Urban Phytoremediation: A Nature-Based Solution for Environmental Reclamation and Sustainability
Abstract
1. Introduction
- -
- Industrial activities: Factories and manufacturing plants often release hazardous substances, including heavy metals (lead, cadmium, mercury, etc.), organic pollutants, such as polychlorinated biphenyls (PCBs) or polycyclic aromatic hydrocarbons (PAHs), and other toxic chemicals [3]. All these substances can leach into the soil, contaminating it and potentially entering aquifers first, and then entering into the food chain.
- -
- Vehicular traffic: Motorcycles, cars, busses, and articulated trucks contribute to soil contamination through the deposition of exhaust emissions, tire and brake wear particles, and road runoff [4]. These pollutants can accumulate on roads, along roadsides, and in nearby soils, seriously affecting their quality and biological diversity.
- -
- Inadequate waste disposal: The improper disposal of municipal, industrial, and hazardous wastes is another significant source of soil contamination [5]. Landfills and dumpsites, if not handled properly, can leak toxic leachates into the surrounding soil and groundwater. Additionally, the illegal dumping of waste in vacant lots and along waterways can lead to localized soil contamination.
- -
- Agricultural practices: The use of pesticides, herbicides, and fertilizers in urban agriculture and gardening can contribute to soil contamination [6]. All these chemicals can persist for a long time in the soil, affecting its characteristics and, potentially, even contaminating crops.
- -
- Construction activities: Construction and demolition activities can disturb and expose contaminated soil layers, releasing pollutants into the environment. Moreover, their use in the construction of buildings, houses, and roads can lead to the spread of pollutants across urban landscapes [7].
- -
- Soil contamination in urban areas can have far-reaching consequences. It can impair soil functions, reduce agricultural productivity, contaminate groundwater resources, and negatively affect human health through direct exposure or the consumption of either contaminated food or water. Additionally, polluted soils can harm wildlife and disrupt ecosystem services, further degrading city environments.
2. Urban Soil Pollutants
2.1. Heavy Metals and Trace Elements
2.2. Organic Pollutants
Emerging Contaminants
2.3. Excess of Nutrients and Agrochemicals
Pollutants | Examples | Sources | Concentrations | References |
---|---|---|---|---|
HMs | Lead (Pb) | Lead-based paints, vehicular emissions, activities of different industries | 29–25,380 mg kg−1 | [18] |
Cadmium (Cd) | Batteries, fertilizers, industrial waste | 0.15–9 mg kg−1 | ||
Mercury (Hg) | Industrial processes, electronic waste | 0.1–1 mg kg−1 | ||
Chromium (Cr) | Industrial waste, leather tanning processes | 23–195 mg kg−1 | ||
Arsenic (As) | Pesticides, chemical products, mining activities | 6–15 mg kg−1 | ||
Hydrocarbons | PAHs (polycyclic aromatic hydrocarbons) | Fossil fuel combustion, vehicular traffic | 90–52,000 μg kg−1 | [21] |
Pesticides and Agrochemicals | Herbicides, insecticides, fungicides, disinfectants | Agricultural use, pest control, urban garden maintenance | 0.1–10 mg kg−1 | [6] |
Emerging Contaminants | Pharmaceuticals (e.g., antibiotics), personal care products | Disposal of medical waste, wastewater effluent, improper waste disposal, cosmetics, urban runoff | 100 ng kg−1 to 2600 μg kg−1 | [24] |
Microplastics | Plastic waste, tire wear | 1000–10,000 particles kg−1 | [23] |
3. Phytoremediation
3.1. Phytoremediation Technologies
3.2. Pollutant Removal Mechanisms
3.3. Factors That Influence Phytoremediation Effectiveness
4. The Main Phytoremediation Actors
4.1. Plants
4.1.1. Phytoextraction Potential Indices
4.1.2. Poplar
4.1.3. Willow
4.1.4. Sunflower
4.1.5. Other Plants Used for Phytoremediation
4.1.6. Ornamental Plants
Plants | Most Common Species | Features | Potential Bioaccumulation Capabilities | References |
---|---|---|---|---|
Poplar | Populus nigra L.; Populus alba L.; Populus × canadensis Moench; Populus simonii Carrière | Huge root system; high resistance and accumulation of HMs; large biomass; improves ecosystem services and mitigates pollutants | As (up to 2 mg kg−1) Cd (1–2 mg kg−1) Cr (4–7 mg kg−1) Cu (4–12 mg kg−1) Ni (3–9 mg kg−1) Pb (up to 407 mg kg−1) Zn (up to 223 mg kg−1) | [63,64,65,73,77] |
Willow | Salix × jiangsuensis; Salix wilsonii Seemen; Salix chaenomeloides Kimura; Salix cheilophila; Salix babylonica Linn. f. tortuosa Y.L.Chou; Salix viminalis L.; Salix alba L. | Renewable energy crop; efficient, versatile, adaptable to environmental stress; rapid growth | Cd (up to 175 mg kg−1) Cr (up to 11 mg kg−1) Cu (up to 57 mg kg−1) Ni (up to 28 mg kg−1) Pb (up to 280 mg kg−1) Zn (up to 2977 mg kg−1) | [69,70,73,78] |
Sunflower | Helianthus annus L. | Hyperaccumulator; rapid growth; high biomass | As (up to 3 mg kg−1) Cd (up to 60 mg kg−1) Cu (up to 102 mg kg−1) Pb (up to 158 mg kg−1) Zn (up to 214 mg kg−1) | [71,79,80] |
