A Comparison of the Effects of Phycocyanin, γ-Aminobutyric Acid, Glycine Betaine, and Mycorrhizal Biostimulants of Non-Stressed Agrostis stolonifera
Abstract
1. Introduction
2. Results
2.1. Effect of Foliar Phycocyanin on Greenness and Biomass of Six Creeping Bentgrass Cultivars
2.2. Effect of Foliar γ-Aminobutyric Acid on Greenness and Biomass of Six Creeping Bentgrass Cultivars
2.3. Effect of Foliar Glycine Betaine on Greenness and Biomass of Six Creeping Bentgrass Cultivars
2.4. Effect of Foliar Rhizophagus Intraradices on Greenness and Biomass of Six Creeping Bentgrass Cultivars
3. Discussion
3.1. Introduction
3.2. Phycocyanin
3.3. γ-Aminobutyric Acid
3.4. Glycine Betaine
3.5. Rhizophagus intraradices
3.6. Comparisons and Outcomes
4. Materials and Methods
4.1. Biological Materials
4.2. Treatments
4.3. Assessments
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ALA | 5-aminolevulinic acid |
ANOVA | analysis of variance |
AMF | arbuscular mycorrhizal fungus |
DGCI | dark green color index |
DPT | days post treatment |
GABA | γ-aminobutyric acid |
GB | glycine betaine |
GTI | Guelph Turfgrass Institute |
MYKE PRO | Rhizophagus intraradices |
PROC GLM | general linear model procedure |
RGB | red, green, and blue |
References
- Lewandowski, I.; Scurlock, J.M.O.; Lindvall, E.; Christou, M. The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenergy 2003, 25, 335–361. [Google Scholar]
- Beard, J.B.; Green, R.L. The role of turfgrass in environmental protection and their benefits to humans. J. Environ. Qual. 1994, 23, 452–460. [Google Scholar]
- Turgeon, A.J. Turfgrass Management, 7th ed.; Prentice Hall: Englewood Cliffs, NJ, USA, 2005. [Google Scholar]
- Beard, J.B. Turfgrass water stress: Drought resistance components, physiological mechanisms, and species-genotype diversity. In Proceedings of the 6th International Turfgrass Research Conference, Tokyo, Japan, 31 July–5 August 1989; Japanese Society of Turfgrass Science: Tokyo, Japan, 1989. [Google Scholar]
- Yakhin, O.I.; Lubyanov, A.A.; Yakhin, I.A.; Brown, P.H. Biostimulants in plant science: A global perspective. Front. Plant Sci. 2017, 7, 2049. [Google Scholar]
- du Jardin, P. Plant biostimulants: Definition, concept, main categories and regulation. Sci. Hortic. 2015, 196, 3–14. [Google Scholar]
- Gopalakrishnan, S.; Sathya, A.; Vijayabharathi, R.; Varshney, R.K.; Gowda, C.L.; Krishnamurthy, L. Plant growth promoting rhizobia: Challenges and opportunities. 3 Biotech 2015, 5, 355–377. [Google Scholar]
- Van Oosten, M.J.; Pepe, O.; De Pascale, S.; Silletti, S.; Maggio, A. The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chem. Biol. Technol. Agric. 2017, 4, 5. [Google Scholar]
- Schmidt, R.E.; Ervin, E.H.; Zhang, X. Questions and answers about biostimulants. Golf Course Manag. 2003, 71, 91–94. [Google Scholar]
- Mackiewicz-Walec, E.; Olszewska, M. Biostimulants in the production of forage grasses and turfgrasses. Agriculture 2023, 13, 1796. [Google Scholar] [CrossRef]
