Age-Specific Physiological Adjustments of Spirodela polyrhiza to Sulfur Deficiency
Abstract
:1. Introduction
2. Results
2.1. Age-Dependent Variation in Chloroplast Ultrastructure of S. polyrhiza
2.2. Pigments, Total Anthocyanins, and Starch
2.3. Net Photosynthesis and Dark Respiration Rates
2.4. Rapid Light Curve
2.5. Redox State and Dynamics of Electron Transport Through PSI
2.6. Prompt Chlorophyll Fluorescence Induction Curves
2.7. Effect of S-Deficit and Frond Age on JIP Test Parameters
2.7.1. PSII Donor Side
2.7.2. Antenna Complex Properties
2.7.3. Performance of PSII Reaction Centers
2.7.4. PSII Acceptor Side Parameters
2.7.5. PSI-Related Parameters
2.7.6. Overall Plant Performance
3. Discussion
3.1. Age-Dependent Variation in Chloroplast Ultrastructure of S. polyrhiza
3.2. Pigments, Total Anthocyanins, and Starch
3.3. Photosynthesis
3.4. Rapid Light Curve (RLC)
3.5. Modulated Reflection—MR820
3.6. Chlorophyll Fluorescence—JIP Test
4. Materials and Methods
4.1. Plant Material and Experimental Setup
4.2. Transmission Electron Microscopy (TEM)
4.3. Pigment, Starch, and Total Anthocyanins Analysis
4.4. Oxygen Production and Consumption Measurements
4.5. Rapid Light Curve
4.6. Prompt Fluorescence and MR820
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ABS/CS0 | absorbed photon flux per excited cross-section of PSII (or also apparent antenna size) at t = 0 |
ABS/RC | average absorbed photon flux per PSII reaction center |
DI0/RC | the flux of energy dissipated per active RC |
ET0/RC | electron transport flux from QA− to PQ per active PSII |
TR0/RC | maximum trapped exciton flux per active PSII |
RE0/RC | electron transport flux from QA− to final PSI acceptors per active PSII |
Sm | the normalized area between the OJIP curve and the line Fm (a proxy of the number of electron carriers per electron transport chain)—representing energy necessary for the closure of all reaction centers |
N | the number indicating how many times QA is reduced while fluorescence reaches its maximal value (number of QA redox turnovers until Fm is reached) |
CS | CS, a cross-section of PSII |
VL | relative variable fluorescence at L-band |
VK | relative variable fluorescence at 300 μs (K-step) |
VJ | relative variable fluorescence at 2 ms (J-step) |
VI | relative variable fluorescence at 30 ms (I-step) |
VK/VJ | the ratio of variable fluorescence in time 0.3 ms to variable fluorescence in time 2 ms as an indicator of the PSII donor side limitation |
ΔV/Δto | initial slope (in ms-1) of O-J (the rate of accumulation of closed reaction centers), a ratio expressing the rate of accumulation of closed reaction centers |
F0 | initial fluorescence value |
Fm | maximal fluorescence intensity |
FV | variable chlorophyll fluorescence (Fm − Fo) |
FV/F0 | the ratio between the rate constants of photochemicaland nonphotochemical deactivation of excited Chl molecules |
FV/FM | the maximum quantum efficiency of PSII under dark adaptation |
φP0 | the maximum quantum yield of primary PSII photochemistry |
ψE0 | the efficiency with which a PSII-trapped electron is transferred from QA to QB |