Fescue | Festuca arundinacea Schreb.; Festuca rubra L.; | Rapid growth; wide diffusion, distribution, and variability on global scale; deep grass root penetration; dense and extensive fibrous root system | Cd (up to 2 mg kg−1) Cr (up to 11 mg kg−1) Cu (up to 28 mg kg−1) Ni (up to 8 mg kg−1) Pb (up to 55 mg kg−1) Zn (up to 562 mg kg−1) | [81,82,83,84] |
Indian mustard | Brassica juncea L. | Extraction, sequestration and HM detoxification; high biomass; Hyperaccumulator | As (up to 0.5 mg Kg−1) Cd (over 0.3 mg kg−1) Cr (over 20 mg kg−1) Cu (over 40 mg kg−1) Ni (over 20 mg Kg−1) Pb (up to 40 mg Kg−1) Zn (up to 300 mg Kg−1) | [7,85,86,87,88,89] |
Typha | Typha latifolia L. | Cosmopolitan plant, perennial and emergent macrophyte; wide diffusion; rapid growth; high biomass; adaptable to environmental stress | As (up to 1 mg Kg−1) Cd (up to 3 mg Kg−1) Cr (up to 25 mg Kg−1) Cu (48 ± 4 mg Kg−1) Ni (up to 38 mg Kg−1) Pb (up to 28 mg Kg−1) Zn (272 ± 18 mg Kg−1) | [90,91,92] |
4.2. Microorganisms
5. Case Studies
Urban Area | Pollutant Type | Sampling Sites | References |
---|---|---|---|
Faisalabad City, Pakistan | Cu, Cd, Pb | Urban area with heavy traffic; residential area; building material manufacturing industry; weaving industry; pipe industry; cosmetic industrial area | [109,110] |
Dhaka, Bangladesh | Cr, Pb, Cu, Zn | Riverbed sediments | [111] |
Vian, Iran | Pb, Fe, Mn, Cu, Zn | Industrial area | [112] |
Nitrastu, Spain | As, Cu, Zn | Urban brownfield | [113] |
Trento, Italy | Landfill leachates (Cr, Cu, Zn, Al, Fe, Mn, Ni) | Municipal landfills | [114] |
Baldegg, Switzerland | Catchment | [115] | |
Buiksloterham, Holland | Zn, Pb, Cu | Industrial area | [2] |
Stockholm, Sweden | Cd, Cu, Pb, Zn | Stormwater ponds along a busy highway | [116] |
Malmfjärden Bay, Sweden | As, Pb, Cu, Cr, Ni, Zn | Coastal area | [117] |
Bor region, Serbia | High-molecular-weight polycyclic aromatic hydrocarbons (HMW PAHs) | Urban–industrial and residential areas | [118] |
Warsaw, Poland | Cd, Cu, Cr, Ni, Pb, Zn | Urban area with heavy traffic | [119] |
San Antonio and Baltimore, United States of America | Pb | Residential areas | [120] |
San Diego, United States of America | Heavy metals and metalloids | Urban community garden | [121] |
Canoas City, Brazil | Hydrocarbons and PAHs | Urban area | [122] |
6. Advantages and Disadvantages of Phytoremediation in Urban Environments
6.1. Advantages of Phytoremediation
6.2. Disadvantages of Phytoremediation
7. Final Consideration
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhu, Y.; Gu, H.; Li, H.; Lam, S.S.; Verma, M.; Ng, H.S.; Sonne, C.; Liew, R.K.; Peng, W. Phytoremediation of Contaminants in Urban Soils: A Review. Environ. Chem. Lett. 2024, 22, 355–371. [Google Scholar] [CrossRef]
- Wilschut, M.; Theuws, P.A.W.; Duchhart, I. Phytoremediative Urban Design: Transforming a Derelict and Polluted Harbour Area into a Green and Productive Neighbourhood. Environ. Pollut. 2013, 183, 81–88. [Google Scholar] [CrossRef]
- Cachada, A.; Pato, P.; Rocha-Santos, T.; da Silva, E.F.; Duarte, A.C. Levels, Sources and Potential Human Health Risks of Organic Pollutants in Urban Soils. Sci. Total Environ. 2012, 430, 184–192. [Google Scholar] [CrossRef]
- Szynkowska, M.I.; Pawlaczyk, A.; Leśniewska, E.; Paryjczak, T. Toxic Metal Distribution in Rural and Urban Soil Samples Affected by Industry and Traffic. Pol. J. Environ. Stud. 2009, 18, 1141–1150. [Google Scholar]
- Adewumi, J.R.; Ajibade, F.O. The Pollution Effects of Indiscriminate Disposal of Wastewater on Soil in Semi-Urban Area. J. Appl. Sci. Environ. Manag. 2015, 19, 412–419. [Google Scholar] [CrossRef]
- Md Meftaul, I.; Venkateswarlu, K.; Dharmarajan, R.; Annamalai, P.; Megharaj, M. Pesticides in the Urban Environment: A Potential Threat That Knocks at the Door. Sci. Total Environ. 2020, 711, 134612. [Google Scholar] [CrossRef]
- Sandil, S.; Kumar, R. Soil Contamination from Construction Projects. In Ecological and Health Effects of Building Materials; Malik, J.A., Marathe, S., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 205–244. ISBN 978-3-030-76073-1. [Google Scholar]
- Guidi Nissim, W.; Castiglione, S.; Guarino, F.; Pastore, M.C.; Labra, M. Beyond Cleansing: Ecosystem Services Related to Phytoremediation. Plants 2023, 12, 1031. [Google Scholar] [CrossRef]
- Gaur, N.; Flora, G.; Yadav, M.; Tiwari, A. A Review with Recent Advancements on Bioremediation-Based Abolition of Heavy Metals. Environ. Sci. Process. Impacts 2014, 16, 180–193. [Google Scholar] [CrossRef]
- Stanley, R.; Arpa, G.; Sakulas, H.; Harakuwe, A.; Timi, D. Phytoremediation—An Eco-Friendly and Sustainable Method of Heavy Metal Removal from Closed Mine Environments in Papua New Guinea. Procedia Earth Planet. Sci. 2013, 6, 269–277. [Google Scholar] [CrossRef]
- Parveen, S.; Bhat, I.U.; Khanam, Z.; Rak, A.E.; Yusoff, H.M.; Akhter, M.S. Phytoremediation: In Situ Alternative for Pollutant Removal from Contaminated Natural Media: A Brief Review. Biointerface Res. Appl. Chem. 2022, 12, 4945–4960. [Google Scholar] [CrossRef]