- Li, Z.; Yu, J.; Peng, Y.; Huang, B. Metabolic pathways regulated by γ-aminobutyric acid (GABA) contributing to heat tolerance in creeping bentgrass (Agrostis stolonifera). Sci. Rep. 2016, 6, 30338. [Google Scholar]
- Yong, B.; Xie, H.; Li, Z.; Li, Y.P.; Zhang, Y.; Nie, G.; Zhang, X.Q.; Ma, X.; Huang, L.-K.; Yan, Y.H.; et al. Exogenous application of GABA improves PEG-induced drought tolerance positively associated with GABA-shunt, polyamines, and proline metabolism in white clover. Front. Physiol. 2017, 8, 1107. [Google Scholar]
- Zhang, Q.; Rue, K.; Muelle, J. The effect of glycine betaine priming on seed germination of six turfgrass species under drought, salinity, or temperature stress. HortScience 2014, 49, 1454–1460. [Google Scholar]
- Aalipour, H.; Nikbakht, A.; Ghasemi, M.; Amiri, R. Morpho-physiological and biochemical responses of two turfgrass species to arbuscular mycorrhizal fungi and humic acid under water stress condition. J. Soil Sci. Plant Nutr. 2020, 20, 66–576. [Google Scholar]
- Metwally, R.A.; Abdelhameed, R.E.; Soliman, S.A.; Al-Badwy, A.H. Potential use of beneficial fungal microorganisms and C-phycocyanin extract for enhancing seed germination, seedling growth and biochemical traits of Solanum lycopersicum L. BMC Microbiol. 2022, 22, 108. [Google Scholar]
- Pereira, C.; Dias, M.I.; Petropoulos, S.A.; Plexida, S.; Chrysargyris, A.; Tzortzakis, N.; Calhelha, R.C.; Ivanov, M.; Stojković, D.; Soković, M.; et al. The effects of biostimulants, biofertilizers and water-stress on nutritional value and chemical composition of two spinach genotypes (Spinacia oleracea L.). Molecules 2019, 24, 4494. [Google Scholar] [CrossRef]
- Wadas, W.; Dziugieł, T. Changes in assimilation area and chlorophyll content of very early potato (Solanum tuberosum L.) cultivars as influenced by biostimulants. Agronomy 2020, 10, 387. [Google Scholar] [CrossRef]
- Cortiello, M.; Milc, J.; Sanfelici, A.; Martini, S.; Tagliazucchi, D.; Caccialupi, G.; Ben Hassine, M.; Giovanardi, D.; Francia, E.; Caradonia, F. Genotype and plant biostimulant treatments influence tuber size and quality of potato grown in the pedoclimatic conditions in Northern Apennines in Italy. Int. J. Plant Prod. 2024, 18, 579–599. [Google Scholar]
- Varia, J.; Kamaleson, C.; Lerer, L. Biostimulation with phycocyanin-rich Spirulina extract in hydroponic vertical farming. Sci. Hortic. 2022, 299, 111042. [Google Scholar]
- Glazer, A.N. Light guides. Directional energy transfer in a photosynthetic antenna. J. Biol. Chem. 1989, 264, 1–4. [Google Scholar]
- Eriksen, N.T. Production of phycocyanin—A pigment with applications in biology, biotechnology, foods and medicine. Appl. Microbiol. Biotechnol. 2008, 80, 1–14. [Google Scholar]
- Hotta, Y.; Tanaka, T.; Takaoka, H.; Takeuchi, Y.; Konnai, M. Promotive effects of 5-aminolevulinic acid on the yield of several crops. Plant Growth Regul. 1997, 22, 109–114. [Google Scholar]
