In Vitro Mycorrhization for Plant Propagation and Enhanced Resilience to Environmental Stress: A Review
Abstract
1. Introduction
2. Mycorrhizae in Agrosystems
2.1. Enhancing Nutrient Uptake and Promoting Plant Growth
2.2. Improving Soil Structure
2.3. Enhancing Resilience to Abiotic and Biotic Stress
3. In Vitro Mycorrhization: System Description and Evaluation of Plant–Fungus Interactions
3.1. Isolation Methods and Culture Conditions
3.1.1. Selection Criteria for AMF Inoculum
3.1.2. Host Root Selection for AMF Colonization
3.1.3. Culture Medium Choice
3.2. Culture Systems for Mycorrhizal Fungi Production and In Vitro Mycorrhization
3.2.1. The ROC System
3.2.2. Bipartite/Tripartite Culture Systems
3.2.3. The ACS
3.2.4. The Half-Closed AM-Plant System (HAM-p)
3.2.5. The Arbuscular Mycorrhizal–Plant (AM–P) In Vitro Culture System
3.2.6. The MDP System
4. In Vitro Mycorrhization for the Production and Commercialization of AMF, Mycorrhizal Plants and Secondary Metabolites
5. Effects of In Vitro Mycorrhization on Plant Morphology, Physiology, and Biochemical Compounds
6. In Vitro Mycorrhization for Enhancing Resistance to Abiotic and Biotic Stresses
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sammama, H.; Mazri, M.A.; Ouahmane, L.; Sammama, A.; Hsissou, D.; El Kaoua, M.; Alfeddy, M.N. Microbial inoculation improves soil properties, nutrient uptake, and plant growth in soft wheat-faba bean intercropping. J. Soil Sci. Plant Nutr. 2022, 22, 5159–5173. [Google Scholar] [CrossRef]
- Mazri, M.A.; Koufan, M.; Rham, I.; Radi, H.; Belkoura, I. Use of tissue culture methods to improve stress tolerance in plants. In New Frontiers in Plant-Environment Interactions: Innovative Technologies and Developments; Aftab, T., Ed.; Springer: Cham, Switzerland, 2023; pp. 425–460. [Google Scholar] [CrossRef]
- Hayat, K.; Menhas, S.; Ullah, S.; Hayat, S.; Khan, A.A.; Aftab, T.; Liu, W. Plant–microbe interaction in developing climate-resilient crop species. In New Frontiers in Plant-Environment Interactions: Innovative Technologies and Developments; Aftab, T., Ed.; Springer: Cham, Switzerland, 2023; pp. 535–550. [Google Scholar] [CrossRef]
- Khoza, T.; Masenya, A.; Khanyile, N.; Thosago, S. Alleviating plant density and salinity stress in Moringa oleifera using arbuscular mycorrhizal fungi: A review. J. Fungi 2025, 11, 328. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, M.H.M.; Ali, M.M.E.; Zewail, R.M.Y.; Liava, V.; Petropoulos, S.A. The mitigating effects of biostimulant amendments on the response of purslane plants grown under drought stress conditions. Horticulturae 2024, 10, 858. [Google Scholar] [CrossRef]
- Dagher, D.; Taskos, D.; Mourouzidou, S.; Monokrousos, N. Microbial-enhanced abiotic stress tolerance in grapevines: Molecular mechanisms and synergistic effects of arbuscular mycorrhizal fungi, plant growth-promoting rhizobacteria, and endophytes. Horticulturae 2025, 11, 592. [Google Scholar] [CrossRef]
- El-Abeid, S.E.; Balabel, N.M.; Messiha, N.A.S. Mutual relations between arbuscular mycorrhizal fungi and Ralstonia solanacearum in potato brown rot disease. Potato Res. 2025. [Google Scholar] [CrossRef]
- Habte, B.; Dobo, B. The effect of compost and biochar amendments, as well as the inoculation of arbuscular mycorrhizal fungi and Trichoderma harzianum, on the control of Fusarium oxysporum pathogen on tomato (Solanum lycopersicum L.) in the greenhouse. Int. J. Agron. 2025, 2025, 7330396. [Google Scholar] [CrossRef]
- Masebo, N.; Birhane, E.; Takele, S.; Perez-Sanz, A.; Lucena, J.J.; Belay, Z.; Anjulo, A.; Yunta, F. Glomalin related soil protein, soil aggregate stability and soil aggregate-associated organic carbon under agroforestry practices in southern Ethiopia. BMC Ecol. Evol. 2025, 25, 28. [Google Scholar] [CrossRef]
- Abd Ellatif, S.; Ali, E.A.M.; Senousy, H.H.; Razik, E.S.A. Production of arbuscular mycorrhizal fungi using in vitro root organ culture and phenolic compounds. J. Pure Appl. Microbiol. 2019, 13, 1985–1994. [Google Scholar] [CrossRef]
- Enebe, M.C.; Erasmus, M. Susceptibility and plant immune control—A case of mycorrhizal strategy for plant colonization, symbiosis, and plant immune suppression. Front. Microbiol. 2023, 14, 1178258. [Google Scholar] [CrossRef]
- Rendón Espinosa, M.Á.; Bottin, M.; Sanchez, A.; Vargas, C.; Raz, L.; Corrales, A. Diversity of mycorrhizal types along altitudinal gradients in the tropical Andes. Glob. Ecol. Biogeogr. 2024, 33, e13923. [Google Scholar] [CrossRef]
- He, X.H.; Duan, Y.H.; Chen, Y.L.; Xu, M.G. A 60-year journey of mycorrhizal research in China: Past, present and future directions. Sci. China-Life Sci. 2010, 53, 1374–1398. [Google Scholar] [CrossRef] [PubMed]
- El Gabardi, S.; Mouden, N.; Chliyeh, M.; Selmaoui, K.; Touhami, A.O.; Douira, A. Mycorrhizae: Diversity and roles in plant ecosystems. Moroccan J. Agric. Sci. 2022, 3, 234–257. [Google Scholar] [CrossRef]
- Ouahmane, L.; Dounas, H.; El Yamani, M.; Kahime, K. Symbiotic Arbuscular mycorrhizal fungi as a soil essential component contributing to soil fertility for sustainable agriculture in arid environment. In Climate Change Effects and Sustainability Needs: The Case of Morocco; Kahime, K., El Yamani, M., Pouffary, S., Eds.; Springer: Cham, Switzerland, 2024; pp. 123–145. [Google Scholar] [CrossRef]
- Aguilera, P.; Ortiz, N.; Becerra, N.; Turrini, A.; Gaínza-Cortés, F.; Silva-Flores, P.; Aguilar-Paredes, A.; Romero, J.K.; Jorquera-Fontena, E.; Mora, M.D.L.L.; et al. Application of arbuscular mycorrhizal fungi in vineyards: Water and biotic stress under a climate change scenario: New challenge for Chilean grapevine crop. Front. Microbiol. 2022, 13, 826571. [Google Scholar] [CrossRef]
- Dickson, S.; Smith, F.A.; Smith, S.E. structural differences in arbuscular mycorrhizal symbioses: More than 100 years after gallaud, where next? Mycorrhiza 2007, 17, 375–393. [Google Scholar] [CrossRef]
- Franken, P. Molecular–physiological aspects of the AM symbiosis post penetration. In Arbuscular Mycorrhizas: Physiology and Function; Koltai, H., Kapulnik, Y., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 93–116. [Google Scholar] [CrossRef]
- Chen, C.; Zou, J.; Zhang, S.; Zaitlin, D.; Zhu, L. Strigolactones are a new-defined class of plant hormones which inhibit shoot branching and mediate the interaction of plant-AM fungi and plant-parasitic weeds. Sci. China Ser. C Life Sci. 2009, 52, 693–700. [Google Scholar] [CrossRef]