- Reubens, B.; Poesen, J.; Danjon, F.; Geudens, G.; Muys, B. The Role of Fine and Coarse Roots in Shallow Slope Stability and Soil Erosion Control with a Focus on Root System Architecture: A Review. Trees-Struct. Funct. 2007, 21, 385–402. [Google Scholar] [CrossRef]
- Wu, J.-H.; Tang, C.-S.; Shi, B.; Gao, L.; Jiang, H.-T.; Daniels, J.L. Effect of Ground Covers on Soil Temperature in Urban and Rural Areas. Environ. Eng. Geosci. 2014, 20, 225–237. [Google Scholar] [CrossRef]
- Liu, C.; Lin, H.; Li, B.; Dong, Y.; Yin, T. Responses of Microbial Communities and Metabolic Activities in the Rhizosphere during Phytoremediation of Cd-Contaminated Soil. Ecotoxicol. Environ. Saf. 2020, 202, 110958. [Google Scholar] [CrossRef]
- Yang, F.; Bao, Z.Y.; Zhu, Z.J. An Assessment of Psychological Noise Reduction by Landscape Plants. Int. J. Environ. Res. Public Health 2011, 8, 1032–1048. [Google Scholar] [CrossRef]
- Hoyle, H.; Hitchmough, J.; Jorgensen, A. All about the ‘Wow Factor’? The Relationships between Aesthetics, Restorative Effect and Perceived Biodiversity in Designed Urban Planting. Landsc. Urban Plan. 2017, 164, 109–123. [Google Scholar] [CrossRef]
- Li, G.; Sun, G.-X.; Ren, Y.; Luo, X.-S.; Zhu, Y.-G. Urban Soil and Human Health: A Review. Eur. J. Soil Sci. 2018, 69, 196–215. [Google Scholar] [CrossRef]
- Wei, B.; Yang, L. A Review of Heavy Metal Contaminations in Urban Soils, Urban Road Dusts and Agricultural Soils from China. Microchem. J. 2010, 94, 99–107. [Google Scholar] [CrossRef]
- Manta, D.S.; Angelone, M.; Bellanca, A.; Neri, R.; Sprovieri, M. Heavy Metals in Urban Soils: A Case Study from the City of Palermo (Sicily), Italy. Sci. Total Environ. 2002, 300, 229–243. [Google Scholar] [CrossRef]
- Sridhara Chary, N.; Kamala, C.T.; Samuel Suman Raj, D. Assessing Risk of Heavy Metals from Consuming Food Grown on Sewage Irrigated Soils and Food Chain Transfer. Ecotoxicol. Environ. Saf. 2008, 69, 513–524. [Google Scholar] [CrossRef]
- Morillo, E.; Romero, A.S.; Maqueda, C.; Madrid, L.; Ajmone-Marsan, F.; Grcman, H.; Davidson, C.M.; Hursthouse, A.S.; Villaverde, J. Soil Pollution by PAHs in Urban Soils: A Comparison of Three European Cities. J. Environ. Monit. 2007, 9, 1001–1008. [Google Scholar] [CrossRef]
- Pal, A.; He, Y.; Jekel, M.; Reinhard, M.; Gin, K.Y.-H. Emerging Contaminants of Public Health Significance as Water Quality Indicator Compounds in the Urban Water Cycle. Environ. Int. 2014, 71, 46–62. [Google Scholar] [CrossRef]
- Hale, R.C.; Seeley, M.E.; La Guardia, M.J.; Mai, L.; Zeng, E.Y. A Global Perspective on Microplastics. J. Geophys. Res. Ocean. 2020, 125, e2018JC014719. [Google Scholar] [CrossRef]
- Gentile, A.; Di Stasio, L.; Oliva, G.; Vigliotta, G.; Cicatelli, A.; Guarino, F.; Nissim, W.G.; Labra, M.; Castiglione, S. Antibiotic Resistance in Urban Soils: Dynamics and Mitigation Strategies. Environ. Res. 2024, 263, 120120. [Google Scholar] [CrossRef]
- Podhajska, E.; Drzeniecka-Osiadacz, A.; Halarewicz, A.; Grech, D.; Podhajski, B.; Zienowicz, M.; Bąbelewski, P.; Liszewski, M. Phytoremediation as an Urban Paradigm in Promoting the Health-Potential of Small Green Areas. Sustain. Cities Soc. 2023, 96, 104684. [Google Scholar] [CrossRef]
- Farraji, H.; Robinson, B.; Mohajeri, P.; Abedi, T. Phytoremediation: Green Technology for Improving Aquatic and Terrestrial Environments. Nippon J. Environ. Sci. 2020, 1, 1002. [Google Scholar] [CrossRef]
- Asante-Badu, B.; Kgorutla, L.E.; Li, S.S.; Danso, P.O.; Xue, Z.; Qiang, G. Phytoremediation of Organic and Inorganic Compounds in a Natural and an Agricultural Environment: A Review. Appl. Ecol. Environ. Res. 2020, 18, 6875–6904. [Google Scholar] [CrossRef]
- Salifu, M.; John, M.A.; Abubakar, M.; Bankole, I.A.; Ajayi, N.D.; Amusan, O. Phytoremediation Strategies for Heavy Metal Contamination: A Review on Sustainable Approach for Environmental Restoration. J. Environ. Prot. 2024, 15, 450–474. [Google Scholar] [CrossRef]
- Khan, S.; Afzal, M.; Iqbal, S.; Khan, Q.M. Plant–Bacteria Partnerships for the Remediation of Hydrocarbon Contaminated Soils. Chemosphere 2013, 90, 1317–1332. [Google Scholar] [CrossRef]
- Kristanti, R.A.; Ngu, W.J.; Yuniarto, A.; Hadibarata, T.; Yuniarto, A. Rhizofiltration for Removal of Inorganic and Organic Pollutants in Groundwater: A Review. Biointerface Res. Appl. Chem. 2021, 11, 12326–12347. [Google Scholar] [CrossRef]
- Borbón-Palomares, D.B.; González-Méndez, B.; Loredo-Portales, R.; Tinoco-Ojanguren, C.; Molina-Freaner, F. Phytostabilization Alternatives for an Abandoned Mine Tailing Deposit in Northwestern Mexico. Plant Soil 2024, 497, 199–218. [Google Scholar] [CrossRef]
- Kristanti, R.A.; Hadibarata, T. Phytoremediation of Contaminated Water Using Aquatic Plants, Its Mechanism and Enhancement. Curr. Opin. Environ. Sci. Health 2023, 32, 100451. [Google Scholar] [CrossRef]
- Chirakkara, R.A.; Cameselle, C.; Reddy, K.R. Assessing the Applicability of Phytoremediation of Soils with Mixed Organic and Heavy Metal Contaminants. Rev. Environ. Sci. Biotechnol. 2016, 15, 299–326. [Google Scholar] [CrossRef]
- Elshamy, M.M.; Heikal, Y.M.; Bonanomi, G. Phytoremediation Efficiency of Portulaca oleracea L. Naturally Growing in Some Industrial Sites, Dakahlia District, Egypt. Chemosphere 2019, 225, 678–687. [Google Scholar] [CrossRef]