φE0 | the quantum yield of electron transport from QA− to PQ |
ψR0 | the efficiency with which a PSII trapped electron is transferred to final PSI acceptors |
φR0 | the quantum yield of electron transport from QA− to final PSI acceptors |
δR0 | the efficiency with which an electron from QB is transferred to the final PSI acceptors |
φD0 | quantum yield of energy dissipation in PSII antenna (maximum quantum yield of nonphotochemical deexcitation) |
PIABS | performance index (potential) for energy conservation from exciton to reduction of intersystem electron acceptors |
PITOT | performance index (potential) for energy conservation from exciton to reduction of PSI end acceptors; QA and QB, primary and secondary quinone electron acceptors |
SFIABS | PSII structure-function index |
PQ | the pool of free plastoquinones |
PQH2 | Plastoquinols |
PC | plastocyanins |
PSI | Photosystem I |
PSII | Photosystem II |
OEC | oxygen-evolving complex |
DF | daughter frond |
MF | mother frond |
GDF | granddaughter frond |
MRt | modulated 820-nm reflection intensity at time t |
Vox | the rate of P700 oxidation |
Vred | the rate of P700 re-reduction |
LCP | Light compensation point |
ETRmax | maximum relative electron transport rate at saturating light |
rETR | relative electron transport rate |
α | the slope of the linear phase at sub-saturating light of the ETR vs. E curves |
β | coefficient of downregulation/photoinhibition |
Ek | the minimum saturating irradiance |
RLC | Rapid Light Curve |
References
- Hawkesford, M.J. Plant Responses to Sulphur Deficiency and the Genetic Manipulation of Sulphate Transporters to Improve S-Utilization Efficiency. J. Exp. Bot. 2000, 51, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Nikiforova, V.J.; Kopka, J.; Tolstikov, V.; Fiehn, O.; Hopkins, L.; Hawkesford, M.J.; Hesse, H.; Hoefgen, R. Systems Rebalancing of Metabolism in Response to Sulfur Deprivation, as Revealed by Metabolome Analysis of Arabidopsis Plants. Plant Physiol. 2005, 138, 304–318. [Google Scholar] [CrossRef] [PubMed]
- Aarabi, F.; Naake, T.; Fernie, A.R.; Hoefgen, R. Coordinating Sulfur Pools under Sulfate Deprivation. Trends Plant Sci. 2020, 25, 1227–1239. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, Y.; Sato, A.; Watanabe, K.; Hirata, A.; Takeshita, T.; Ota, S.; Sato, N.; Zachleder, V.; Tsuzuki, M.; Kawano, S. Sequential Accumulation of Starch and Lipid Induced by Sulfur Deficiency in Chlorella and Parachlorella Species. Bioresour. Technol. 2013, 129, 150–155. [Google Scholar] [CrossRef]
- Zhang, L.; Kawaguchi, R.; Morikawa-Ichinose, T.; Allahham, A.; Kim, S.-J.; Maruyama-Nakashita, A. Sulfur Deficiency-Induced Glucosinolate Catabolism Attributed to Two β-Glucosidases, BGLU28 and BGLU30, Is Required for Plant Growth Maintenance under Sulfur Deficiency. Plant Cell Physiol. 2020, 61, 803–813. [Google Scholar] [CrossRef]
- Sun, Z.; Guo, W.; Zhao, X.; Chen, Y.; Yang, J.; Xu, S.; Hou, H. Sulfur Limitation Boosts More Starch Accumulation than Nitrogen or Phosphorus Limitation in Duckweed (Spirodela polyrhiza). Ind. Crops Prod. 2022, 185, 115098. [Google Scholar] [CrossRef]