- Wu, C.; Qu, J.; Liu, L.; Kang, H.; Sun, H.; Zhang, Y.; Ghorbani, A.; Pehlivan, N. Quo Vadis: Signaling molecules and small secreted proteins from mycorrhizal fungi at the early stage of mycorrhiza formation. Symbiosis 2021, 85, 123–143. [Google Scholar] [CrossRef]
- Reinhardt, D. Programming good relations—Development of the arbuscular mycorrhizal symbiosis. Curr. Opin. Plant Biol. 2007, 10, 98–105. [Google Scholar] [CrossRef]
- Wilkes, T.I. Arbuscular mycorrhizal fungi in agriculture. Encyclopedia 2021, 1, 1132–1154. [Google Scholar] [CrossRef]
- Manchanda, P.; Kaur, S.; Sharma, D. Quarantine of germplasm: Safeguarding genetic resources through in vitro tissue culture. In Plant Quarantine Challenges Under Climate Change Anxiety; Abd-Elsalam, K.A., Abdel-Momen, S.M., Eds.; Springer: Cham, Switzerland, 2024; pp. 125–148. [Google Scholar] [CrossRef]
- Mazri, M.A.; Elbakkali, A.; Belkoura, M.; Belkoura, I. Embryogenic competence of calli and embryos regeneration from various explants of Dahbia cv, a Moroccan olive tree (Olea europaea L.). Afr. J. Biotechnol. 2011, 10, 19089–19095. [Google Scholar]
- Mazri, M.A.; Naciri, R.; Belkoura, I. Maturation and conversion of somatic embryos derived from seeds of olive (Olea europaea L.) cv. Dahbia: Occurrence of secondary embryogenesis and adventitious bud formation. Plants 2020, 9, 1489. [Google Scholar] [CrossRef]
- Amghar, I.; Diria, G.; Boumlik, I.; Gaboun, F.; Iraqi, D.; Labhilili, M.; Mentag, R.; Meziani, R.; Mazri, M.A.; Ibriz, M.; et al. An efficient regeneration pathway through adventitious organogenesis for the endangered Argania spinosa (L.) Skeels. Vegetos 2021, 34, 355–367. [Google Scholar] [CrossRef]
- Tahiri, A.; Mazri, M.A.; Kara, Y.; Ait Aabd, N.; Bouharroud, R.; Mimouni, A. Propagation of saffron (Crocus sativus L.) through tissue culture: A review. J. Hortic. Sci. Biotechnol. 2023, 98, 10–30. [Google Scholar] [CrossRef]
- Mazri, M.A.; Koufan, M.; Moussafir, S.; Essatte, A.; Belkoura, I. Recent advances in argan propagation: A review. Trees 2022, 36, 1455–1476. [Google Scholar] [CrossRef]
- Sharma, S.; Shahzad, A.; Da Silva, J.A.T. Synseed technology—A complete synthesis. Biotechnol. Adv. 2013, 31, 186–207. [Google Scholar] [CrossRef]
- Mazri, M.A. Effects of plant growth regulators and carbon source on shoot proliferation and regeneration in date palm (Phoenix dactylifera L.) ‘16-bis’. J. Hortic. Sci. Biotechnol. 2014, 89, 415–422. [Google Scholar] [CrossRef]
- Koufan, M.; Belkoura, I.; Mazri, M.A.; Amarraque, A.; Essatte, A.; Elhorri, H.; Zaddoug, F.; Alaoui, T. Determination of antioxidant activity, total phenolics and fatty acids in essential oils and other extracts from callus culture, seeds and leaves of Argania spinosa (L.) Skeels. Plant Cell Tissue Organ Cult. 2020, 141, 217–227. [Google Scholar] [CrossRef]
- Koufan, M.; Mazri, M.A.; Essatte, A.; Moussafir, S.; Belkoura, I.; El Rhaffari, L.; Toufik, I. A novel regeneration system through micrografting for Argania spinosa (L.) Skeels, and confirmation of successful rootstock-scion union by histological analysis. Plant Cell Tissue Organ Cult. 2020, 142, 369–378. [Google Scholar] [CrossRef]
- Mazri, M.A.; Meziani, R.; Elmaataoui, S.; Alfeddy, M.N.; Jait, F. Assessment of genetic fidelity, biochemical and physiological characteristics of in vitro grown date palm cv. Al-Fayda. Vegetos 2019, 32, 333–344. [Google Scholar] [CrossRef]
- Mazri, M.A.; Meziani, R.; El Bakouri, Z. Cost analysis of date palm (cv. Mejhoul) plantlets produced by organogenesis in Morocco. Plant Cell Tissue Organ Cult. 2021, 146, 409–415. [Google Scholar] [CrossRef]
- Mishra, A.K.; Tiwari, K.N.; Mishra, P.; Mishra, S.K.; Tiwari, S.K. Germplasm conservation of economically important medicinal plant Nyctanthes arbortristis L. through encapsulation technique and maintenance under slow growth condition. Plant Cell Tissue Organ Cult. 2022, 149, 281–293. [Google Scholar] [CrossRef]
- Radi, H.; Bouchiha, F.; El Maataoui, S.; Oubassou, E.-Z.; Rham, I.; Alfeddy, M.N.; Aissam, S.; Mazri, M.A. Morphological and physio-biochemical responses of cactus pear (Opuntia ficus indica (L.) Mill.) organogenic cultures to salt and drought stresses induced in vitro. Plant Cell Tissue Organ Cult. 2023, 154, 337–350. [Google Scholar] [CrossRef]
- Khouzani, Z.K.; Taghizadeh, M. In Vitro application of methyl jasmonate to induce phytochemical production and antioxidant activity in Dracocephalum polychaetum Bornm. cells. Plant Cell Tissue Organ Cult. 2024, 159, 47. [Google Scholar] [CrossRef]
- Long, F.; Zuo, W.; Li, H.; Zeng, L. Genetic transformation of Rhododendron delavayi for anthocyanin synthesis using Agrobacterium-mediated transformation. Plant Cell Tissue Organ Cult. 2024, 157, 47. [Google Scholar] [CrossRef]
- Koffi, M.C.; Declerck, S. In vitro mycorrhization of banana (Musa acuminata) plantlets improves their growth during acclimatization. Vitr. Cell. Dev. Biol. Plant 2015, 51, 265–273. [Google Scholar] [CrossRef]
- Fernández, S.K.; Declerck, S.; Fernández García, L.; Ortega, D.E. Application of mycelium donor plant (MDP) system on in vitro mycorrhization of potato. Cultivos Trop. 2017, 38, 31–38. [Google Scholar]
- Lotfi, M.; Fernandez, K.; Vermeir, P.; Mars, M.; Werbrouck, S. In vitro mycorrhization of pear (Pyrus communis). Mycorrhiza 2019, 29, 607–614. [Google Scholar] [CrossRef]
- El Hilali, R.; Bouamri, R.; Crozilhac, P.; Calonne, M.; Symanczik, S.; Ouahmane, L.; Declerck, S. In vitro colonization of date palm plants by Rhizophagus irregularis during the rooting stage. Symbiosis 2021, 84, 83–89. [Google Scholar] [CrossRef]
- Ganoudi, M.; Calonne-Salmon, M.; Ibriz, M.; Declerck, S. In vitro mycorrhization of Argania spinosa L. using germinated seeds. Symbiosis 2021, 85, 57–68. [Google Scholar] [CrossRef]
- Himmen, F.D.A.; de Souza, F.A.; de Araújo Silva-Cardoso, I.M.; de Souza, A.L.X.; Scherwinski-Pereira, J.E. Micropropagation, estimation of DNA methylation during multiplication cycles and mycorrhization of seed-derived Dendrocalamus asper (Schultes f.) Backer ex Heyne. Plant Cell Tissue Organ Cult. 2023, 155, 41–56. [Google Scholar] [CrossRef]
- Abkenar, M.B.; Mozafari, H.; Karimzadeh, K.; Rajabzadeh, F.; Azimi, R. Arbuscular Mycorrhizal Fungi (AMF) and Plant Growth-Promoting Rhizobacteria (PGPR) as an alternative to mineral fertilizers to improve the growth, essential oil profile, and phenolic content of Satureja macrantha L. J. Crop Health 2024, 76, 347–356. [Google Scholar] [CrossRef]