- Korkmaz, A. Effects of exogenous application of 5-aminolevulinic acid in crop plants. In Abiotic Stress Responses in Plants; Ahmad, P., Prasad, M.N.V., Eds.; Springer: Berlin, Germany, 2012; pp. 215–234. [Google Scholar]
- Sasaki, K.; Marquez, F.J.; Nishio, N.; Nagai, S. Promotive effect of 5-aminolevulinic acid on the growth and photosynthesis of Spirulina platensis. J. Ferm. Bioeng. 1995, 79, 453–457. [Google Scholar]
- Watanabe, K.E.; Nishihara, W.S.; Tanaka, T.; Takahashi, K.; Takeuchi, Y. Enhancement of growth and fruit maturity in 2-year-old grapevines cv. Delaware by 5-aminolevulinic acid. Plant Growth Regul. 2006, 49, 35–42. [Google Scholar]
- Lerer, L.; Kamaleson, C. Growth, yield, and quality in hydroponic vertical farming—Effects of phycocyanin-rich Spirulina extract. Preprints 2020, 202011.0354. [Google Scholar]
- Decesaro, A.; Rampel, A.; Machado, T.S.; Thomé, A.; Reddy, K.; Margarites, A.C.; Colla, L.M. Bioremediation of soil contaminated with diesel and biodiesel fuel using biostimulation with microalgae biomass. J. Environ. Eng. 2017, 143, 04016091. [Google Scholar]
- Shelp, B.J.; Bown, A.W.; McLean, M.D. Metabolism and functions of gamma-aminobutyric acid. Trends Plant Sci. 1999, 4, 446–452. [Google Scholar] [PubMed]
- Jiang, Y. Application of gamma-aminobutyric acid and nitric oxide on turfgrass stress resistance: Current knowledge and perspectives. Grass Res. 2023, 3, 3. [Google Scholar]
- Li, Z.; Peng, Y.; Huang, B. Alteration of transcripts of stress-protective genes and transcriptional factors by γ-aminobutyric acid (GABA) associated with improved heat and drought tolerance in creeping bentgrass (Agrostis stolonifera). Int. J. Mol. Sci. 2018, 19, 1623. [Google Scholar]
- Li, Z.; Cheng, B.; Zeng, W.; Zhang, X.; Peng, Y. Proteomic and metabolomic profilings reveal crucial functions of γ-aminobutyric acid in regulating ionic, water, and metabolic homeostasis in creeping bentgrass under salt stress. J. Proteome Res. 2020, 19, 769–780. [Google Scholar]
- Li, W.; Liu, J.; Ashraf, U.; Li, G.; Li, Y.; Lu, W.; Gao, L.; Han, F.; Hu, J. Exogenous γ-aminobutyric acid (GABA) application improved early growth, net photosynthesis, and associated physio-biochemical events in maize. Front. Plant Sci. 2016, 7, 919. [Google Scholar]
- Ashraf, M.; Foolad, M.R. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ. Exp. Bot. 2007, 59, 206–216. [Google Scholar]
- Burgess, P.; Huang, B. Effects of sequential application of plant growth regulators and osmoregulants on drought tolerance of creeping bentgrass (Agrostis stolonifera). Crop Sci. 2014, 54, 837–844. [Google Scholar]
- Mahdavi, S.; Kafi, M.; Fallahi, E.; Shokrpour, M.; Tabrizi, L. Drought and biostimulant impacts on mineral nutrients, ambient and reflected light-based chlorophyll index, and performance of perennial ryegrass. J. Plant Nutr. 2017, 40, 2248–2258. [Google Scholar]
- Lou, Y.; Yang, Y.; Hu, L.; Liu, H.; Xu, Q. Exogenous glycine betaine alleviates the detrimental effect of Cd stress on perennial ryegrass. Ecotoxicology 2015, 24, 1330–1340. [Google Scholar] [PubMed]
