONE 2020, 15, e0228560. [Google Scholar] [CrossRef] [PubMed]
- Bunyoo, C.; Roongsattham, P.; Khumwan, S.; Phonmakham, J.; Wonnapinij, P.; Thamchaipenet, A. Dynamic alteration of microbial communities of duckweeds from nature to nutrient-deficient condition. Plants 2022, 11, 2915. [Google Scholar] [CrossRef]
- Inoue, D.; Hiroshima, N.; Ishizawa, H.; Ike, M. Whole structures, core taxa, and functional properties of duckweed microbiomes. Bioresour. Technol. Rep. 2022, 18, 101060. [Google Scholar] [CrossRef]
- Klamann, L.; Dutta, R.; Ghazaryan, L.; Sela-Adler, M.; Khozin-Goldberg, I.; Gillor, O. Cobalamin production in phototrophic and mixotrophic cultures of nine duckweed species (Lemnaceae). bioRxiv 2023. [Google Scholar] [CrossRef]
- Acosta, K.; Sree, K.S.; Okamoto, N.; Koseki, K.; Sorrels, S.; Jahreis, G.; Watanabe, F.; Appenroth, K.J.; Lam, E. Source of Vitamin B12 in plants of the Lemnaceae family and its production by duckweed-associated bacteria. J. Food Compos. Anal. 2024, 135, 106603. [Google Scholar] [CrossRef]
- Phạm, H.T.T.; Kuroda, S.; Khairina, Y.; Morikawa, M. Creation of a functional duckweed holobiont to reduce nutrient competition with microalgae for high-yield biomass production. Bioresour. Technol. 2025, 421, 132110. [Google Scholar]
- Hilbert, D. Mathematical Problems. Bull. Am. Math. Soc. 1902, 80, 437–479. [Google Scholar] [CrossRef]
- Kaufmann, S. Protein without footprints. Duckweed Forum 2024, 12, 10–11. [Google Scholar]
- Akyüz, A.; Ersus, S. Optimization of Hoagland solution macro-elements as a culture media, for increasing protein content of duckweeds (Lemna minor). Food Chem. 2024, 453, 139647. [Google Scholar] [CrossRef]
- Appenroth, K.J.; Ziegler, P.; Sree, K.S. Accumulation of starch in duckweeds (Lemnaceae), potential energy plants. Physiol. Mol. Biol. Plants 2021, 27, 2621–2633. [Google Scholar] [CrossRef] [PubMed]
- Sree, K.S.; Appenroth, K.J. Starch accumulation in duckweeds (Lemnaceae) induced by nutrient deficiency. Emir. J. Food Agric. 2022, 34, 204–212. [Google Scholar]
- Guo, L.; Fang, Y.; Wang, S.; Xiao, Y.; Yanqian, D.; Jin, Y.L.; Tian, X.; Anping, D.; Liao, Z.; Kaize, H.; et al. Duckweed: A starch-hyperaccumulating plant under cultivation with a combination of nutrient limitation and elevated CO2. Front. Plant Sci. 2025, 16, 1531849. [Google Scholar] [CrossRef]
- Braglia, L.; Ceschin, S.; Iannelli, M.A.; Bog, M.; Fabriani, M.; Frugis, G.; Gavazzi, F.; Giani, S.; Mariani, F.; Muzzi, M.; et al. Characterization of the cryptic interspecific hybrid Lemna × mediterranea by an integrated approach provides new insights into duckweed diversity. J. Exp. Bot. 2024, 75, 3092–3110. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Duchen, P.; Chávez, A.; Sree, K.S.; Appenroth, K.J.; Zhao, H.; Höfer, M.; Huber, M.; Xu, S. Population genomics and epigenomics of Spirodela polyrhiza provide insights into the evolution of facultative asexuality. Commun. Biol. 2024, 7, 581. [Google Scholar] [CrossRef]