- Selvakumar, G.; Shagol, C.C.; Kim, K.; Han, S.; Sa, T. Spore associated bacteria regulates maize root K+/Na+ ion homeostasis to promote salinity tolerance during arbuscular mycorrhizal symbiosis. BMC Plant Biol. 2018, 18, 109. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zou, Y.-N.; Shu, B.; Wu, Q.-S. Deciphering molecular mechanisms regarding enhanced drought tolerance in plants by arbuscular mycorrhizal fungi. Sci. Hortic. 2023, 308, 111591. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, B.; Zheng, Y.; Li, M.; Zhang, H.; Wang, P.; Chen, S.; Jin, X.; Wu, X. Arbuscular mycorrhizal fungi mitigate lead toxicity in maize by restructuring rhizosphere microbiome and enhancing antioxidant defense mechanisms. Agronomy 2025, 15, 1310. [Google Scholar] [CrossRef]
- Sun, W.; Shahrajabian, M.H. The application of arbuscular mycorrhizal fungi as microbial biostimulant, sustainable approaches in modern agriculture. Plants 2023, 12, 3101. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Mall, R.; Sharma, A.K. Glomalin-assisted biodegradation of fipronil and chlorpyrifos in soil using arbuscular mycorrhizal fungi. Int. J. Emerg. Technol. 2011, 2, 157–164. [Google Scholar]
- Huey, C.J.; Gopinath, S.C.B.; Uda, M.N.A.; Zulhaimi, H.I.; Jaafar, M.N.; Kasim, F.H.; Yaakub, A.R.W. Mycorrhiza: A natural resource assists plant growth under varied soil conditions. 3 Biotech 2020, 10, 204. [Google Scholar] [CrossRef]
- Schubert, A. Les mycorhizes à vésicules et arbuscules chez la vigne. OENO One 1985, 19, 207–214. [Google Scholar] [CrossRef]
- Echairi, A.; Nouaim, R.; Chaussod, R. Intérêt de la mycorhization contrôlée pour la production de plants d’arganier (Argania spinosa) en conditions de pépinière. Sci. Changements Planét./Sécher. 2008, 19, 277–281. [Google Scholar]
- El Maaloum, S.; Elabed, A.; El Alaoui-Talibi, Z.; Meddich, A.; Filali-Maltouf, A.; Douira, A.; Ibnsouda-Koraichi, S.; Amir, S.; El Modafar, C. Effect of arbuscular mycorrhizal fungi and phosphate-solubilizing bacteria consortia associated with phospho-compost on phosphorus solubilization and growth of tomato seedlings (Solanum lycopersicum L.). Commun. Soil Sci. Plant Anal. 2020, 51, 622–634. [Google Scholar] [CrossRef]
- da Rui, R.F.; Schiavo, J.A.; Santos, S.C.; Lourente, E.R.P.; Kusano, D.M.; Ferreira, K.R. Growth and mineral nutrition of banana seedlings cv. Grand Naine inoculated with arbuscular mycorrhizal fungi. Com. Sci. 2022, 13, e3661. [Google Scholar] [CrossRef]
- Naher, U.A.; Othman, R.; Panhwar, Q.A. Beneficial effects of mycorrhizal association for crop production in the tropics—A review. Int. J. Agric. Biol. 2013, 15, 1021–1028. [Google Scholar]
- Blanke, V.; Wagner, M.; Renker, C.; Lippert, H.; Michulitz, M.; Kuhn, A.J.; Buscot, F. Arbuscular mycorrhizas in phosphate-polluted soil: Interrelations between root colonization and nitrogen. Plant Soil 2011, 343, 379–392. [Google Scholar] [CrossRef]
- Madrid-Delgado, G.; Orozco-Miranda, M.; Cruz-Osorio, M.; Hernández-Rodríguez, O.A.; Rodríguez-Heredia, R.; Roa-Huerta, M.; Avila-Quezada, G.D. Pathways of phosphorus absorption and early signaling between the mycorrhizal fungi and plants. Phyton 2021, 90, 1321–1338. [Google Scholar] [CrossRef]
- Iftikhar, A.; Farooq, R.; Akhtar, M.; Khalid, H.; Hussain, N.; Ali, Q.; Malook, S.; Ali, D. Ecological and sustainable implications of phosphorous—Solubilizing microorganisms in soil. Discov. Appl. Sci. 2024, 6, 33. [Google Scholar] [CrossRef]
- Pang, F.; Li, Q.; Solanki, M.K.; Wang, Z.; Xing, Y.-X.; Dong, D.-F. Soil phosphorus transformation and plant uptake driven by phosphate-solubilizing microorganisms. Front. Microbiol. 2024, 15, 1383813. [Google Scholar] [CrossRef]
- Daly, D.H.; Velivelli, S.L.S.; Prestwich, B.D. The role of soil microbes in crop biofortification. In Agriculturally Important Microbes for Sustainable Agriculture; Meena, V.S., Mishra, P.K., Bisht, J.K., Pattanayak, A., Eds.; Springer: Singapore, 2017; Volume 1, pp. 333–356. [Google Scholar] [CrossRef]
- Begum, N.; Qin, C.; Ahanger, M.A.; Raza, S.; Khan, M.I.; Ashraf, M.; Ahmed, N.; Zhang, L. Role of arbuscular mycorrhizal fungi in plant growth regulation: Implications in abiotic stress tolerance. Front. Plant Sci. 2019, 10, 1068. [Google Scholar] [CrossRef]
- Munir, N.; Hanif, M.; Abideen, Z.; Sohail, M.; El-Keblawy, A.; Radicetti, E.; Mancinelli, R.; Haider, G. Mechanisms and strategies of plant microbiome interactions to mitigate abiotic stresses. Agronomy 2022, 12, 2069. [Google Scholar] [CrossRef]
- Leventis, G.; Tsiknia, M.; Feka, M.; Ladikou, E.V.; Papadakis, I.E.; Chatzipavlidis, I.; Papadopoulou, K.; Ehaliotis, C. Arbuscular mycorrhizal fungi enhance growth of tomato under normal and drought conditions, via different water regulation mechanisms. Rhizosphere 2021, 19, 100394. [Google Scholar] [CrossRef]
- Shao, Y.; Jiang, S.; Peng, H.; Li, H.; Li, P.; Jiang, R.; Fang, W.; Chen, T.; Jiang, G.; Yang, T.; et al. Indigenous and commercial isolates of arbuscular mycorrhizal fungi display differential effects in Pyrus betulaefolia roots and elicit divergent transcriptomic and metabolomic responses. Front. Plant Sci. 2023, 13, 1040134. [Google Scholar] [CrossRef]
- Wang, Z.; Lian, J.; Liang, J.; Wei, H.; Chen, H.; Hu, W.; Tang, M. Arbuscular mycorrhizal symbiosis modulates nitrogen uptake and assimilation to enhance drought tolerance of Populus cathayana. Plant Physiol. Biochem. 2024, 210, 108648. [Google Scholar] [CrossRef]
- Hu, J.; Li, S.; Zhang, Y.; Du, D.; Zhu, X. Potential Regulatory Effects of Arbuscular Mycorrhizal Fungi on Lipid Metabolism of Maize in Response to Low-Temperature Stress. J. Agric. Food Chem. 2024, 72, 22574–22587. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.-N.; Qin, Q.-Y.; Ma, W.-Y.; Zhou, L.-J.; Wu, Q.-S.; Xu, Y.-J.; Kuča, K.; Hashem, A.; Al-Arjani, A.F.; Almutairi, K.F.; et al. Metabolomics reveals arbuscular mycorrhizal fungi-mediated tolerance of walnut to soil drought. BMC Plant Biol. 2023, 23, 118. [Google Scholar] [CrossRef] [PubMed]
- Jing, S.; Li, Y.; Zhu, L.; Su, J.; Yang, T.; Liu, B.; Ma, B.; Ma, F.; Li, M.; Zhang, M. Transcriptomics and metabolomics reveal effect of arbuscular mycorrhizal fungi on growth and development of apple plants. Front. Plant Sci. 2022, 13, 1052464. [Google Scholar] [CrossRef]
- Zhang, H.; Qi, H.; Lu, G.; Zhou, X.; Wang, J.; Li, J.; Zheng, K.; Fan, Y.; Zhou, H.; Wang, J.; et al. Non-targeted metabolomics analysis reveals the mechanism of arbuscular mycorrhizal symbiosis regulating the cold-resistance of Elymus nutans. Front. Microbiol. 2023, 14, 1134585. [Google Scholar] [CrossRef]
