Abiotic and Biotic Stress of the Crops and Horticultural Plants
Acknowledgments
Conflicts of Interest
References
- Villalobos-González, L.; Carreras, C.; Beltrán, M.F.; Figueroa, F.; Rubilar-Hernández, C.; Opazo, I.; Toro, G.; Salvatierra, A.; Sagredo, B.; Pizarro, L.; et al. Sweet Cherry Plants Prioritize Their Response to Cope with Summer Drought, Overshadowing the Defense Response to Pseudomonas syringae pv. syringae. Plants 2024, 13, 1737. [Google Scholar] [CrossRef] [PubMed]
- Rao, X.; Yang, S.; Lü, S.; Yang, P. DNA Methylation Dynamics in Response to Drought Stress in Crops. Plants 2024, 13, 1977. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Lin, B.; Yin, Y.; Zong, Y.; Li, Y.; Zhu, Y.; Guo, W. Unraveling the Molecular Mechanisms of Blueberry Root Drought Tolerance Through Yeast Functional Screening and Metabolomic Profiling. Plants 2024, 13, 3528. [Google Scholar] [CrossRef] [PubMed]
- Kong, J.; Xiong, R.; Qiu, K.; Lin, X.; Li, D.; Lu, L.; Zhou, J.; Zhu, S.; Liu, M.; Sun, Q. Genome-Wide Identification and Characterization of the Laccase Gene Family in Fragaria vesca and Its Potential Roles in Response to Salt and Drought Stresses. Plants 2024, 13, 3366. [Google Scholar] [CrossRef] [PubMed]
- Jasso-Arreola, Y.; Ibarra, J.A.; Rosas-Cárdenas, F.d.F.; Estrada-de los Santos, P. Beneficial Effects of ACC Deaminase-Producing Rhizobacteria on the Drought Stress Resistance of Coffea arabica L. Plants 2025, 14, 1084. [Google Scholar] [CrossRef] [PubMed]
- Targino, V.A.; Dias, T.J.; Sousa, V.F.d.O.; Silva, M.d.M.; da Silva, A.J.; Ribeiro, J.E.d.S.; da Silva, R.F.; Batista, D.S.; Henschel, J.M.; Rêgo, M.M.d. Growth, Gas Exchange, and Phytochemical Quality of Nasturtium (Tropaeolum majus L.) Subjected to Proline Concentrations and Salinity. Plants 2025, 14, 301. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Wang, H.; Guo, D.; Wang, B.; Zhang, X.; Wang, J.; Liu, Y.; Wang, X.; Liu, C.; Dong, W. Integrated Transcriptomic and Proteomic Analysis Reveals Molecular Mechanisms of the Cold Stress Response during the Overwintering Period in Blueberries (Vaccinium spp.). Plants 2024, 13, 1911. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Hui, G.; Gao, G.; Ali, I.; Tang, M.; Chen, L.; Zhong, X.; Jiang, L.; Liang, T.; Zhang, X. Physiological and Proteomic Analysis of Various Priming on Rice Seed under Chilling Stress. Plants 2024, 13, 2430. [Google Scholar] [CrossRef] [PubMed]
- Wen, Z.; Lu, X.; Wen, J.; Wang, Z.; Chai, M. Physical Seed Dormancy in Legumes: Molecular Advances and Perspectives. Plants 2024, 13, 1473. [Google Scholar] [CrossRef] [PubMed]
- Svoboda, P.; Ovesná, J.; Helmer, Š.; Stránská, M. Pulsed Electric Field Treatment Modulates Gene Expression and Stress Responses in Fusarium-Infected Malting Barley. Plants 2025, 14, 668. [Google Scholar] [CrossRef] [PubMed]
- Anić, M.; Kontić, J.K.; Rendulić, N.; Čarija, M.; Osrečak, M.; Karoglan, M.; Andabaka, Ž. Evolution of Leaf Chlorophylls, Carotenoids and Phenolic Compounds during Vegetation of Some Croatian Indigenous Red and White Grape Cultivars. Plants 2024, 13, 971. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Hu, J.; Duan, X.; Chai, M.; Wen, J.; Wang, Z.; Xie, H. Genome-Wide Identification and Analysis of the WRKY Transcription Factor Family Associated with Leaf Senescence in Alfalfa. Plants 2024, 13, 2725. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Xiong, R.; Chu, Z.; Peng, X.; Cui, G.; Dong, L. Transcript-Wide Identification and Characterization of the BBX Gene Family in Trichosanthes kirilowii and Its Potential Roles in Development and Abiotic Stress. Plants 2025, 14, 975. [Google Scholar] [CrossRef] [PubMed]
- Valmonte-Cortes, G.R.; Higgins, C.M.; MacDiarmid, R.M. Arabidopsis Calcium Dependent Protein Kinase 3, and Its Orthologues OsCPK1, OsCPK15, and AcCPK16, Are Involved in Biotic and Abiotic Stresses. Plants 2025, 14, 294. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Cheng, K.; Li, T.; Lan, X.; Shen, L.; Zhao, H.; Lü, S. A Highly Efficient Agrobacterium rhizogenes-Mediated Hairy Root Transformation Method of Idesia polycarpa and the Generation of Transgenic Plants. Plants 2024, 13, 1791. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, P. Abiotic and Biotic Stress of the Crops and Horticultural Plants. Plants 2025, 14, 1910. https://doi.org/10.3390/plants14131910
Yang P. Abiotic and Biotic Stress of the Crops and Horticultural Plants. Plants. 2025; 14(13):1910. https://doi.org/10.3390/plants14131910
Chicago/Turabian StyleYang, Pingfang. 2025. "Abiotic and Biotic Stress of the Crops and Horticultural Plants" Plants 14, no. 13: 1910. https://doi.org/10.3390/plants14131910
APA StyleYang, P. (2025). Abiotic and Biotic Stress of the Crops and Horticultural Plants. Plants, 14(13), 1910. https://doi.org/10.3390/plants14131910