- Hu, L.X.; Hu, T.; Zhang, X.Z.; Pang, H.C.; Fu, J.M. Exogenous glycine betaine ameliorates the adverse effect of salt stress on perennial ryegrass. J. Am. Soc. Hort. Sci. 2012, 137, 38–46. [Google Scholar]
- Giovannini, L.; Palla, M.; Agnolucci, M.; Avio, L.; Sbrana, C.; Turrini, A.; Giovannetti, M. Arbuscular mycorrhizal fungi and associated microbiota as plant biostimulants: Research strategies for the selection of the best performing inocula. Agronomy 2020, 10, 106. [Google Scholar] [CrossRef]
- Pelletier, S.; Dionne, J. Inoculation rate of arbuscular-mycorrhizal fungi Glomus intraradices and Glomus etunicatum affects establishment of landscape turf with no irrigation or fertilizer inputs. Crop Sci. 2004, 44, 335–338. [Google Scholar]
- Mahdavi, E.; Mohammad, S.; Salehi, H.; Zarei, M. Can arbuscular mycorrhizal fungi ameliorate the adverse effects of deficit irrigation on tall fescue (Festuca arundinacea Schreb.)? J. Soil Sci. Plant Nut. 2018, 18, 636–652. [Google Scholar]
- Salehi, M.; Gholamipourfard, K.; Noroozisharaf, A. Growth and biochemicals assessment of some landscape turfgrasses under Cd toxicity through bio-inoculation system. J. Plant Process Func. 2023, 11, 21–32. [Google Scholar]
- Onyeaka, H.N.; Akinsemolu, A.A.; Siyanbola, K.F.; Adetunji, V.A. Green microbe profile: Rhizophagus intraradices—A review of benevolent fungi promoting plant health and sustainability. Microbiol. Res. 2024, 15, 1028–1049. [Google Scholar]
- Rouphael, Y.; Colla, G. Synergistic biostimulatory action: Designing the next generation of plant biostimulants for sustainable agriculture. Front. Plant Sci. 2018, 9, 1655. [Google Scholar]
- Karcher, D.E.; Richardson, M.D. Quantifying turfgrass color using digital image analysis. Crop Sci. 2003, 43, 943–951. [Google Scholar]
Cultivar | Greenness Index a | |||||||
---|---|---|---|---|---|---|---|---|
7 DPT | 14 DPT | 21 DPT | 28 DPT | |||||
Phycocyanin b | Water | Phycocyanin | Water | Phycocyanin | Water | Phycocyanin | Water | |
Alpha | 0.607 * | 0.565 | 0.585 | 0.585 | 0.578 * | 0.502 | 0.554 * | 0.490 |
Focus | 0.597 * | 0.548 | 0.584 * | 0.543 | 0.502 | 0.518 | 0.549 * | 0.501 |
007 | 0.591 * | 0.552 | 0.570 * | 0.546 | 0.567 * | 0.514 | 0.540 | 0.492 |
Penncross | 0.596 * | 0.561 | 0.588 * | 0.545 | 0.570 * | 0.505 | 0.562 * | 0.490 |
T1 | 0.590 * | 0.539 | 0.584 * | 0.548 | 0.550 * | 0.517 | 0.545 * | 0.503 |
Tyee | 0.590 * | 0.550 | 0.587 * | 0.552 | 0.567 * | 0.508 | 0.551 * | 0.495 |
Cultivar | 7 DPT | 14 DPT | 21 DPT | |||
---|---|---|---|---|---|---|
Fresh Weight (mg) a | ||||||
Phycocyanin b | Water | Phycocyanin | Water | Phycocyanin | Water | |
Alpha | 0.118 * | 0.087 | 0.132 | 0.132 | 0.079 * | 0.069 |
Focus | 0.112 * | 0.095 | 0.151 * | 0.092 | 0.079 * | 0.041 |
007 | 0.095 * | 0.078 | 0.130 * | 0.086 | 0.068 * | 0.040 |
Penncross | 0.103 | 0.100 | 0.125 * | 0.076 | 0.084 * | 0.036 |
T1 | 0.109 | 0.106 | 0.128 * | 0.096 | 0.076 * | 0.044 |
Tyee | 0.087 * | 0.067 | 0.132 * | 0.078 | 0.068 * | 0.040 |
Dry Weight (mg) a | ||||||