- Ji, L.; Tan, W.; Chen, X. Arbuscular mycorrhizal mycelial networks and glomalin-related soil protein increase soil aggregation in calcaric regosol under well-watered and drought stress conditions. Soil Tillage Res. 2019, 185, 1–8. [Google Scholar] [CrossRef]
- Matos, P.S.; da Silva, C.F.; Damian, J.M.; Cerri, C.E.P.; Pereira, M.G.; Zonta, E. Beneficial services of glomalin and arbuscular mycorrhizal fungi in degraded soils in Brazil. Sci. Agric. 2022, 79, e20210064. [Google Scholar] [CrossRef]
- Gan, F.; Shi, H.; Gou, J.; Zhang, L.; Dai, Q.; Yan, Y. Responses of soil aggregate stability and soil erosion resistance to different bedrock strata dip and land use types in the karst trough valley of Southwest China. Int. Soil Water Conserv. Res. 2023, 12, 684–696. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, Y.; Jia, G.; Wang, L.; Yu, X. Contributions of biotic and abiotic factors to soil aggregation under different thinning intensities. Ecol. Indic. 2022, 139, 108958. [Google Scholar] [CrossRef]
- Yang, Y.; He, C.; Huang, L.; Ban, Y.; Tang, M. The effects of arbuscular mycorrhizal fungi on glomalin-related soil protein distribution, aggregate stability and their relationships with soil properties at different soil depths in lead-zinc contaminated area. PLoS ONE 2017, 12, e0182264. [Google Scholar] [CrossRef]
- Parihar, M.; Rakshit, A.; Meena, V.S.; Gupta, V.K.; Rana, K.; Choudhary, M.; Tiwari, G.; Mishra, P.K.; Pattanayak, A.; Bisht, J.K.; et al. The potential of arbuscular mycorrhizal fungi in C cycling: A review. Arch. Microbiol. 2020, 202, 1581–1596. [Google Scholar] [CrossRef]
- Gao, W.Q.; Wang, P.; Wu, Q.S. Functions and application of glomalin-related soil proteins: A review. Sains Malays. 2019, 48, 111–119. [Google Scholar] [CrossRef]
- Dowarah, B.; Gill, S.S.; Agarwala, N. Arbuscular mycorrhizal fungi in conferring tolerance to biotic stresses in plants. J. Plant Growth Regul. 2022, 41, 1429–1444. [Google Scholar] [CrossRef]
- Boutaj, H.; Meddich, A.; Roche, J.; Mouzeyar, S.; El Modafar, C. The effects of mycorrhizal fungi on vascular wilt diseases. Crop Prot. 2022, 155, 105938. [Google Scholar] [CrossRef]
- Maffei, G.; Miozzi, L.; Fiorilli, V.; Novero, M.; Lanfranco, L.; Accotto, G.P. The arbuscular mycorrhizal symbiosis attenuates symptom severity and reduces virus concentration in tomato infected by Tomato Yellow Leaf Curl Sardinia Virus (TYLCSV). Mycorrhiza 2014, 24, 179–186. [Google Scholar] [CrossRef]
- Miozzi, L.; Vaira, A.M.; Brilli, F.; Casarin, V.; Berti, M.; Ferrandino, A.; Nerva, L.; Accotto, G.P.; Lanfranco, L. Arbuscular mycorrhizal symbiosis primes tolerance to cucumber mosaic virus in tomato. Viruses 2020, 12, 675. [Google Scholar] [CrossRef]
- Basu, S.; Rabara, R.C.; Negi, S. AMF: The future prospect for sustainable agriculture. Physiol. Mol. Plant Pathol. 2018, 102, 36–45. [Google Scholar] [CrossRef]
- Miozzi, L.; Vaira, A.M.; Catoni, M.; Fiorilli, V.; Accotto, G.P.; Lanfranco, L. Arbuscular mycorrhizal symbiosis: Plant friend or foe in the fight against viruses? Front. Microbiol. 2019, 10, 1238. [Google Scholar] [CrossRef]
- Kaur, S.; Suseela, V. Unraveling arbuscular mycorrhiza-induced changes in plant primary and secondary metabolome. Metabolites 2020, 10, 335. [Google Scholar] [CrossRef]
- Adeyemi, N.O.; Atayese, M.O.; Sakariyawo, O.S.; Azeez, J.O.; Sobowale, S.P.A.; Olubode, A.; Mudathir, R.; Adebayo, R.; Adeoye, S. Alleviation of heavy metal stress by arbuscular mycorrhizal symbiosis in Glycine max (L.) grown in copper, lead and zinc contaminated soils. Rhizosphere 2021, 18, 100325. [Google Scholar] [CrossRef]
- Voets, L.; De la Providencia, I.E.; Fernández, K.; IJdo, M.; Cranenbrouck, S.; Declerck, S. Extraradical mycelium network of arbuscular mycorrhizal fungi allows fast colonization of seedlings under in vitro conditions. Mycorrhiza 2009, 19, 347–356. [Google Scholar] [CrossRef]
- Mukhongo, R.W.; Tumuhairwe, J.B.; Ebanyat, P.; AbdelGadir, A.H.; Thuita, M.; Masso, C. production and use of arbuscular mycorrhizal fungi inoculum in sub-Saharan Africa: Challenges and ways of improving. Int. J. Soil Sci. 2016, 11, 108–122. [Google Scholar] [CrossRef]
- Chesters, C.G.C.; Thornton, R.H. A comparison of techniques for isolating soil fungi. Trans. Br. Mycol. Soc. 1956, 39, 301–313. [Google Scholar] [CrossRef]
- Chesters, C.G.C. A contribution to the study of fungi in soil. Trans. Br. Mycol. Soc. 1948, 30, 100–117. [Google Scholar] [CrossRef]
- Waksman, S.A. Soil fungi and their activities. Soil Sci. 1916, 2, 103–156. [Google Scholar] [CrossRef]
- Warcup, J.H. The soil-plate method for isolation of fungi from soil. Nature 1950, 166, 117–118. [Google Scholar] [CrossRef]
- Parkinson, D.; Thomas, A. A comparison of methods for the isolation of fungi from rhizospheres. Can. J. Microbiol. 1965, 11, 1001–1007. [Google Scholar] [CrossRef]
- Sutton, J.C.; Baron, G.L. Population dynamics of Endogone spores in soil. Can. J. Bot. 1972, 50, 1909–1914. [Google Scholar] [CrossRef]
- Tommerup, I.C. Airstream fractionation of vesicular-arbuscular mycorrhizal fungi: Concentration and enumeration of propagules. Appl. Environ. Microbiol. 1982, 44, 533–539. [Google Scholar] [CrossRef]
- Ianson, D.C.; Allen, M.F. The effects of soil texture on extraction of vesicular-arbuscular mycorrhizal fungal spores from arid sites. Mycologia 1986, 78, 164–168. [Google Scholar] [CrossRef]
- Gerdemann, J.; Nicolson, T. Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Trans. Br. Mycol. Soc. 1963, 46, 235–244. [Google Scholar] [CrossRef]
- Pacioni, G. 16 Wet-sieving and decanting techniques for the extraction of spores of vesicular-arbuscular fungi. Methods Microbiol. 1992, 24, 317–322. [Google Scholar] [CrossRef]
- Boyno, G.; Demir, S.; Rezaee Danesh, Y.; Durak, E.D.; Çevik, R.; Farda, B.; Djebaili, R.; Pellegrini, M. A new technique for the extraction of arbuscular mycorrhizae fungal spores from rhizosphere. J. Fungi 2023, 9, 845. [Google Scholar] [CrossRef] [PubMed]
- Blaszkowski, J.; Kovács, G.M.; Balázs, T. Glomus perpusillum, a new arbuscular mycorrhizal fungus. Mycologia 2009, 101, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Maússe-Sitoe, S.; Dames, J. Characterization of arbuscular mycorrhizal fungal species associating with Zea mays. Front. Plant Sci. 2024, 15, 1345229. [Google Scholar] [CrossRef]
- Utobo, E.B.; Ogbodo, E.N.; Nwogbaga, A.C. Techniques for extraction and quantification of arbuscular mycorrhizal fungi. Libyan Agric. Res. Cent. J. Int. 2011, 2, 68–78. [Google Scholar]