- Ostaszewska, M.; Juszczuk, I.M.; Kołodziejek, I.; Rychter, A.M. Long-Term Sulphur Starvation of Arabidopsis Thaliana Modifies Mitochondrial Ultrastructure and Activity and Changes Tissue Energy and Redox Status. J. Plant Physiol. 2014, 171, 549–558. [Google Scholar] [CrossRef]
- Ferreira, R.M.; Teixeira, A.R. Sulfur Starvation in Lemna Leads to Degradation of Ribulose-Bisphosphate Carboxylase without Plant Death. J. Biol. Chem. 1992, 267, 7253–7257. [Google Scholar] [CrossRef]
- Esquível, M.G.; Ferreira, R.B.; Teixeira, A.R. Protein Degradation in C3 and C4 Plants Subjected to Nutrient Starvation. Particular Reference to Ribulose Bisphosphate Carboxylase/Oxygenase and Glycolate Oxidase. Plant Sci. 2000, 153, 15–23. [Google Scholar] [CrossRef]
- Lunde, C.; Zygadlo, A.; Simonsen, H.T.; Nielsen, P.L.; Blennow, A.; Haldrup, A. Sulfur Starvation in Rice: The Effect on Photosynthesis, Carbohydrate Metabolism, and Oxidative Stress Protective Pathways. Physiol. Plant. 2008, 134, 508–521. [Google Scholar] [CrossRef]
- Gilbert, S.M.; Clarkson, D.T.; Cambridge, M.; Lambers, H.; Hawkesford, M.J. SO42−-Deprivation Has an Early Effect on the Content of Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase and Photosynthesis in Young Leaves of Wheat. Plant Physiol. 1997, 115, 1231–1239. [Google Scholar] [CrossRef] [PubMed]
- Aarabi, F.; Rakpenthai, A.; Barahimipour, R.; Gorka, M.; Alseekh, S.; Zhang, Y.; Salem, M.A.; Brückner, F.; Omranian, N.; Watanabe, M.; et al. Sulfur Deficiency-Induced Genes Affect Seed Protein Accumulation and Composition under Sulfate Deprivation. Plant Physiol. 2021, 187, 2419–2434. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, P.; Adelmann, K.; Zimmer, S.; Schmidt, C.; Appenroth, K.-J. Relative in Vitro Growth Rates of Duckweeds (L Emnaceae)—The Most Rapidly Growing Higher Plants. Plant Biol. 2015, 17 (Suppl. S1), 33–41. [Google Scholar] [CrossRef] [PubMed]
- Malacrinò, A.; Böttner, L.; Nouere, S.; Huber, M.; Schäfer, M.; Xu, S. Induced Responses Contribute to Rapid Adaptation of Spirodela polyrhiza to Herbivory by Lymnaea Stagnalis. Commun. Biol. 2024, 7, 81. [Google Scholar] [CrossRef]
- Wang, W.; Haberer, G.; Gundlach, H.; Gläßer, C.; Nussbaumer, T.; Luo, M.C.; Lomsadze, A.; Borodovsky, M.; Kerstetter, R.A.; Shanklin, J.; et al. The Spirodela polyrhiza Genome Reveals Insights into Its Neotenous Reduction Fast Growth and Aquatic Lifestyle. Nat. Commun. 2014, 5, 3311. [Google Scholar] [CrossRef]
- Xu, S.; Stapley, J.; Gablenz, S.; Boyer, J.; Appenroth, K.J.; Sree, K.S.; Gershenzon, J.; Widmer, A.; Huber, M. Low Genetic Variation Is Associated with Low Mutation Rate in the Giant Duckweed. Nat. Commun. 2019, 10, 1243. [Google Scholar] [CrossRef]
- Michael, T.P.; Bryant, D.; Gutierrez, R.; Borisjuk, N.; Chu, P.; Zhang, H.; Xia, J.; Zhou, J.; Peng, H.; El Baidouri, M.; et al. Comprehensive Definition of Genome Features in Spirodela polyrhiza by High-depth Physical Mapping and Short-read DNA Sequencing Strategies. Plant J. 2017, 89, 617–635. [Google Scholar] [CrossRef]