Alpha | 0.027 * | 0.021 | 0.026 | 0.026 | 0.021 * | 0.015 |
Focus | 0.027 * | 0.020 | 0.029 * | 0.018 | 0.018 * | 0.013 |
007 | 0.027 * | 0.020 | 0.024 * | 0.019 | 0.019 * | 0.012 |
Penncross | 0.022 * | 0.017 | 0.024 * | 0.015 | 0.020 * | 0.012 |
T1 | 0.024 | 0.021 | 0.024 * | 0.019 | 0.021 * | 0.014 |
Tyee | 0.025 | 0.021 | 0.023 * | 0.014 | 0.019 * | 0.014 |
Cultivar | Shoot | Root | ||||||
---|---|---|---|---|---|---|---|---|
Fresh Weight (mg) a | Dry Weight (mg) a | Fresh Weight (mg) a | Dry Weight (mg) a | |||||
28 DPT | 28 DPT | 28 DPT | 28 DPT | |||||
Phycocyanin b | Water | Phycocyanin b | Water | Phycocyanin b | Water | Phycocyanin b | Water | |
Alpha | 0.730 * | 0.613 | 0.091 * | 0.075 | 0.982 | 1.073 | 0.103 | 0.105 |
Focus | 0.914 * | 0.829 | 0.095 | 0.108 | 1.234 | 1.236 | 0.110 * | 0.098 |
007 | 0.881 * | 0.728 | 0.085 | 0.097 | 1.419 * | 1.203 | 0.117 * | 0.098 |
Penncross | 0.840 * | 0.713 | 0.115 * | 0.097 | 1.202 | 1.435 | 0.119 * | 0.099 |
T1 | 0.875 * | 0.794 | 0.133 * | 0.105 | 1.096 | 1.057 | 0.138 * | 0.079 |
Tyee | 0.782 * | 0.711 | 0.083 | 0.101 | 1.043 * | 1.031 | 0.094 * | 0.087 |
Cultivar | Greenness Index a | |||||||
---|---|---|---|---|---|---|---|---|
7 DPT | 14 DPT | 21 DPT | 28 DPT | |||||
GABA b | Water | GABA | Water | GABA | Water | GABA | Water | |
Alpha | 0.588 * | 0.551 | 0.535 | 0.535 | 0.551 * | 0.538 | 0.510 | 0.527 |
Focus | 0.550 | 0.549 | 0.525 * | 0.511 | 0.527 * | 0.508 | 0.489 * | 0.480 |
007 | 0.546 | 0.548 | 0.538 * | 0.504 | 0.538 * | 0.512 | 0.475 | 0.487 |
Penncross | 0.562 | 0.559 | 0.535 | 0.536 | 0.532 * | 0.521 | 0.485 * | 0.464 |
T1 | 0.523 | 0.542 | 0.524 | 0.521 | 0.539 * | 0.509 | 0.487 | 0.494 |
Tyee | 0.501 | 0.507 | 0.541 * | 0.533 | 0.537 * | 0.527 | 0.485 | 0.487 |
Cultivar | 7 DPT | 14 DPT | 21 DPT | |||
---|---|---|---|---|---|---|
Fresh Weight (mg) a | ||||||
GABA b | Water | GABA | Water | GABA | Water | |
Alpha | 0.045 | 0.053 | 0.055 | 0.056 | 0.036 * | 0.029 |
Focus | 0.059 | 0.060 | 0.057 | 0.057 | 0.032 | 0.027 |
007 | 0.065 * | 0.048 | 0.053 | 0.065 | 0.032 | 0.034 |
Penncross | 0.061 * | 0.053 | 0.065 | 0.070 | 0.033 | 0.030 |
T1 | 0.052 | 0.064 | 0.061 | 0.071 | 0.043 * | 0.036 |
Tyee | 0.057 | 0.059 | 0.070 * | 0.064 | 0.034 | 0.035 |
Dry Weight (mg) a | ||||||
Alpha | 0.010 | 0.013 | 0.015 | 0.015 | 0.011 * | 0.009 |
Focus | 0.014 | 0.015 | 0.015 | 0.015 | 0.012 * | 0.010 |
007 | 0.014 | 0.013 | 0.012 | 0.014 | 0.012 | 0.011 |
Penncross | 0.012 | 0.012 | 0.014 | 0.017 | 0.012 * | 0.008 |
T1 | 0.014 | 0.013 | 0.014 | 0.016 | 0.012 * | 0.010 |
Tyee | 0.013 | 0.013 | 0.017 | 0.015 | 0.011 | 0.012 |
Cultivar | Shoot | Root | ||||||
---|---|---|---|---|---|---|---|---|
Fresh Weight (mg) a | Dry Weight (mg) a | Fresh Weight (mg) a | Dry Weight (mg) a | |||||
28 DPT | 28 DPT | 28 DPT | 28 DPT | |||||
GABA b | Water | GABA | Water | GABA | Water | GABA | Water | |
Alpha | 0.599 * | 0.509 | 0.071 * | 0.065 | 1.038 * | 0.733 | 0.089 * | 0.069 |