- Yan, A.; Wang, Y.; Tan, S.N.; Mohd Yusof, M.L.; Ghosh, S.; Chen, Z. Phytoremediation: A Promising Approach for Revegetation of Heavy Metal-Polluted Land. Front. Plant Sci. 2020, 11, 359. [Google Scholar] [CrossRef]
- Zulkernain, N.H.; Uvarajan, T.; Ng, C.C. Roles and Significance of Chelating Agents for Potentially Toxic Elements (PTEs) Phytoremediation in Soil: A Review. J. Environ. Manag. 2023, 341, 117926. [Google Scholar] [CrossRef]
- Deng, G.; Zaman, Q.; Liu, C.; Luo, Y.; Xia, X.; Guo, L.; Sultan, K.; He, X.; Fahad, S.; Cheng, X. Phytoremediation of Lead Polluted Mine Soil by Synergistic Effect of Chelating Agents and Nitrogen in Hemp. Ind. Crops Prod. 2024, 222, 119815. [Google Scholar] [CrossRef]
- Yang, Q.; Yu, H.; Yang, C.; Zhao, Z.; Ju, Z.; Wang, J.; Bai, Z. Enhanced Phytoremediation of Cadmium-Contaminated Soil Using Chelating Agents and Plant Growth Regulators: Effect and Mechanism. R. Soc. Open Sci. 2024, 11, 240672. [Google Scholar] [CrossRef]
- Peng, X.; Wu, Y.; Chen, L.; Ma, X. Responses of Vallisneria Natans and Pistia Stratiotes to Cu2+ and Mn2+ Stress: Occurrence of Caffeic Acid and Its Degradation Kinetics during Chlorination. Ecotoxicol. Environ. Saf. 2024, 274, 116209. [Google Scholar] [CrossRef]
- Yaashikaa, P.R.; Kumar, P.S.; Jeevanantham, S.; Saravanan, R. A Review on Bioremediation Approach for Heavy Metal Detoxification and Accumulation in Plants. Environ. Pollut. 2022, 301, 119035. [Google Scholar] [CrossRef]
- Inui, H.; Wakai, T.; Gion, K.; Kim, Y.-S.; Eun, H. Differential Uptake for Dioxin-like Compounds by Zucchini Subspecies. Chemosphere 2008, 73, 1602–1607. [Google Scholar] [CrossRef]
- Vanier, C.; Planas, D.; Sylvestre, M. Equilibrium Partition Theory Applied to PCBs in Macrophytes. Environ. Sci. Technol. 2001, 35, 4830–4833. [Google Scholar] [CrossRef]
- Chen, J.; Xia, X.; Wang, H.; Zhai, Y.; Xi, N.; Lin, H.; Wen, W. Uptake Pathway and Accumulation of Polycyclic Aromatic Hydrocarbons in Spinach Affected by Warming in Enclosed Soil/Water-Air-Plant Microcosms. J. Hazard. Mater. 2019, 379, 120831. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, F.; Xu, Y.; Rodgers, T.F.M.; Tan, F. Field Study on the Uptake Pathways and Their Contributions to the Accumulation of Organophosphate Esters, Phthalates, and Polycyclic Aromatic Hydrocarbons in Upland Rice. Sci. Total Environ. 2024, 946, 174205. [Google Scholar] [CrossRef]
- Alves, W.S.; Manoel, E.A.; Santos, N.S.; Nunes, R.O.; Domiciano, G.C.; Soares, M.R. Detection of Polycyclic Aromatic Hydrocarbons (PAHs) in Medicago Sativa L. by Fluorescence Microscopy. Micron 2017, 95, 23–30. [Google Scholar] [CrossRef]
- Kafle, A.; Timilsina, A.; Gautam, A.; Adhikari, K.; Bhattarai, A.; Aryal, N. Phytoremediation: Mechanisms, Plant Selection and Enhancement by Natural and Synthetic Agents. Environ. Adv. 2022, 8, 100203. [Google Scholar] [CrossRef]
- Walne, C.H.; Reddy, K.R. Temperature Effects on the Shoot and Root Growth, Development, and Biomass Accumulation of Corn (Zea Mays L.). Agriculture 2022, 12, 443. [Google Scholar] [CrossRef]
- Tan, H.W.; Pang, Y.L.; Lim, S.; Chong, W.C. A State-of-the-Art of Phytoremediation Approach for Sustainable Management of Heavy Metals Recovery. Environ. Technol. Innov. 2023, 30, 103043. [Google Scholar] [CrossRef]
- Kudo, H.; Qian, Z.; Inoue, C.; Chien, M.-F. Temperature Dependence of Metals Accumulation and Removal Kinetics by Arabidopsis Halleri Ssp. Gemmifera. Plants 2023, 12, 877. [Google Scholar] [CrossRef]
- Rahman, F.; Sugawara, K.; Wei, S.; Kohda, Y.H.-T.; Chien, M.-F.; Inoue, C. Influence of Low Temperature on Comparative Arsenic Accumulation and Release by Three Pteris Hyperaccumulators. J. Environ. Sci. Health Part A 2021, 56, 1179–1188. [Google Scholar] [CrossRef]
- C.Go, J.L.; Madrazo, C.F.; Orbecido, A.H.; de Castro, M.E.G.; Belo, L.P. Copper Uptake Potential of Philippine Giant Bamboo (Dendrocalamus Asper) under Varied Initial Copper Concentration, Water Hardness and pH. MATEC Web Conf. 2019, 268, 06005. [Google Scholar] [CrossRef]
- Willscher, S.; Jablonski, L.; Fona, Z.; Rahmi, R.; Wittig, J. Phytoremediation Experiments with Helianthus Tuberosus under Different pH and Heavy Metal Soil Concentrations. Hydrometallurgy 2017, 168, 153–158. [Google Scholar] [CrossRef]
- Babu, S.M.O.F.; Hossain, M.B.; Rahman, M.S.; Rahman, M.; Ahmed, A.S.S.; Hasan, M.M.; Rakib, A.; Emran, T.B.; Xiao, J.; Simal-Gandara, J. Phytoremediation of Toxic Metals: A Sustainable Green Solution for Clean Environment. Appl. Sci. 2021, 11, 10348. [Google Scholar] [CrossRef]
- Liu, J.; Fu, C.; Li, G.; Khan, M.N.; Wu, H. ROS Homeostasis and Plant Salt Tolerance: Plant Nanobiotechnology Updates. Sustainability 2021, 13, 3552. [Google Scholar] [CrossRef]
- Zhu, Z.; Huang, Y.; Zha, J.; Yu, M.; Liu, X.; Li, H.; Zhu, X. Emission and Retention of Cadmium during the Combustion of Contaminated Biomass with Mineral Additives. Energy Fuels 2019, 33, 12508–12517. [Google Scholar] [CrossRef]