- Oláh, V.; Kosztankó, K.; Irfan, M.; Barnáné Szabó, Z.; Jansen, M.A.K.; Szabó, S.; Mészáros, I. Frond-Level Analyses Reveal Functional Heterogeneity within Heavy Metal-Treated Duckweed Colonies. Plant Stress 2024, 11, 100405. [Google Scholar] [CrossRef]
- Harkess, A.; McLoughlin, F.; Bilkey, N.; Elliott, K.; Emenecker, R.; Mattoon, E.; Miller, K.; Czymmek, K.; Vierstra, R.D.; Meyers, B.C.; et al. Improved Spirodela polyrhiza Genome and Proteomic Analyses Reveal a Conserved Chromosomal Structure with High Abundance of Chloroplastic Proteins Favoring Energy Production. J. Exp. Bot. 2021, 72, 2491–2500. [Google Scholar] [CrossRef]
- Samardakiewicz, S.; Krzeszowiec-Jeleń, W.; Bednarski, W.; Jankowski, A.; Suski, S.; Gabryś, H.; Woźny, A. Pb-Induced Avoidance-Like Chloroplast Movements in Fronds of Lemna trisulca L. PLoS ONE 2015, 10, e0116757. [Google Scholar] [CrossRef]
- Ziegler, P. The Developmental Cycle of Spirodela polyrhiza Turions: A Model for Turion-Based Duckweed Overwintering? Plants 2024, 13, 2993. [Google Scholar] [CrossRef] [PubMed]
- Peršić, V.; Antunović Dunić, J.; Domjan, L.; Zellnig, G.; Cesar, V. Time Course of Age-Linked Changes in Photosynthetic Efficiency of Spirodela polyrhiza Exposed to Cadmium. Front. Plant Sci. 2022, 13, 872793. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Ding, Z.; Sun, X.; Zhang, J. Physiological and Transcriptomic Analysis Reveals Distorted Ion Homeostasis and Responses in the Freshwater Plant Spirodela polyrhiza L. under Salt Stress. Genes 2019, 10, 743. [Google Scholar] [CrossRef] [PubMed]
- Shang, S.; Zhang, Z.; Li, L.; Chen, J.; Zang, Y.; Liu, X.; Wang, J.; Tang, X. Transcriptome Analysis Reveals Genes Expression Pattern of Spirodela polyrhiza Response to Heat Stress. Int. J. Biol. Macromol. 2023, 225, 767–775. [Google Scholar] [CrossRef]
- Fang, X.; Hong, Y.; Fang, Y.; Cheng, L.; Li, Z.; Li, C.; Ban, X. Transcriptomic and Metabolic Analysis Reveal Potential Mechanism of Starch Accumulation in Spirodela polyrhiza Under Nutrient Stress. Plants 2025, 14, 1617. [Google Scholar] [CrossRef]
- Mejbel, H.S.; Simons, A.M. Aberrant Clones: Birth Order Generates Life History Diversity in Greater Duckweed, Spirodela polyrhiza. Ecol. Evol. 2018, 8, 2021–2031. [Google Scholar] [CrossRef]
- Landolt, E. Biosystematic Investigation in the Family of Duckweeds (“Lemnaceae”). Vol. 2: The Family of “Lemnaceae”: A Monographic Study. Volume 1. Veroff Geobot. Inst. ETH 1986, 71, 1–563. [Google Scholar] [CrossRef]
- Acosta, K.; Appenroth, K.J.; Borisjuk, L.; Edelman, M.; Heinig, U.; Jansen, M.A.K.; Oyama, T.; Pasaribu, B.; Schubert, I.; Sorrels, S.; et al. Return of the Lemnaceae: Duckweed as a Model Plant System in the Genomics and Postgenomics Era. Plant Cell 2021, 33, 3207–3234. [Google Scholar] [CrossRef]
- Van Wijk, K.J.; Kessler, F. Plastoglobuli: Plastid Microcompartments with Integrated Functions in Metabolism, Plastid Developmental Transitions, and Environmental Adaptation. Annu. Rev. Plant Biol. 2017, 68, 253–289. [Google Scholar] [CrossRef]