Focus | 0.819 * | 0.756 | 0.093 | 0.097 | 1.438 * | 1.046 | 0.104 | 0.104 |
007 | 0.858 * | 0.724 | 0.105 * | 0.086 | 1.443 * | 1.067 | 0.143 * | 0.091 |
Penncross | 0.670 * | 0.391 | 0.077 * | 0.073 | 1.465 * | 0.758 | 0.091 * | 0.070 |
T1 | 0.757 * | 0.669 | 0.087 * | 0.067 | 1.355 * | 0.867 | 0.141 * | 0.076 |
Tyee | 0.969 * | 0.736 | 0.060 | 0.084 | 1.504 * | 0.853 | 0.070 | 0.075 |
Cultivar | Greenness Index a | |||||||
---|---|---|---|---|---|---|---|---|
7 DPT | 14 DPT | 21 DPT | 28 DPT | |||||
GB b | Water | GB | Water | GB | Water | GB | Water | |
Alpha | 0.582 * | 0.551 | 0.544 | 0.535 | 0.555 * | 0.538 | 0.513 | 0.527 |
Focus | 0.561 * | 0.549 | 0.511 | 0.511 | 0.544 * | 0.508 | 0.495 * | 0.480 |
007 | 0.571 * | 0.548 | 0.527 * | 0.504 | 0.543 * | 0.512 | 0.502 * | 0.487 |
Penncross | 0.557 | 0.559 | 0.504 | 0.536 | 0.542 * | 0.521 | 0.518 * | 0.464 |
T1 | 0.528 | 0.542 | 0.528 * | 0.521 | 0.538 * | 0.509 | 0.500 * | 0.494 |
Tyee | 0.530 * | 0.507 | 0.536 | 0.533 | 0.547 * | 0.527 | 0.502 * | 0.487 |
Cultivar | 7 DPT | 14 DPT | 21 DPT | |||
---|---|---|---|---|---|---|
Fresh Weight (mg) a | ||||||
GB b | Water | GB | Water | GB | Water | |
Alpha | 0.044 | 0.053 | 0.068 * | 0.056 | 0.039 * | 0.029 |
Focus | 0.059 | 0.060 | 0.057 | 0.057 | 0.059 * | 0.027 |
007 | 0.060 * | 0.048 | 0.084 * | 0.065 | 0.050 * | 0.034 |
Penncross | 0.058 | 0.056 | 0.065 | 0.070 | 0.044 * | 0.030 |
T1 | 0.053 | 0.061 | 0.080 * | 0.071 | 0.045 * | 0.036 |
Tyee | 0.057 | 0.059 | 0.070 * | 0.064 | 0.060 * | 0.035 |
Dry Weight (mg) a | ||||||
Alpha | 0.013 | 0.013 | 0.013 | 0.015 | 0.013 * | 0.009 |
Focus | 0.013 | 0.015 | 0.015 | 0.015 | 0.017 * | 0.010 |
007 | 0.014 | 0.013 | 0.016 * | 0.014 | 0.016 * | 0.011 |
Penncross | 0.013 | 0.012 | 0.014 | 0.017 | 0.015 * | 0.008 |
T1 | 0.014 | 0.013 | 0.016 | 0.016 | 0.013 | 0.010 |
Tyee | 0.013 | 0.013 | 0.017 * | 0.015 | 0.017 * | 0.012 |
Cultivar | Shoot | Root | ||||||
---|---|---|---|---|---|---|---|---|
Fresh Weight (mg) a | Dry Weight (mg) a | Fresh Weight (mg) a | Dry Weight (mg) a | |||||
28 DPT | 28 DPT | 28 DPT | 28 DPT | |||||
GB b | Water | GB | Water | GB b | Water | GB | Water | |
Alpha | 0.784 * | 0.509 | 0.072 * | 0.065 | 0.968 * | 0.733 | 0.013 * | 0.009 |
Focus | 0.915 * | 0.756 | 0.089 | 0.097 | 1.324 * | 1.046 | 0.017 * | 0.010 |
007 | 1.002 * | 0.724 | 0.092 * | 0.086 | 1.195 * | 1.067 | 0.016 * | 0.011 |
Penncross | 0.810 * | 0.540 | 0.086 * | 0.073 | 1.087 * | 0.758 | 0.015 * | 0.008 |
T1 | 0.915 * | 0.669 | 0.083 * | 0.067 | 1.157 * | 0.867 | 0.013 * | 0.010 |
Tyee | 1.041 * | 0.736 | 0.105 * | 0.084 | 1.371 * | 0.853 | 0.017 * | 0.012 |
Cultivar | Greenness Index a | |||||||
---|---|---|---|---|---|---|---|---|
7 DPT | 14 DPT | 21 DPT | 28 DPT | |||||
MYKE PRO b | Water | MYKE PRO | Water | MYKE PRO | Water | MYKE PRO | Water | |
Alpha | 0.580 * | 0.566 | 0.577 * | 0.568 | 0.485 | 0.490 | 0.515 * | 0.504 |
Focus | 0.570 * | 0.545 | 0.551 | 0.551 | 0.506 | 0.510 | 0.499 | 0.516 |
007 | 0.562 | 0.560 | 0.563 * | 0.556 | 0.501 | 0.506 | 0.497 | 0.498 |