- Alkorta, I.; Garbisu, C. Phytoremediation of Organic Contaminants in Soils. Bioresour. Technol. 2001, 79, 273–276. [Google Scholar] [CrossRef]
- Cristaldi, A.; Conti, G.O.; Jho, E.H.; Zuccarello, P.; Grasso, A.; Copat, C.; Ferrante, M. Phytoremediation of Contaminated Soils by Heavy Metals and PAHs. A Brief Review. Environ. Technol. Innov. 2017, 8, 309–326. [Google Scholar] [CrossRef]
- Alagić, S.Č.; Maluckov, B.S.; Radojičić, V.B. How Can Plants Manage Polycyclic Aromatic Hydrocarbons? May These Effects Represent a Useful Tool for an Effective Soil Remediation? A Review. Clean Technol. Environ. Policy 2015, 17, 597–614. [Google Scholar] [CrossRef]
- Hogland, W.; Katrantsiotis, C.; Sachpazidou, V. Baltic Phytoremediation—Soil Remediation with Plants. IOP Conf. Ser. Earth Environ. Sci. 2020, 578, 012003. [Google Scholar] [CrossRef]
- Subramanian, D.; Subha, R.; Murugesan, A.K. Accumulation and Translocation of Trace Elements and Macronutrients in Different Plant Species across Five Study Sites. Ecol. Indic. 2022, 135, 108522. [Google Scholar] [CrossRef]
- Usman, K.; Al-Ghouti, M.A.; Abu-Dieyeh, M.H. The Assessment of Cadmium, Chromium, Copper, and Nickel Tolerance and Bioaccumulation by Shrub Plant Tetraena Qataranse. Sci. Rep. 2019, 9, 5658. [Google Scholar] [CrossRef]
- Li, M.; Heng, Q.; Hu, C.; Wang, Z.; Jiang, Y.; Wang, X.; He, X.; Yong, J.W.H.; Dawoud, T.M.; Rahman, S.U.; et al. Phytoremediation Efficiency of Poplar Hybrid Varieties with Diverse Genetic Backgrounds in Soil Contaminated by Multiple Toxic Metals (Cd, Hg, Pb, and As). Ecotoxicol. Environ. Saf. 2024, 283, 116843. [Google Scholar] [CrossRef]
- El-Mahrouk, E.-S.M.; Eisa, E.A.E.-H.; Ali, H.M.; Hegazy, M.A.E.; Abd El-Gayed, M.E.-S. Populus Nigra as a Phytoremediator for Cd, Cu, and Pb in Contaminated Soil. BioRes 2019, 15, 869–893. [Google Scholar] [CrossRef]
- Miletić, Z.; Jonjev, M.; Jarić, S.; Kostić, O.; Sekulić, D.; Mitrović, M.; Pavlović, P. Green Solution to Riparian Pollution: Populus Alba L. Potential for Phytoremediation and Bioindication of PTEs along the Sava River. Heliyon 2024, 10, e28183. [Google Scholar] [CrossRef]
- Berezin, G.I.; Olkova, A.S. Species Features of Bioaccumulation of Heavy Metals in Leaves of Poplar Populus Canadensis Moench and Ash Fraxinus Americana L. in the Urban Ecosystem. Ecosyst. Transform. 2024, 7, 12–18. [Google Scholar] [CrossRef]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2000; ISBN 978-0-429-19112-1. [Google Scholar]
- Salam, M.M.A.; Kaipiainen, E.; Mohsin, M.; Villa, A.; Kuittinen, S.; Pulkkinen, P.; Pelkonen, P.; Mehtätalo, L.; Pappinen, A. Effects of Contaminated Soil on the Growth Performance of Young Salix (Salix schwerinii E. L. Wolf) and the Potential for Phytoremediation of Heavy Metals. J. Environ. Manag. 2016, 183, 467–477. [Google Scholar] [CrossRef]
- Shang, K.; Labrecque, M.; Gilles, V.; Guidi Nissim, W. A Comprehensive Review of Planting Approaches Used to Establish Willow for Environmental Applications. Ecol. Eng. 2024, 204, 107288. [Google Scholar] [CrossRef]
- Cao, Y.; Tan, Q.; Zhang, F.; Ma, C.; Xiao, J.; Chen, G. Phytoremediation Potential Evaluation of Multiple Salix Clones for Heavy Metals (Cd, Zn and Pb) in Flooded Soils. Sci. Total Environ. 2022, 813, 152482. [Google Scholar] [CrossRef]
- Landberg, T.; Greger, M. Phytoremediation Using Willow in Industrial Contaminated Soil. Sustainability 2022, 14, 8449. [Google Scholar] [CrossRef]
- Chauhan, P.; Mathur, J. Phytoremediation Efficiency of Helianthus Annuus L. for Reclamation of Heavy Metals-Contaminated Industrial Soil. Environ. Sci. Pollut. Res. 2020, 27, 29954–29966. [Google Scholar] [CrossRef]
- Wyrwicka, A.; Urbaniak, M.; Przybylski, M. The Response of Cucumber Plants (Cucumis Sativus L.) to the Application of PCB-Contaminated Sewage Sludge and Urban Sediment. PeerJ 2019, 7, e6743. [Google Scholar] [CrossRef]
- Guidi Nissim, W.; Cincinelli, A.; Martellini, T.; Alvisi, L.; Palm, E.; Mancuso, S.; Azzarello, E. Phytoremediation of Sewage Sludge Contaminated by Trace Elements and Organic Compounds. Environ. Res. 2018, 164, 356–366. [Google Scholar] [CrossRef]
- Khan, A.H.A.; Kiyani, A.; Mirza, C.R.; Butt, T.A.; Barros, R.; Ali, B.; Iqbal, M.; Yousaf, S. Ornamental Plants for the Phytoremediation of Heavy Metals: Present Knowledge and Future Perspectives. Environ. Res. 2021, 195, 110780. [Google Scholar] [CrossRef]
- Watson, A.S.; Bai, R.S. Phytoremediation for Urban Landscaping and Air Pollution Control—A Case Study in Trivandrum City, Kerala, India. Environ. Sci. Pollut. Res. 2021, 28, 9979–9990. [Google Scholar] [CrossRef]
- de León, A.P.; González, R.C.; González, M.B.; Mier, M.V.; Durán-Domínguez-de-Bazúa, C. Exploration of the Ability of Coleus Blumei to Accumulate Aluminum. Int. J. Phytoremediation 2011, 13, 421–433. [Google Scholar] [CrossRef]
- Radojčić Redovniković, I.; De Marco, A.; Proietti, C.; Hanousek, K.; Sedak, M.; Bilandžić, N.; Jakovljević, T. Poplar Response to Cadmium and Lead Soil Contamination. Ecotoxicol. Environ. Saf. 2017, 144, 482–489. [Google Scholar] [CrossRef]