- Austin, J.R., II; Frost, E.; Vidi, P.-A.; Kessler, F.; Staehelin, L.A. Plastoglobules Are Lipoprotein Subcompartments of the Chloroplast That Are Permanently Coupled to Thylakoid Membranes and Contain Biosynthetic Enzymes. Plant Cell 2006, 18, 1693–1703. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. Biosynthesis, Accumulation and Emission of Carotenoids, α-Tocopherol, Plastoquinone, and Isoprene in Leaves under High Photosynthetic Irradiance. Photosynth. Res. 2007, 92, 163–179. [Google Scholar] [CrossRef] [PubMed]
- Zbierzak, A.M.; Kanwischer, M.; Wille, C.; Vidi, P.-A.; Giavalisco, P.; Lohmann, A.; Briesen, I.; Porfirova, S.; Bréhélin, C.; Kessler, F.; et al. Intersection of the Tocopherol and Plastoquinol Metabolic Pathways at the Plastoglobule. Biochem. J. 2010, 425, 389–399. [Google Scholar] [CrossRef] [PubMed]
- Besagni, C.; Kessler, F. A Mechanism Implicating Plastoglobules in Thylakoid Disassembly during Senescence and Nitrogen Starvation. Planta 2013, 237, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, A.; Fujimoto, M.; Katayama, K.; Yamaoka, S.; Tsutsumi, N.; Arimura, S. Formation of Mitochondrial Outer Membrane Derived Protrusions and Vesicles in Arabidopsis Thaliana. PLoS ONE 2016, 11, e0146717. [Google Scholar] [CrossRef]
- Jung, S.; Woo, J.; Park, E. Talk to Your Neighbors in an Emergency: Stromule-Mediated Chloroplast-Nucleus Communication in Plant Immunity. Curr. Opin. Plant Biol. 2024, 79, 102529. [Google Scholar] [CrossRef]
- Nomata, J.; Ogawa, T.; Kitashima, M.; Inoue, K.; Fujita, Y. NB-protein (BchN–BchB) of Dark-operative Protochlorophyllide Reductase Is the Catalytic Component Containing Oxygen-tolerant Fe–S Clusters. FEBS Lett. 2008, 582, 1346–1350. [Google Scholar] [CrossRef]
- Lu, Y. Assembly and Transfer of Iron–Sulfur Clusters in the Plastid. Front. Plant Sci. 2018, 9, 336. [Google Scholar] [CrossRef]
- Müller-Schüssele, S.J.; Wang, R.; Gütle, D.D.; Romer, J.; Rodriguez-Franco, M.; Scholz, M.; Buchert, F.; Lüth, V.M.; Kopriva, S.; Dörmann, P.; et al. Chloroplasts Require Glutathione Reductase to Balance Reactive Oxygen Species and Maintain Efficient Photosynthesis. Plant J. 2020, 103, 1140–1154. [Google Scholar] [CrossRef]
- Sugimoto, K.; Sato, N.; Tsuzuki, M. Utilization of a Chloroplast Membrane Sulfolipid as a Major Internal Sulfur Source for Protein Synthesis in the Early Phase of Sulfur Starvation in Chlamydomonas Reinhardtii. FEBS Lett. 2007, 581, 4519–4522. [Google Scholar] [CrossRef]
- Chandra, N.; Pandey, N. Influence of Sulfur Induced Stress on Oxidative Status and Antioxidative Machinery in Leaves of Allium Cepa L. Int. Sch. Res. Not. 2014, 2014, 568081. [Google Scholar] [CrossRef]
- Siddiqui, M.H.; Alamri, S.; Alsubaie, Q.D.; Ali, H.M.; Khan, M.N.; Al-Ghamdi, A.; Ibrahim, A.A.; Alsadon, A. Exogenous Nitric Oxide Alleviates Sulfur Deficiency-Induced Oxidative Damage in Tomato Seedlings. Nitric Oxide 2020, 94, 95–107. [Google Scholar] [CrossRef] [PubMed]
- MacNeill, G.J.; Mehrpouyan, S.; Minow, M.A.A.; Patterson, J.A.; Tetlow, I.J.; Emes, M.J. Starch as a Source, Starch as a Sink: The Bifunctional Role of Starch in Carbon Allocation. J. Exp. Bot. 2017, 68, 4433–4453. [Google Scholar] [CrossRef] [PubMed]