Penncross | 0.572 * | 0.562 | 0.556 * | 0.550 | 0.492 | 0.491 | 0.498 * | 0.491 |
T1 | 0.577 * | 0.537 | 0.557 | 0.558 | 0.516 * | 0.502 | 0.506 * | 0.502 |
Tyee | 0.566 * | 0.554 | 0.550 | 0.565 | 0.508 * | 0.493 | 0.515 * | 0.505 |
Cultivar | 7 DPT | 14 DPT | 21 DPT | |||
---|---|---|---|---|---|---|
Fresh Weight (mg) a | ||||||
MYKE PRO b | Water | MYKE PRO | Water | MYKE PRO | Water | |
Alpha | 0.126 * | 0.096 | 0.073 | 0.085 | 0.022 | 0.035 |
Focus | 0.095 | 0.110 | 0.105 | 0.105 | 0.029 | 0.034 |
007 | 0.139 * | 0.100 | 0.093 * | 0.088 | 0.023 | 0.028 |
Penncross | 0.095 * | 0.080 | 0.088 | 0.084 | 0.022 | 0.026 |
T1 | 0.106 | 0.126 | 0.110 | 0.112 | 0.027 | 0.035 |
Tyee | 0.074 | 0.107 | 0.084 | 0.088 | 0.029 * | 0.019 |
Dry Weight (mg) a | ||||||
Alpha | 0.023 * | 0.021 | 0.019 * | 0.017 | 0.010 | 0.015 |
Focus | 0.022 * | 0.020 | 0.020 | 0.020 | 0.012 | 0.012 |
007 | 0.027 * | 0.020 | 0.023 * | 0.019 | 0.009 | 0.010 |
Penncross | 0.021 * | 0.017 | 0.019 * | 0.017 | 0.009 | 0.010 |
T1 | 0.022 * | 0.020 | 0.024 * | 0.021 | 0.012 | 0.012 |
Tyee | 0.021 | 0.021 | 0.017 | 0.016 | 0.008 | 0.013 |
Cultivar | Shoot | Root | ||||||
---|---|---|---|---|---|---|---|---|
Fresh Weight (mg) a | Dry Weight (mg) a | Fresh Weight (mg) a | Dry Weight (mg) a | |||||
28 DPT | 28 DPT | 28 DPT | 28 DPT | |||||
MYKE PRO b | Water | MYKE PRO | Water | MYKE PRO | Water | MYKE PRO | Water | |
Alpha | 0.663 | 0.706 | 0.094 * | 0.081 | 1.079 | 1.151 | 0.134 * | 0.100 |
Focus | 0.839 | 0.967 | 0.142 * | 0.118 | 1.172 | 1.587 | 0.110 | 0.110 |
007 | 0.781 | 0.826 | 0.126 * | 0.105 | 1.332 | 1.515 | 0.131 * | 0.107 |
Penncross | 0.648 | 0.819 | 0.107 | 0.109 | 1.081 | 1.651 | 0.107 | 0.102 |
T1 | 0.714 | 0.916 | 0.104 | 0.117 | 0.921 | 1.183 | 0.138 * | 0.090 |
Tyee | 0.656 | 0.822 | 0.091 | 0.114 | 0.850 | 1.213 | 0.102 * | 0.095 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suárez, I.D.S.; Hsiang, T.; Goodwin, P.H. A Comparison of the Effects of Phycocyanin, γ-Aminobutyric Acid, Glycine Betaine, and Mycorrhizal Biostimulants of Non-Stressed Agrostis stolonifera. Plants 2025, 14, 2110. https://doi.org/10.3390/plants14142110
Suárez IDS, Hsiang T, Goodwin PH. A Comparison of the Effects of Phycocyanin, γ-Aminobutyric Acid, Glycine Betaine, and Mycorrhizal Biostimulants of Non-Stressed Agrostis stolonifera. Plants. 2025; 14(14):2110. https://doi.org/10.3390/plants14142110
Chicago/Turabian StyleSuárez, Iván Darío Samur, Tom Hsiang, and Paul H. Goodwin. 2025. "A Comparison of the Effects of Phycocyanin, γ-Aminobutyric Acid, Glycine Betaine, and Mycorrhizal Biostimulants of Non-Stressed Agrostis stolonifera" Plants 14, no. 14: 2110. https://doi.org/10.3390/plants14142110
APA StyleSuárez, I. D. S., Hsiang, T., & Goodwin, P. H. (2025). A Comparison of the Effects of Phycocyanin, γ-Aminobutyric Acid, Glycine Betaine, and Mycorrhizal Biostimulants of Non-Stressed Agrostis stolonifera. Plants, 14(14), 2110. https://doi.org/10.3390/plants14142110