- Gervais-Bergeron, B.; Chagnon, P.-L.; Labrecque, M. Willow Aboveground and Belowground Traits Can Predict Phytoremediation Services. Plants 2021, 10, 1824. [Google Scholar] [CrossRef]
- Soares, E.; Hamid, A.; Mangkoedihardjo, S. Phytoremediation of Zinc Polluted Soil Using Sunflower (Helianthus Annuus l.). J. Phytol. 2021, 13, 9–12. [Google Scholar] [CrossRef]
- Aybar, M.; Sağlam, B.; Dağhan, H.; Tüfekçıoğlu, A.; Kölelı, N.; Yılmaz, F.N. Phytoextraction of Heavy Metal (Cu, Zn, Pb) from Mining Area by Sunflower (Helianthus annuus). Kastamonu Univ. J. For. Fac. 2023, 23, 75–85. [Google Scholar] [CrossRef]
- Mottaghi, S.; Bahmani, O.; Pak, V.A. Phytoremediation of Diesel Contaminated Soil Using Urban Wastewater and Its Effect on Soil Concentration and Plant Growth. Water Supply 2022, 22, 8104–8119. [Google Scholar] [CrossRef]
- Pusz, A.; Wiśniewska, M.; Rogalski, D. Assessment of the Accumulation Ability of Festuca Rubra L. and Alyssum Saxatile L. Tested on Soils Contaminated with Zn, Cd, Ni, Pb, Cr, and Cu. Resources 2021, 10, 46. [Google Scholar] [CrossRef]
- Tatian, M.R.; Tamartash, R.; Agajantabar Ali, H.; Faraji, A. Evaluation of Phytoremediation Potential of Lead and Cadmium in Rangeland Plant Species, Dactylis Glomerata, Festuca Ovina and Medicago Sativa. J. Nat. Environ. 2023, 76, 15–28. [Google Scholar] [CrossRef]
- Steliga, T.; Kluk, D. Application of Festuca Arundinacea in Phytoremediation of Soils Contaminated with Pb, Ni, Cd and Petroleum Hydrocarbons. Ecotoxicol. Environ. Saf. 2020, 194, 110409. [Google Scholar] [CrossRef]
- Dotaniya, M.L.; Rajendiran, S.; Meena, V.D.; Coumar, M.V.; Saha, J.K.; Bhogal, N.S.; Patra, A.K. Comparative Evaluation of Phytoremediation Potential of Indian Mustard (Brassica Juncea) Varieties under Sewage Irrigated Sites. J. Indian Soc. Soil Sci. 2020, 68, 450–457. [Google Scholar] [CrossRef]
- Gaggero, E.; Malandrino, M.; Fabbri, D.; Bordiglia, G.; Fusconi, A.; Mucciarelli, M.; Inaudi, P.; Calza, P. Uptake of Potentially Toxic Elements by Four Plant Species Suitable for Phytoremediation of Turin Urban Soils. Appl. Sci. 2020, 10, 3948. [Google Scholar] [CrossRef]
- Salinitro, M.; Montanari, S.; Simoni, A.; Ciavatta, C.; Tassoni, A. Trace Metal Accumulation and Phytoremediation Potential of Four Crop Plants Cultivated on Pure Sewage Sludge. Agronomy 2021, 11, 2456. [Google Scholar] [CrossRef]
- Singh, P.K.; Yadav, J.S.; Kumar, I.; Kumar, U.; Sharma, R.K. Screening of Mustard Cultivars for Phytoremediation of Heavy Metals Contamination in Wastewater Irrigated Soil Systems. Environ. Monit. Assess. 2024, 196, 321. [Google Scholar] [CrossRef]
- Dar, M.I.; Naikoo, M.I.; Khan, F.A.; Green, I.D. Assessing the Feasibility of Sewage Sludge Applications for the Cultivation of Brassica juncea L.: Metal Accumulation, Growth, Biochemical and Yield Responses. Environ. Sci. Renew. Resour. 2018, 1, 104. [Google Scholar]
- Haghnazar, H.; Sabbagh, K.; Johannesson, K.H.; Pourakbar, M.; Aghayani, E. Phytoremediation Capability of Typha Latifolia L. to Uptake Sediment Toxic Elements in the Largest Coastal Wetland of the Persian Gulf. Mar. Pollut. Bull. 2023, 188, 114699. [Google Scholar] [CrossRef]
- Hejna, M.; Moscatelli, A.; Stroppa, N.; Onelli, E.; Pilu, S.; Baldi, A.; Rossi, L. Bioaccumulation of Heavy Metals from Wastewater through a Typha latifolia and Thelypteris palustris Phytoremediation System. Chemosphere 2020, 241, 125018. [Google Scholar] [CrossRef]
- Klink, A. A Comparison of Trace Metal Bioaccumulation and Distribution in Typha Latifolia and Phragmites Australis: Implication for Phytoremediation. Environ. Sci. Pollut. Res. 2017, 24, 3843–3852. [Google Scholar] [CrossRef]
- Ayilara, M.S.; Babalola, O.O. Bioremediation of Environmental Wastes: The Role of Microorganisms. Front. Agron. 2023, 5, 1183691. [Google Scholar] [CrossRef]
- Rabani, M.S.; Sharma, R.; Singh, R.; Gupta, M.K. Characterization and Identification of Naphthalene Degrading Bacteria Isolated from Petroleum Contaminated Sites and Their Possible Use in Bioremediation. Polycycl. Aromat. Compd. 2022, 42, 978–989. [Google Scholar] [CrossRef]
- Liu, L.; Xiao, C.; Gao, Y.; Jiang, T.; Xu, K.; Chen, J.; Lin, Z.; Chen, J.; Tian, S.; Lu, L. Inoculation of Multi-Metal-Resistant Bacillus sp. to a Hyperaccumulator Plant Sedum alfredii for Facilitating Phytoextraction of Heavy Metals from Contaminated Soil. Chemosphere 2024, 366, 143464. [Google Scholar] [CrossRef]
- Vaishnavi, J.; Osborne, W.J. Phyto-Rhizoremediation Potential of C. zizanioides Augmented with Bacillus Infantis (VITVJ8) for the Uptake of Heavy Metals (Cr, Pb and Zn). Front. Soil Sci. 2025, 5, 1484039. [Google Scholar] [CrossRef]
- Mukjang, N.; Chitov, T.; Mhuantong, W.; Champreda, V.; Pathom-aree, W.; Sattayawat, P.; Bovonsombut, S. Bacterial Communities Associated with Crude Oil Bioremediation through Composting Approaches with Indigenous Bacterial Isolate. Life 2022, 12, 1712. [Google Scholar] [CrossRef]
- Ummara, U.; Jaleel, F.; Ahmed, F.; Al-Zoubi, O.M.; Iqbal, S.; Naz, N.; Afzal, M.; Alghanem, S.M.S.; Alotaibi, M.O. The Role of Pseudomonas Aeruginosa, Burkholderia Phytofirmans and Acinetobacter Junii in Phytoremediation of Crude Oil and Stimulation of Physio-Biochemical Activities of Wheat. J. Soil Sci. Plant Nutr. 2025, 25, 2173–2185. [Google Scholar] [CrossRef]