- Graf, A.; Smith, A.M. Starch and the Clock: The Dark Side of Plant Productivity. Trends Plant Sci. 2011, 16, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Stitt, M.; Zeeman, S.C. Starch Turnover: Pathways, Regulation and Role in Growth. Curr. Opin. Plant Biol. 2012, 15, 282–292. [Google Scholar] [CrossRef]
- Nakai, H.; Yasutake, D.; Hidaka, K.; Nomura, K.; Eguchi, T.; Yokoyama, G.; Hirota, T. Starch Serves as an Overflow Product in the Regulation of Carbon Allocation in Strawberry Leaves in Response to Photosynthetic Activity. Plant Growth Regul. 2023, 101, 875–882. [Google Scholar] [CrossRef]
- Taiz, L.; Møller, I.M.; Murphy, A.; Zeiger, E. (Eds.) Plant Physiology and Development, 7th ed.; Oxford University Press: Oxford, UK, 2023. [Google Scholar]
- González-Ballester, D.; Casero, D.; Cokus, S.; Pellegrini, M.; Merchant, S.S.; Grossman, A.R. RNA-Seq Analysis of Sulfur-Deprived Chlamydomonas Cells Reveals Aspects of Acclimation Critical for Cell Survival. Plant Cell 2010, 22, 2058–2084. [Google Scholar] [CrossRef]
- Deschamps, P.; Haferkamp, I.; d’Hulst, C.; Neuhaus, H.E.; Ball, S.G. The Relocation of Starch Metabolism to Chloroplasts: When, Why and How. Trends Plant Sci. 2008, 13, 574–582. [Google Scholar] [CrossRef]
- Wang, L.; Kuang, Y.; Zheng, S.; Tong, Y.; Zhu, Y.; Wang, Y. Overexpression of the Phosphoserine Phosphatase-Encoding Gene (AtPSP1) Promotes Starch Accumulation in Lemna Turionifera 5511 under Sulfur Deficiency. Plants 2023, 12, 1012. [Google Scholar] [CrossRef]
- Yang, J.; Dou, S.; Liu, X.; Zhu, L.; Liu, K.; Zhang, Y.; Li, L.; Liu, G.; Yang, M. Enhanced Starch Accumulation in Chlorella Sorokiniana as Sugar Platform and the Expression Profiling of Key Regulatory Proteins. Ind. Crops Prod. 2024, 213, 118433. [Google Scholar] [CrossRef]
- Skryhan, K.; Gurrieri, L.; Sparla, F.; Trost, P.; Blennow, A. Redox Regulation of Starch Metabolism. Front. Plant Sci. 2018, 9, 1344. [Google Scholar] [CrossRef]
- Karageorgou, P.; Manetas, Y. The Importance of Being Red When Young: Anthocyanins and the Protection of Young Leaves of Quercus Coccifera from Insect Herbivory and Excess Light. Tree Physiol. 2006, 26, 613–621. [Google Scholar] [CrossRef] [PubMed]
- Hughes, N.M.; Smith, W.K. Attenuation of Incident Light in Galax Urceolata (Diapensiaceae): Concerted Influence of Adaxial and Abaxial Anthocyanic Layers on Photoprotection. Am. J. Bot. 2007, 94, 784–790. [Google Scholar] [CrossRef] [PubMed]
- Landi, M.; Tattini, M.; Gould, K.S. Multiple Functional Roles of Anthocyanins in Plant-Environment Interactions. Environ. Exp. Bot. 2015, 119, 4–17. [Google Scholar] [CrossRef]
- Ma, Y.; Ma, X.; Gao, X.; Wu, W.; Zhou, B. Light Induced Regulation Pathway of Anthocyanin Biosynthesis in Plants. Int. J. Mol. Sci. 2021, 22, 11116. [Google Scholar] [CrossRef]
- Yu, L.; Fan, J.; Zhou, C.; Xu, C. Chloroplast Lipid Biosynthesis Is Fine-Tuned to Thylakoid Membrane Remodeling during Light Acclimation. Plant Physiol. 2021, 185, 94–107. [Google Scholar] [CrossRef]
- Manetas, Y. Why Some Leaves Are Anthocyanic and Why Most Anthocyanic Leaves Are Red? Flora-Morphol. Distrib. Funct. Ecol. Plants 2006, 201, 163–177. [Google Scholar] [CrossRef]