- Robin, P.D.; Amadou, B.; Daniel, M.; Antoine, G.; Ezékiel, B.; Bernard, D.; Yves, P. Biotechnological processes used in controlled ectomycorrhizal practices. In Diversity and Biotechnology of Ectomycorrhizae; Rai, M., Varma, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; Volume 25, pp. 143–155. [Google Scholar] [CrossRef]
- Habte, M.; Osorio, N.W. Arbuscular Mycorrhizas: Producing and Applying Arbuscular Mycorrhizal Inoculum; College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa: Honolulu, HI, USA, 2001; 47p. [Google Scholar]
- Fortin, J.A.; Bécard, G.; Declerck, S.; Dalpe, Y.; St-Arnaud, M.; Coughlan, A.P.; Piche, Y. Arbuscular mycorrhiza on root-organ cultures. Can. J. Bot. 2002, 80, 1–20. [Google Scholar] [CrossRef]
- Singh, G.; Tilak, K.V.B.R. Techniques of AM fungus inoculum production. In Techniques in Mycorrhizal Studies; Mukerji, K.G., Manoharachary, C., Chamola, B.P., Eds.; Springer: Dordrecht, The Netherlands, 2002; pp. 273–283. [Google Scholar] [CrossRef]
- Biermann, B.; Linderman, R.G. Use of vesicular-arbuscular mycorrhizal roots, intraradical vesicles and extraradical vesicles as inoculum. New Phytol. 1983, 95, 97–105. [Google Scholar] [CrossRef]
- Danesh, Y.R.; Goltapeh, E.M.; Alizadeh, A.; Sanavy, M.M. Optimizing carrot hairy root production for monoxenic culture of arbuscular mycorrhizal fungi in Iran. J. Biol. Sci. 2006, 6, 87–91. [Google Scholar] [CrossRef]
- Declerck, S.; Strullu, D.G.; Plenchette, C. Monoxenic culture of the intraradical forms of Glomus sp. isolated from a tropical ecosystem: A proposed methodology for germplasm collection. Mycologia 1998, 90, 579–585. [Google Scholar] [CrossRef]
- Ijdo, M.; Cranenbrouck, S.; Declerck, S. Methods for large-scale production of AM fungi: Past, present, and future. Mycorrhiza 2011, 21, 1–16. [Google Scholar] [CrossRef]
- Satapathy, S.; Mohapatra, S.S.; Sar, P.; Priyadarshini, A.; Mitra, D.; Pattanayak, S. AM fungi: Mass production, quality control, and application. In Arbuscular Mycorrhizal Fungi: For Nutrient, Abiotic and Biotic Stress Management in Rice; Panneerselvam, P., Mohapatra, P.K.D., Nayak, A.K., Mitra, D., Velmourougane, K., De Los Santos-Villalobos, S., Eds.; CRC Press: Boca Raton, FL, USA, 2023; pp. 155–162. [Google Scholar] [CrossRef]
- Kokkoris, V.; Hart, M. In vitro propagation of arbuscular mycorrhizal fungi may drive fungal evolution. Front. Microbiol. 2019, 10, 2420. [Google Scholar] [CrossRef] [PubMed]
- Goh, D.; Martin, J.G.A.; Banchini, C.; MacLean, A.M.; Stefani, F. RocTest: A standardized method to assess the performance of root organ cultures in the propagation of arbuscular mycorrhizal fungi. Front. Microbiol. 2022, 13, 937912. [Google Scholar] [CrossRef] [PubMed]
- Cranenbrouck, S.; Voets, L.; Bivort, C.; Renard, L.; Strullu, D.-G.; Declerck, S. Methodologies for in vitro cultivation of arbuscular mycorrhizal fungi with root organs. In In Vitro Culture of Mycorrhizas; Declerck, S., Fortin, J.A., Strullu, D.-G., Eds.; Soil Biology; Springer: Berlin/Heidelberg, Germany, 2005; Volume 4, pp. 341–375. [Google Scholar] [CrossRef]
- Declerck, S.; Strullu, D.G.; Plenchette, C. In vitro mass-production of the arbuscular mycorrhizal fungus, Glomus versiforme, associated with Ri T-DNA transformed carrot roots. Mycol. Res. 1996, 100, 1237–1242. [Google Scholar] [CrossRef]
- Bécard, G.; Fortin, J.A. Early events of vesicular–arbuscular mycorrhiza formation on Ri T-DNA transformed roots. New Phytol. 1988, 108, 211–218. [Google Scholar] [CrossRef]
- Butcher, D.N. The culture of isolated roots. In Tissue Culture Methods for Plant Pathologists; Ingram, D.S., Helgelson, J.P., Eds.; Blackwell Scientific Publications: Oxford, UK, 1980; pp. 13–17. [Google Scholar]
- Strullu, D.G.; Romand, C. Méthode d’obtention d’endomycorhizes à vésicules et arbuscules en conditions axéniques. Comptes Rendus Académie Sci. 1986, 303, 245–250. [Google Scholar]
- Diop, T.A. Ecophysiologie des Champignons Mycorhiziens à Visicules et Arbuscules Associés à Acacia albida (Del.) dans les Zones Saheliennes et Soudano-Guinéennes du Sénégal; Ph.D. Thesis, Université d’Angers, Angers, France, 1995. [Google Scholar]
- Kapoor, R.; Sharma, D.; Bhatnagar, A.K. Arbuscular mycorrhizae in micropropagation systems and their potential applications. Sci. Hortic. 2008, 116, 227–239. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant 1962, 15, 473–479. [Google Scholar] [CrossRef]
- Koufan, M.; Belkoura, I.; Mazri, M.A. In vitro propagation of caper (Capparis spinosa L.): A review. Horticulturae 2022, 8, 737. [Google Scholar] [CrossRef]
- Abdul-Khaliq, G.M.; Alam, M. Biotechnological approaches for mass production of arbuscular mycorrhizal fungi: Current scenario and future strategies. In Techniques in Mycorrhizal Studies; Mukerji, K.G., Manoharachary, C., Chamola, B.P., Eds.; Springer: Dordrecht, The Netherlands, 2002; pp. 299–312. [Google Scholar] [CrossRef]
- Koide, R.T.; Mosse, B. A history of research on arbuscular mycorrhiza. Mycorrhiza 2004, 14, 145–163. [Google Scholar] [CrossRef]
- Mosse, B. The establishment of vesicular-arbuscular mycorrhiza under aseptic conditions. J. Gen. Microbiol. 1962, 27, 509–520. [Google Scholar] [CrossRef]
- Mosse, B.; Hepper, C. Vesicular-arbuscular mycorrhizal infections in root organ cultures. Physiol. Plant Pathol. 1975, 5, 215–223. [Google Scholar] [CrossRef]
- de Boulois, H.D.; Voets, L.; Declerck, S. In vitro compartmented systems to study transport in arbuscular mycorrhizal symbiosis. In Symbiotic Fungi: Principles and Practice; Varma, A., Kharkwal, A.C., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 101–122. [Google Scholar] [CrossRef]
- Lalaymia, I.; Declerck, S. The Mycorrhizal Donor Plant (MDP) in vitro culture system for the efficient colonization of whole plants. In Arbuscular Mycorrhizal Fungi: Methods and Protocols; Ferrol, N., Lanfranco, L., Eds.; Springer: New York, NY, USA, 2020; pp. 19–31. [Google Scholar] [CrossRef]
- Mugnier, J.; Mosse, B. Vesicular-arbuscular mycorrhizal infection in transformed root-inducing T-DNA roots grown axenically. Phytopathology 1987, 77, 1045–1050. [Google Scholar] [CrossRef]
- St-Arnaud, M.; Hamel, C.; Vimard, B.; Caron, M.; Fortin, J.A. Altered growth of Fusarium oxysporum f. sp. chrysanthemi in an in vitro dual culture system with the vesicular-arbuscular mycorrhizal fungus Glomus intraradices growing on Daucus carota transformed roots. Mycorrhiza 1995, 5, 431–438. [Google Scholar] [CrossRef]