- Khoso, M.A.; Wagan, S.; Alam, I.; Hussain, A.; Ali, Q.; Saha, S.; Poudel, T.R.; Manghwar, H.; Liu, F. Impact of Plant Growth-Promoting Rhizobacteria (PGPR) on Plant Nutrition and Root Characteristics: Current Perspective. Plant Stress 2024, 11, 100341. [Google Scholar] [CrossRef]
- Alinejad, Z.; Abtahi, S.A.; Jafarinia, M.; Yasrebi, J. The Impact of Arbuscular Mycorrhizal Symbiosis, Funneliformis Mosseae, on Rosemary Phytoremediation Ability under Urban Traffic. Int. J. Phytoremediation 2024, 26, 250–262. [Google Scholar] [CrossRef]
- Chane, A.D.; Košnář, Z.; Hřebečková, T.; Jozífek, M.; Doležal, P.; Tlustoš, P. Persistent Polycyclic Aromatic Hydrocarbons Removal from Sewage Sludge-Amended Soil through Phytoremediation Combined with Solid-State Ligninolytic Fungal Cultures. Fungal Biol. 2024, 128, 1675–1683. [Google Scholar] [CrossRef]
- Viana, D.G.; Egreja Filho, F.B.; Pires, F.R.; Soares, M.B.; Ferreira, A.D.; Bonomo, R.; Martins, L.F. In Situ Barium Phytoremediation in Flooded Soil Using Typha domingensis under Different Planting Densities. Ecotoxicol. Environ. Saf. 2021, 210, 111890. [Google Scholar] [CrossRef]
- Mitter, E.K.; Kataoka, R.; de Freitas, J.R.; Germida, J.J. Potential Use of Endophytic Root Bacteria and Host Plants to Degrade Hydrocarbons. Int. J. Phytoremediation 2019, 21, 928–938. [Google Scholar] [CrossRef]
- Sousa, J.F.; Amaro, H.M.; Ribeirinho-Soares, S.; Esteves, A.F.; Salgado, E.M.; Nunes, O.C.; Pires, J.C.M. Native Microalgae-Bacteria Consortia: A Sustainable Approach for Effective Urban Wastewater Bioremediation and Disinfection. Microorganisms 2024, 12, 1421. [Google Scholar] [CrossRef]
- Cheng, X.; Delanka-Pedige, H.M.K.; Munasinghe-Arachchige, S.P.; Abeysiriwardana-Arachchige, I.S.A.; Smith, G.B.; Nirmalakhandan, N.; Zhang, Y. Removal of Antibiotic Resistance Genes in an Algal-Based Wastewater Treatment System Employing Galdieria sulphuraria: A Comparative Study. Sci. Total Environ. 2020, 711, 134435. [Google Scholar] [CrossRef]
- Marchetto, F.; Roverso, M.; Righetti, D.; Bogialli, S.; Filippini, F.; Bergantino, E.; Sforza, E. Bioremediation of Per- and Poly-Fluoroalkyl Substances (PFAS) by Synechocystis sp. PCC 6803: A Chassis for a Synthetic Biology Approach. Life 2021, 11, 1300. [Google Scholar] [CrossRef]
- Arora, D.; Arora, A.; Panghal, V.; Singh, A.; Bala, R.; Kumari, S.; Kumar, S. Unleashing the Feasibility of Nanotechnology in Phytoremediation of Heavy Metal–Contaminated Soil: A Critical Review Towards Sustainable Approach. Water Air Soil. Pollut. 2024, 235, 57. [Google Scholar] [CrossRef]
- Majumdar, A.; Upadhyay, M.K.; Ojha, M.; Afsal, F.; Giri, B.; Srivastava, S.; Bose, S. Enhanced Phytoremediation of Metal(Loid)s via Spiked ZVI Nanoparticles: An Urban Clean-up Strategy with Ornamental Plants. Chemosphere 2022, 288, 132588. [Google Scholar] [CrossRef]
- Yasin, G.; Ur Rahman, S.; Yousaf, M.T.B.; Azhar, M.F.; Zahid, D.M.; Imtiaz, M.; Hussain, B. Phytoremediation Potential of E. Camaldulensis and M. Alba for Copper, Cadmium, and Lead Absorption in Urban Areas of Faisalabad City, Pakistan. Int. J. Environ. Res. 2021, 15, 597–612. [Google Scholar] [CrossRef]
- Umer, S.; Hussain, M. Adaptation of Ornamental Species for Phytoremediation to Minimize Lead Pollution in Urban Areas. Int. J. Environ. Sci. Technol. 2023, 20, 12559–12568. [Google Scholar] [CrossRef]
- Choudhury, M.R.; Islam, M.S.; Ahmed, Z.U.; Nayar, F. Phytoremediation of Heavy Metal Contaminated Buriganga Riverbed Sediment by Indian Mustard and Marigold Plants. Environ. Prog. Sustain. Energy 2016, 35, 117–124. [Google Scholar] [CrossRef]
- Lorestani, B.; Cheraghi, M.; Yousefi, N. Accumulation of Pb, Fe, Mn, Cu and Zn in Plants and Choice of Hyperaccumulator Plant in the Industrial Town of Vian, Iran. Arch. Biol. Sci. 2011, 63, 739–745. [Google Scholar] [CrossRef]
- Fernández-Braña, A.; Salgado, L.; Gallego, J.L.R.; Afif, E.; Boente, C.; Forján, R. Phytoremediation Potential Depends on the Degree of Soil Pollution: A Case Study in an Urban Brownfield. Environ. Sci. Pollut. Res. 2023, 30, 67708–67719. [Google Scholar] [CrossRef]
- Fasani, E.; DalCorso, G.; Zerminiani, A.; Ferrarese, A.; Campostrini, P.; Furini, A. Phytoremediatory Efficiency of Chrysopogon Zizanioides in the Treatment of Landfill Leachate: A Case Study. Environ. Sci. Pollut. Res. 2019, 26, 10057–10069. [Google Scholar] [CrossRef]
- von Arb, C.; Stoll, S.; Frossard, E.; Stamm, C.; Prasuhn, V. The Time It Takes to Reduce Soil Legacy Phosphorus to a Tolerable Level for Surface Waters: What We Learn from a Case Study in the Catchment of Lake Baldegg, Switzerland. Geoderma 2021, 403, 115257. [Google Scholar] [CrossRef]
- Boynukisa, E.; Schück, M.; Greger, M. Differences in Metal Accumulation from Stormwater by Three Plant Species Growing in Floating Treatment Wetlands in a Cold Climate. Water Air Soil Pollut. 2023, 234, 235. [Google Scholar] [CrossRef]