- Wei, C.; Hu, Z.; Wang, S.; Tan, X.; Jin, Y.; Yi, Z.; He, K.; Zhao, L.; Chu, Z.; Fang, Y.; et al. An endogenous promoter LpSUT2 discovered in duckweed: A promising transgenic tool for plants. Front. Plant Sci. 2024, 15, 1368284. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Xu, S.; Tang, X.; Zhao, J.; Yu, C.; He, G.; Xu, H.; Wang, S.; Tang, Y.; et al. Efficient genetic transformation and CRISPR/Cas9-mediated genome editing in Lemna aequinoctialis. Plant Biotechnol. J. 2019, 17, 2143–2152. [Google Scholar] [CrossRef]
- Denyer, T.; Wu, P.-J.; Colt, K.; Abramson, B.W.; Pang, Z.; Solansky, P.; Mamerto, A.; Nobori, T.; Ecker, J.R.; Lam, E.; et al. Streamlined spatial and environmental expression signatures characterize the minimalist duckweed Wolffia australiana. Genome Res. 2024, 34, 1106–1120. [Google Scholar] [CrossRef]
- Ziegler, P. The developmental cycle of Spirodela polyrhiza turions: A model for turion-based duckweed overwintering? Plants 2024, 13, 2993. [Google Scholar] [CrossRef]
- Appenroth, K.J.; Ziegler, P.; Sree, K.S. Duckweed as a model organism for investigating plant-microbe interactions in an aquatic environment and its applications. Endocytobiosis Cell Res. 2016, 27, 94–106. [Google Scholar]
- Boonmak, C.; Kettongruang, S.; Buranathong, B.; Morikawa, M.; Duangmal, K. Duckweed-associated bacteria as plant growth-promotor to enhance growth of Spirodela polyrhiza in wastewater effluent from a poultry farm. Arch. Microbiol. 2024, 206, 43. [Google Scholar] [CrossRef] [PubMed]
- Kubota, K.; Otani, T.; Hariu, T.; Jin, T.; Tagawa, T.; Morikawa, M.; Li, Y.-Y. Evaluation of sewage treatment performance and duckweed biomass production efficiency in a primary sedimentation basin + duckweed pond + downflow hanging sponge (PSB + DWP + DHS) system. J. Water Process. Eng. 2024, 65, 105818. [Google Scholar] [CrossRef]
- Jansen, M. Meeting report: Duckweed research and applications for the circular bioeconomy in Ireland. Duckweed Forum 2023, 11, 106–108. [Google Scholar]
- Takács, K.; Végh, R.; Mednyánszky, Z.; Haddad, J.; Allaf, K.; Du, M.; Chen, K.; Kan, J.; Cai, T.; Molnár, P.; et al. New insights into duckweed as an alternative source of food and feed: Key components and potential technological solutions to increase their digestibility and bioaccessibility. Appl. Sci. 2025, 15, 884. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Appenroth, K.J.; Oláh, V.; Ishizawa, H.; Sree, K.S. 7th International Conference on Duckweed Research and Applications: Depicting an Era of Advancing Research Translation Toward Practical Applications. Plants 2025, 14, 2143. https://doi.org/10.3390/plants14142143
Appenroth KJ, Oláh V, Ishizawa H, Sree KS. 7th International Conference on Duckweed Research and Applications: Depicting an Era of Advancing Research Translation Toward Practical Applications. Plants. 2025; 14(14):2143. https://doi.org/10.3390/plants14142143
Chicago/Turabian StyleAppenroth, Klaus J., Viktor Oláh, Hidehiro Ishizawa, and K. Sowjanya Sree. 2025. "7th International Conference on Duckweed Research and Applications: Depicting an Era of Advancing Research Translation Toward Practical Applications" Plants 14, no. 14: 2143. https://doi.org/10.3390/plants14142143
APA StyleAppenroth, K. J., Oláh, V., Ishizawa, H., & Sree, K. S. (2025). 7th International Conference on Duckweed Research and Applications: Depicting an Era of Advancing Research Translation Toward Practical Applications. Plants, 14(14), 2143. https://doi.org/10.3390/plants14142143