- St-Arnaud, M.; Hamel, C.; Vimard, B.; Caron, M.; Fortin, J.A. Enhanced hyphal growth and spore production of the arbuscular mycorrhizal fungus Glomus intraradices in an in vitro system in the absence of host roots. Mycol. Res. 1996, 100, 328–332. [Google Scholar] [CrossRef]
- Rouphael, Y.; Franken, P.; Schneider, C.; Schwarz, D.; Giovannetti, M.; Agnolucci, M.; Pascale, S.D.; Bonini, P.; Colla, G. Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. Sci. Hortic. 2015, 196, 91–108. [Google Scholar] [CrossRef]
- Rodrigues, K.M.; Rodrigues, B.F. Endomycorrhizal association of Funneliformis mosseae with transformed roots of Linum usitatissimum: Germination, colonization, and sporulation studies. Mycology 2015, 6, 42–49. [Google Scholar] [CrossRef]
- Simoneau, P.; Louisy-Louis, N.; Plenchette, C.; Strullu, D.G. Accumulation of new polypeptides in Ri T-DNA-transformed roots of tomato (Lycopersicon esculentum) during the development of vesicular-arbuscular mycorrhizae. Appl. Environ. Microbiol. 1994, 60, 1810–1813. [Google Scholar] [CrossRef]
- Nuutila, A.M.; Vestberg, M.; Kauppinen, V. Infection of hairy roots of strawberry (Fragaria × Ananassa Duch.) with arbuscular mycorrhizal fungus. Plant Cell Rep. 1995, 14, 505–509. [Google Scholar] [CrossRef]
- Boisson-Dernier, A.; Chabaud, M.; Garcia, F.; Bécard, G.; Rosenberg, C.; Barker, D.G. Agrobacterium rhizogenes-transformed roots of Medicago truncatula for the study of nitrogen-fixing and endomycorrhizal symbiotic associations. Mol. Plant-Microbe Interact. 2001, 14, 695–700. [Google Scholar] [CrossRef]
- Bagal, D.; Chowdhary, A.A.; Mehrotra, S.; Mishra, S.; Rathore, S.; Srivastava, V. Metabolic engineering in hairy roots: An outlook on production of plant secondary metabolites. Plant Physiol. Biochem. 2023, 201, 107847. [Google Scholar] [CrossRef]
- Diop, T.A. In Vitro culture of arbuscular mycorrhizal fungi: Advances and future prospects. Afr. J. Biotechnol. 2003, 2, 692–697. [Google Scholar] [CrossRef]
- Giri, A.; Naraseu, M.L. Transgenic hairy roots: Recent trends and applications. Biotechnol. Adv. 2000, 18, 1–22. [Google Scholar] [CrossRef]
- Kumar, S.; Yadav, S. In vitro cultivation of AMF using root organ culture. In Microbial Cell Factories; Sharma, D., Saharan, B.S., Eds.; CRC Press: Boca Raton, FL, USA, 2018; pp. 95–108. [Google Scholar] [CrossRef]
- García, S.S.P.; Fernández Suárez, K.; Pérez Ortega, E.J.; Mujica Pérez, Y.; Pérez-Pérez, R.; Rodríguez Yon, Y.; Haesaert, G. In vitro propagation of a cuban arbuscular mycorrhizal fungal strain and factible bacteria’s association. Rev. Colomb. Biotecnol. 2022, 24, 36–45. [Google Scholar] [CrossRef]
- Azcón-Aguilar, C.; Barea, J.M. Applying mycorrhiza biotechnology to horticulture: Significance and potentials. Sci. Hortic. 1997, 68, 1–24. [Google Scholar] [CrossRef]
- Danesh, Y.R.; Tufenkci, S. In vitro culturing of mycorrhiza and mycorrhiza like fungi. Int. J. Agric. Technol. 2017, 13, 1675–1689. [Google Scholar]
- Pfeffer, P.E.; Douds, D.D., Jr.; Bécard, G.; Shachar-Hill, Y. Carbon uptake and the metabolism and transport of lipids in an arbuscular mycorrhiza. Plant Physiol. 1999, 120, 587–598. [Google Scholar] [CrossRef]
- Douds, D.D.; Pfeffer, P.E.; Shachar-Hill, Y. Application of in vitro methods to study carbon uptake and transport by AM fungi. Plant Soil 2000, 226, 255–261. [Google Scholar] [CrossRef]
- Joner, E.J.; Ravnskov, S.; Jakobsen, I. Arbuscular mycorrhizal phosphate transport under monoxenic conditions using radio-labelled inorganic and organic phosphate. Biotechnol. Lett. 2000, 22, 1705–1708. [Google Scholar] [CrossRef]
- Douds, D.D. Increased spore production by Glomus intraradices in the split-plate monoxenic culture system by repeated harvest, gel replacement, and resupply of glucose to the mycorrhiza. Mycorrhiza 2002, 12, 163–167. [Google Scholar] [CrossRef]
- Elmeskaoui, A.; Damont, J.P.; Poulin, M.J.; Piché, Y.; Desjardins, Y. A tripartite culture system for endomycorrhizal inoculation of micropropagated strawberry plantlets in vitro. Mycorrhiza 1995, 5, 313–319. [Google Scholar] [CrossRef]
- Cassells, A.C.; Mark, G.L.; Periappuram, C. Establishment of arbuscular mycorrhizal fungi in autotrophic strawberry cultures in vitro. Comparison with inoculation of microplants in vivo. Agronomie 1996, 16, 625–632. [Google Scholar] [CrossRef]
- Voets, L.; De Boulois, H.D.; Renard, L.; Strullu, D.G.; Declerck, S. Development of an autotrophic culture system for the in vitro mycorrhization of potato plantlets. FEMS Microbiol. Lett. 2005, 248, 111–118. [Google Scholar] [CrossRef] [PubMed]
- de Boulois, H.D.; Voets, L.; Delvaux, B.; Jakobsen, I.; Declerck, S. Transport of radiocaesium by arbuscular mycorrhizal fungi to Medicago truncatula under in vitro conditions. Environ. Microbiol. 2006, 8, 1926–1934. [Google Scholar] [CrossRef] [PubMed]
- Sosa-Rodríguez, T.; Dupré de Boulois, H.; Granet, F.; Gaurel, S.; Melgarejo, L.M.; Carron, M.P.; Declerck, S. In vitro mycorrhization of the rubber tree Hevea brasiliensis Müll Arg. In Vitr. Cell. Dev. Biol. Plant 2013, 49, 207–215. [Google Scholar] [CrossRef]
- Harkousse, O.; Slimani, A.; Jadrane, I.; Aitboulahsen, M.; Mazri, M.A.; Zouahri, A.; Ouahmane, L.; Koussa, T.; Al Feddy, M.N. Role of local biofertilizer in enhancing the oxidative stress defence systems of date palm seedling (Phoenix dactylifera) against abiotic stress. Appl. Environ. Soil Sci. 2021, 2021, 6628544. [Google Scholar] [CrossRef]
- Parihar, M.; Rakshit, A. In vitro production of arbuscular mycorrhizal fungi: An overview. In Arbuscular Mycorrhizal Fungi in Sustainable Agriculture: Inoculum Production and Application; Parihar, M., Rakshit, A., Adholeya, A., Chen, Y., Eds.; Springer: Singapore, 2024; pp. 131–143. [Google Scholar] [CrossRef]
- Gianinazzi, S.; Vosátka, M. Inoculum of arbuscular mycorrhizal fungi for production systems: Science meets business. Can. J. Bot. 2004, 82, 1264–1271. [Google Scholar] [CrossRef]
- Siddiqui, Z.A.; Kataoka, R. Mycorrhizal inoculants: Progress in inoculant production technology. In Microbes and Microbial Technology; Ahmad, I., Ahmad, F., Pichtel, J., Eds.; Springer: New York, NY, USA, 2011; pp. 489–506. [Google Scholar] [CrossRef]
- Adholeya, A.; Tiwari, P.; Singh, R. Large-scale inoculum production of arbuscular mycorrhizal fungi on root organs and inoculation strategies. In In Vitro Culture of Mycorrhizas; Declerck, S., Fortin, J.A., Strullu, D.G., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 315–338. [Google Scholar] [CrossRef]