- Ferrans, L.; Jani, Y.; Hogland, W. Chemical Extraction of Trace Elements from Dredged Sediments into a Circular Economy Perspective: Case Study on Malmfjärden Bay, South-Eastern Sweden. Resour. Environ. Sustain. 2021, 6, 100039. [Google Scholar] [CrossRef]
- Alagić, S.Č.; Jovanović, V.P.S.; Mitić, V.D.; Cvetković, J.S.; Petrović, G.M.; Stojanović, G.S. Bioaccumulation of HMW PAHs in the Roots of Wild Blackberry from the Bor Region (Serbia): Phytoremediation and Biomonitoring Aspects. Sci. Total Environ. 2016, 562, 561–570. [Google Scholar] [CrossRef]
- Fidos, M.J.; Rutkowska, B. Akumulacja Wybranych Metali Ciężkich w Glebach i Liściach Drzew Rosnących Na Terenach Miejskich—Studium Przypadku. Soil Sci. Ann. 2023, 74, 163082. [Google Scholar] [CrossRef]
- Andra, S.S.; Sarkar, D.; Saminathan, S.K.M.; Datta, R. Predicting Potentially Plant-Available Lead in Contaminated Residential Sites. Environ. Monit. Assess. 2011, 175, 661–676. [Google Scholar] [CrossRef]
- Cooper, A.M.; Felix, D.; Alcantara, F.; Zaslavsky, I.; Work, A.; Watson, P.L.; Pezzoli, K.; Yu, Q.; Zhu, D.; Scavo, A.J.; et al. Monitoring and Mitigation of Toxic Heavy Metals and Arsenic Accumulation in Food Crops: A Case Study of an Urban Community Garden. Plant Direct 2020, 4, e00198. [Google Scholar] [CrossRef]
- da Cunha, A.C.B.; Sabedot, S.; Sampaio, C.H.; Ramos, C.G.; da Silva, A.R. Salix Rubens and Salix Triandra Species as Phytoremediators of Soil Contaminated with Petroleum-Derived Hydrocarbons. Water Air Soil Pollut. 2012, 223, 4723–4731. [Google Scholar] [CrossRef]
- Wang, J.; Aghajani Delavar, M. Techno-Economic Analysis of Phytoremediation: A Strategic Rethinking. Sci. Total Environ. 2023, 902, 165949. [Google Scholar] [CrossRef]
- Alshehri, K.; Gao, Z.; Harbottle, M.; Sapsford, D.; Cleall, P. Life Cycle Assessment and Cost-Benefit Analysis of Nature-Based Solutions for Contaminated Land Remediation: A Mini-Review. Heliyon 2023, 9, e20632. [Google Scholar] [CrossRef]
- Wan, X.; Lei, M.; Chen, T. Cost–Benefit Calculation of Phytoremediation Technology for Heavy-Metal-Contaminated Soil. Sci. Total Environ. 2016, 563, 796–802. [Google Scholar] [CrossRef]
- Xu, Z.; dos Muchangos, L.S.; Ito, L.; Tokai, A. Cost and Health Benefit Analysis of Remediation Alternatives for the Heavy-Metal-Contaminated Agricultural Land in a Pb–Zn Mining Town in China. J. Clean. Prod. 2023, 397, 136503. [Google Scholar] [CrossRef]
- Biswal, B.K.; Bolan, N.; Zhu, Y.-G.; Balasubramanian, R. Nature-Based Systems (NbS) for Mitigation of Stormwater and Air Pollution in Urban Areas: A Review. Resour. Conserv. Recycl. 2022, 186, 106578. [Google Scholar] [CrossRef]
- Matamoros, V.; Salvadó, V. Evaluation of the Seasonal Performance of a Water Reclamation Pond-Constructed Wetland System for Removing Emerging Contaminants. Chemosphere 2012, 86, 111–117. [Google Scholar] [CrossRef]
- Parde, D.; Patwa, A.; Shukla, A.; Vijay, R.; Killedar, D.J.; Kumar, R. A Review of Constructed Wetland on Type, Treatment and Technology of Wastewater. Environ. Technol. Innov. 2021, 21, 101261. [Google Scholar] [CrossRef]
- Ali, H.; Khan, E.; Sajad, M.A. Phytoremediation of Heavy Metals—Concepts and Applications. Chemosphere 2013, 91, 869–881. [Google Scholar] [CrossRef]
- Liu, Z.; Tran, K.-Q. A Review on Disposal and Utilization of Phytoremediation Plants Containing Heavy Metals. Ecotoxicol. Environ. Saf. 2021, 226, 112821. [Google Scholar] [CrossRef]
- Kowalska, A.; Biczak, R. Phytoremediation and Environmental Law: Harnessing Biomass and Microbes to Restore Soils and Advance Biofuel Innovation. Energies 2025, 18, 1860. [Google Scholar] [CrossRef]
- Bao, C.; Cao, Y.; Zhao, L.; Li, X.; Zhang, J.; Mao, C. Biofuel Production from Phytoremediated Biomass via Various Conversion Routes: A Review. Energies 2025, 18, 822. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Stasio, L.; Gentile, A.; Tangredi, D.N.; Piccolo, P.; Oliva, G.; Vigliotta, G.; Cicatelli, A.; Guarino, F.; Guidi Nissim, W.; Labra, M.; et al. Urban Phytoremediation: A Nature-Based Solution for Environmental Reclamation and Sustainability. Plants 2025, 14, 2057. https://doi.org/10.3390/plants14132057
Di Stasio L, Gentile A, Tangredi DN, Piccolo P, Oliva G, Vigliotta G, Cicatelli A, Guarino F, Guidi Nissim W, Labra M, et al. Urban Phytoremediation: A Nature-Based Solution for Environmental Reclamation and Sustainability. Plants. 2025; 14(13):2057. https://doi.org/10.3390/plants14132057
Chicago/Turabian StyleDi Stasio, Luca, Annamaria Gentile, Dario Nicola Tangredi, Paolo Piccolo, Gianmaria Oliva, Giovanni Vigliotta, Angela Cicatelli, Francesco Guarino, Werther Guidi Nissim, Massimo Labra, and et al. 2025. "Urban Phytoremediation: A Nature-Based Solution for Environmental Reclamation and Sustainability" Plants 14, no. 13: 2057. https://doi.org/10.3390/plants14132057
APA StyleDi Stasio, L., Gentile, A., Tangredi, D. N., Piccolo, P., Oliva, G., Vigliotta, G., Cicatelli, A., Guarino, F., Guidi Nissim, W., Labra, M., & Castiglione, S. (2025). Urban Phytoremediation: A Nature-Based Solution for Environmental Reclamation and Sustainability. Plants, 14(13), 2057. https://doi.org/10.3390/plants14132057