- Pitaktamrong, P.; Kingkaew, J.; Yooyongwech, S.; Cha-Um, S.; Phisalaphong, M. Development of arbuscular mycorrhizal fungi-organic fertilizer pellets encapsulated with alginate film. Eng. J. 2018, 22, 65–79. [Google Scholar] [CrossRef]
- Bennett, J.W.; Connick, W.J.; Daigle, D.; Wunch, K. Formulation of fungi for in situ bioremediation. In Fungi in Bioremediation; Gadd, G.M., Ed.; Cambridge University Press: Cambridge, UK, 2001; pp. 97–112. [Google Scholar] [CrossRef]
- Szopa, D.; Mielczarek, M.; Skrzypczak, D.; Izydorczyk, G.; Mikula, K.; Chojnacka, K.; Witek-Krowiak, A. Encapsulation efficiency and survival of plant growth-promoting microorganisms in an alginate-based matrix—A systematic review and protocol for a practical approach. Ind. Crop. Prod. 2022, 181, 114846. [Google Scholar] [CrossRef]
- Strullu, D.G.; Romand, C.; Plenchette, C. Axenic culture and encapsulation of the intraradical forms of Glomus spp. World J. Microbiol. Biotechnol. 1991, 7, 292–297. [Google Scholar] [CrossRef]
- Lalaymia, I.; Cranenbrouck, S.; Draye, X.; Declerck, S. Preservation at ultra-low temperature of in vitro cultured arbuscular mycorrhizal fungi via encapsulation–drying. Fungal Biol. 2012, 116, 1032–1041. [Google Scholar] [CrossRef]
- Tommerup, I.C. Long-term preservation by L-drying and storage of vesicular arbuscular mycorrhizal fungi. Trans. Br. Mycol. Soc. 1988, 90, 585–591. [Google Scholar] [CrossRef]
- McDaniel, L.E.; Bailey, E.G. Liquid nitrogen preservation of standard inoculum: Gas-phase storage. Appl. Microbiol. 1968, 16, 912–916. [Google Scholar] [CrossRef] [PubMed]
- Rojas-Sánchez, B.; Guzmán-Guzmán, P.; Morales-Cedeño, L.R.; Orozco-Mosqueda, M.d.C.; Saucedo-Martínez, B.C.; Sánchez-Yáñez, J.M.; Fadiji, A.E.; Babalola, O.O.; Glick, B.R.; Santoyo, G. Bioencapsulation of microbial inoculants: Mechanisms, formulation types and application techniques. Appl. Biosci. 2022, 1, 198–220. [Google Scholar] [CrossRef]
- Ghorui, M.; Chowdhury, S.; Burla, S. Recent Advances in the commercial formulation of arbuscular mycorrhizal inoculants. Front. Ind. Microbiol. 2025, 3, 1553472. [Google Scholar] [CrossRef]
- Koziol, L.; Lubin, T.; Bever, J.D. An Assessment of twenty-three mycorrhizal inoculants reveals limited viability of am fungi, pathogen contamination, and negative microbial effect on crop growth for commercial products. Appl. Soil Ecol. 2024, 202, 105559. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, R.; Adholeya, A. Biotechnological advancements in industrial production of arbuscular mycorrhizal fungi: Achievements, challenges, and future prospects. In Developments in Fungal Biology and Applied Mycology; Satyanarayana, T., Deshmukh, S.K., Johri, B.N., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 413–431. [Google Scholar] [CrossRef]
- Liu, W.K.; Yang, Q.C. Integration of mycorrhization and photoautotrophic micropropagation in vitro: Feasibility analysis for mass production of mycorrhizal transplants and inoculants of arbuscular mycorrhizal fungi. Plant Cell Tissue Organ Cult. 2008, 95, 131–139. [Google Scholar] [CrossRef]
- Zhao, Y.; Cartabia, A.; Lalaymia, I.; Declerck, S. Arbuscular mycorrhizal fungi and production of secondary metabolites in medicinal plants. Mycorrhiza 2022, 32, 221–256. [Google Scholar] [CrossRef]
- Pérez-Moncada, U.A.; Ramírez-Gómez, M.M.; Núñez-Zarante, V.M.; Franco-Correa, M.; Roveda-Hoyos, G. Evaluación de un sistema para la micorrización in vitro en plantas de mora de castilla (Rubus glaucus, Benth). Univ. Sci. 2012, 17, 140–151. [Google Scholar] [CrossRef]
- Parvizi, K.; Dashti, F. The effect of in vitro mycorrhization on growth characteristics, changes in endogenous hormones and performance of microplants in potato (Solanum tuberosum L.). J. Cent. Eur. Agric. 2015, 16, 445–462. [Google Scholar] [CrossRef]
- Azcón-Aguilar, C.; Padilla, I.G.; Encina, C.L.; Azcón, R.; Barea, J.M. Arbuscular mycorrhizal inoculation enhances plant growth and changes root system morphology in micropropagated Annona cherimola Mill. Agronomie 1996, 16, 647–652. [Google Scholar] [CrossRef]
- Krishna, H.; Singh, S.K.; Sharma, R.R.; Khawale, R.N.; Grover, M.; Patel, V.B. Biochemical changes in microporpagated grape (Vitis vinifera L.) plantlets due to arbuscular-mycorrhizal fungi (AMF) inoculation during ex vitro acclimatization. Sci. Hortic. 2005, 106, 554–567. [Google Scholar] [CrossRef]
- Fortunato, I.M.; Ruta, C.; Castrignanò, A.; Saccardo, F. The effect of mycorrhizal symbiosis on the development of micropropagated artichokes. Sci. Hortic. 2005, 106, 472–483. [Google Scholar] [CrossRef]
- Hernández-Sebastià, C.; Samson, G.; Bernier, P.-Y.; Piché, Y.; Desjardins, Y. Glomus intraradices causes differential changes in amino acid and starch concentrations of in vitro strawberry subjected to water stress. New Phytol. 2000, 148, 177–186. [Google Scholar] [CrossRef]
- Khade, S.W.; Adholeya, A. Effects of heavy metal (Pb) on arbuscular mycorrhizal fungi in vitro. World J. Microbiol. Biotechnol. 2008, 24, 1663–1668. [Google Scholar] [CrossRef]
- Gallou, A.; Mosquera, H.P.L.; Cranenbrouck, S.; Suárez, J.P.; Declerck, S. Mycorrhiza induced resistance in potato plantlets challenged by Phytophthora infestans. Physiol. Mol. Plant. Pathol. 2011, 76, 20–26. [Google Scholar] [CrossRef]
- Alaux, P.L.; Naveau, F.; Declerck, S.; Cranenbrouck, S. Common mycorrhizal network induced JA/ET genes expression in healthy potato plants connected to potato plants infected by Phytophthora infestans. Front. Plant Sci. 2020, 11, 602. [Google Scholar] [CrossRef]
- Jahromi, F.; Aroca, R.; Porcel, R.; Ruiz-Lozano, J.M. Influence of salinity on the in vitro development of Glomus Intraradices and on the in vivo physiological and molecular responses of mycorrhizal lettuce plants. Microb. Ecol. 2008, 55, 45–53. [Google Scholar] [CrossRef]
- Debiane, D.; Garçon, G.; Verdin, A.; Fontaine, J.; Durand, R.; Shirali, P.; Grandmougin-Ferjani, A.; Lounès-Hadj Sahraoui, A. Mycorrhization alleviates benzo[a]pyrene-induced oxidative stress in an in vitro chicory root model. Phytochemistry 2009, 70, 1421–1427. [Google Scholar] [CrossRef]
- Ramajayam, D.; Singh, S.K.; Singh, A.K.; Patel, V.B.; Alizadeh, M. Mycorrhization alleviates salt stress in grape rootstocks during In Vitro acclimatization. Indian J. Hortic. 2013, 70, 26–32. [Google Scholar]
- Desjardins, Y.; Hernández-Sebastià, C.; Piché, Y. Monoxenic culture as a tool to study the effect of the arbuscular mycorrhizal symbiosis on the physiology of micropropagated plantlets in vitro and ex vitro. In In Vitro Culture of Mycorrhizas; Declerck, S., Fortin, J.A., Strullu, D.G., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 181–199. [Google Scholar] [CrossRef]
Host Plant Species | Mycorrhizal Fungus Strain | Root System | Mycelium Donor Plant Species | Culture Medium | In vitro Mycorrhization System | Key Findings | Reference |
---|---|---|---|---|---|---|---|
Potato (Solanum tuberosum L). cvs. Désirée, Kennebec, Pink Fir Apple, Waycha, Rosa, and Solanum phureja | Glomus intraradices Schenck & Smith (MUCL 43194) | Transformed carrot roots (Daucus carota L.) | - | MSR medium lacking vitamins and sucrose | ACS system | Spore production exceeded 12,000 spores after 22 weeks of in vitro culture. Spores effectively colonized new plantlets under consistent conditions. Potato shoots reached heights of approximately 15–20 cm, with 0 to 3 microtubers (8–10 mm in diameter) formed per plant. The autotrophic culture system enables sustained in vitro culture of arbuscular mycorrhizal fungi. | [149] |
Rubber tree (Hevea brasiliensis) genotype Prang Besar | Rhizophagus irregularis (Błaszk., Wubet, Renker & Buscot) C. Walker & A. Schüßler comb. nov. (MUCL 41833) | Ri T-DNA transformed carrot (Daucus carota L.) roots clone DC1 | Medicago truncatula. Gaertn. cv. Jemalong A 17 | MSR medium lacking vitamins and sucrose | MDP/Bi-compartmental system | Root colonization was enhanced by elevated CO2 levels and the addition of 2-morpholineoethanesulfonic acid monohydrate (MES) buffer to the culture medium. Newly developed root tissues exhibited colonization structures, including arbuscules and spores/vesicles. | [151] |
Banana (Musa acuminata) cv. Grande Naine | Rhizophagus irregularis (Błaszk., Wubet, Renker, and Buscot) C. Walker and A. Schüßler comb. nov. (MUCL 41833) | Ri T-DNA transformed carrot (Daucus carota L.) hairy root clone DC1 | Medicago truncatula. Gaertn. cv. Jemalong A 17 | MSR medium lacking vitamins and sucrose | MDP/Bi-compartmental system | Banana plantlets exhibited substantial root colonization. Hyphal regrowth was observed within 2 days following the transfer of plantlets from the MSR + AMF treatment to fresh MSR medium. Initial spore formation was observed after 3 days. After 5 weeks of exposure to extraradical mycelium, root colonization exceeded 80%, with arbuscules comprising approximately 40% and spores/vesicles over 60%. Following 5 and 7 weeks of acclimatization, banana plantlets subjected to the MSR + AMF treatment exhibited significantly greater pseudostem height and diameter, as well as higher shoot and root dry biomass, compared to those from the Control/MSR and Control/MS treatments. | [39] |
Potato (Solanum tuberosum L.) cv. Desirée | Rhizoglomus intraradices Schenck & Smith (MUCL 41833) | Ri T-DNA transformed carrot (Daucus carota L.) roots | Medicago truncatula Gaertn cv. Jemalong, strain A-17 | MSR medium lacking vitamins and sucrose | MDP/Bi-compartmental system | A high level of root colonization (55%) was achieved in potato plants just 12 days after contact with the mycelial network. Production of more than 1400 spores. Upon transfer to fresh medium, potato plants successfully re-established fungal colonies, producing abundant extraradical structures, including mycelium and spores. | [40] |
Pear (Pyrus communis L.) cv. Arbi | Rhizophagus irregularis (INCAM11) | Ri T-DNA transformed chicory (Cichorium intybus) roots | Medicago truncatula cv. Salsa | MSR medium lacking vitamins and sucrose | MDP/Mono-compartmental system | After 3 to 4 weeks of incubation, approximately 30% of the pear roots were colonized. Hyphae, arbuscules, spores/vesicles, and appressoria were observed in the pear roots. Within 1 week of transferring the pear plantlet roots into the mycelial network, primary roots began producing new secondary roots. Mycorrhization promoted the formation of an abundant, extensively branched root system. Rhizophagus irregularis colonization influenced root system architecture and nutrient profiles in acclimatized pear plantlets. | [41] |
Argan (Argania spinosa (L.) Skeels) | Rhizophagus irregularis (Błaszk. Wubet, Renker & Buscot) C. Walker & A. Schüßler comb. nov. (MUCL 41833) | Ri T-DNA transformed carrot (Daucus carota L.) roots | Medicago truncatula Gaertn. cv. Jemalong A17 | MSR medium lacking vitamins and sucrose | MDP/Bi-compartmental system | Root colonization, evidenced by the presence of arbuscules, hyphae, and vesicles/spores, was observed after 8 weeks of growth within the extraradical mycelial network, reaching 30–50% total colonization by week 11. Plants successfully acclimatized during the transition from in vitro to greenhouse conditions, maintaining a high level of root colonization even after five months. | [43] |
Date Palm (Phoenix dactylifera L.) cv. Boufeggouss | Rhizophagus irregularis (Błaszk. Wubet, Renker & Buscot) C. Walker & Schuessler (MUCL 41833) | Ri T-DNA transformed carrot (Daucus carota L.) roots clone DC1 | Medicago truncatula Gaertn. c.v. Jemalong strain A17 | MSR medium lacking vitamins and sucrose | MDP/Bi-compartmental system | At 10 weeks post-inoculation, date palm roots exhibited successful colonization, along with enhanced total root length and increased formation of secondary and tertiary roots. Root tissues contained hyphae, vesicles, spores, and arbuscules. | [42] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radi, H.; Koufan, M.; Belkoura, I.; Koussa, T.; Mazri, M.A. In Vitro Mycorrhization for Plant Propagation and Enhanced Resilience to Environmental Stress: A Review. Plants 2025, 14, 2097. https://doi.org/10.3390/plants14142097
Radi H, Koufan M, Belkoura I, Koussa T, Mazri MA. In Vitro Mycorrhization for Plant Propagation and Enhanced Resilience to Environmental Stress: A Review. Plants. 2025; 14(14):2097. https://doi.org/10.3390/plants14142097
Chicago/Turabian StyleRadi, Hassna, Meriyem Koufan, Ilham Belkoura, Tayeb Koussa, and Mouaad Amine Mazri. 2025. "In Vitro Mycorrhization for Plant Propagation and Enhanced Resilience to Environmental Stress: A Review" Plants 14, no. 14: 2097. https://doi.org/10.3390/plants14142097
APA StyleRadi, H., Koufan, M., Belkoura, I., Koussa, T., & Mazri, M. A. (2025). In Vitro Mycorrhization for Plant Propagation and Enhanced Resilience to Environmental Stress: A Review. Plants, 14(14), 2097. https://doi.org/10.3390/plants14142097