- Hughes, N.M.; Morley, C.B.; Smith, W.K. Coordination of Anthocyanin Decline and Photosynthetic Maturation in Juvenile Leaves of Three Deciduous Tree Species. New Phytol. 2007, 175, 675–685. [Google Scholar] [CrossRef]
- Steyn, W.J.; Wand, S.J.E.; Holcroft, D.M.; Jacobs, G. Anthocyanins in Vegetative Tissues: A Proposed Unified Function in Photoprotection. New Phytol. 2002, 155, 349–361. [Google Scholar] [CrossRef]
- Hughes, N.M.; Vogelmann, T.C.; Smith, W.K. Optical Effects of Abaxial Anthocyanin on Absorption of Red Wavelengths by Understorey Species: Revisiting the Back-Scatter Hypothesis. J. Exp. Bot. 2008, 59, 3435–3442. [Google Scholar] [CrossRef]
- Hughes, N.M.; Carpenter, K.L.; Keidel, T.S.; Miller, C.N.; Waters, M.N.; Smith, W.K. Photosynthetic Costs and Benefits of Abaxial versus Adaxial Anthocyanins in Colocasia Esculenta ‘Mojito’. Planta 2014, 240, 971–981. [Google Scholar] [CrossRef]
- Lo Piccolo, E.; Landi, M.; Massai, R.; Remorini, D.; Guidi, L. Girled-Induced Anthocyanin Accumulation in Red-Leafed Prunus Cerasifera: Effect on Photosynthesis, Photoprotection and Sugar Metabolism. Plant Sci. 2020, 294, 110456. [Google Scholar] [CrossRef] [PubMed]
- Albert, N.W.; Lewis, D.H.; Zhang, H.; Irving, L.J.; Jameson, P.E.; Davies, K.M. Light-Induced Vegetative Anthocyanin Pigmentation in Petunia. J. Exp. Bot. 2009, 60, 2191–2202. [Google Scholar] [CrossRef] [PubMed]
- Cerqueira, J.V.A.; De Andrade, M.T.; Rafael, D.D.; Zhu, F.; Martins, S.V.C.; Nunes-Nesi, A.; Benedito, V.; Fernie, A.R.; Zsögön, A. Anthocyanins and Reactive Oxygen Species: A Team of Rivals Regulating Plant Development? Plant Mol. Biol. 2023, 112, 213–223. [Google Scholar] [CrossRef] [PubMed]
- Neill, S.O.; Gould, K.S. Anthocyanins in Leaves: Light Attenuators or Antioxidants? Funct. Plant Biol. 2003, 30, 865. [Google Scholar] [CrossRef]
- Kytridis, V.-P.; Manetas, Y. Mesophyll versus Epidermal Anthocyanins as Potential in Vivo Antioxidants: Evidence Linking the Putative Antioxidant Role to the Proximity of Oxy-Radical Source. J. Exp. Bot. 2006, 57, 2203–2210. [Google Scholar] [CrossRef]
- Jeannette, E.; Reyss, A.; Grégory, N.; Gantet, P.; Prioul, J.-L. Carbohydrate Metabolism in a Heat-girdled Maize Source Leaf. Plant Cell Environ. 2000, 23, 61–69. [Google Scholar] [CrossRef]
- Arnold, T.M.; Appel, H.M.; Schultz, J.C. Is Polyphenol Induction Simply a Result of Altered Carbon and Nitrogen Accumulation? Plant Signal. Behav. 2012, 7, 1498–1500. [Google Scholar] [CrossRef]
- Arnold, T.; Appel, H.; Patel, V.; Stocum, E.; Kavalier, A.; Schultz, J. Carbohydrate Translocation Determines the Phenolic Content of Populus Foliage: A Test of the Sink–Source Model of Plant Defense. New Phytol. 2004, 164, 157–164. [Google Scholar] [CrossRef]
- Tao, X.; Fang, Y.; Huang, M.-J.; Xiao, Y.; Liu, Y.; Ma, X.-R.; Zhao, H. High Flavonoid Accompanied with High Starch Accumulation Triggered by Nutrient Starvation in Bioenergy Crop Duckweed (Landoltia Punctata). BMC Genom. 2017, 18, 166. [Google Scholar] [CrossRef]
- Li, Y.; Van Den Ende, W.; Rolland, F. Sucrose Induction of Anthocyanin Biosynthesis Is Mediated by DELLA. Mol. Plant 2014, 7, 570–572. [Google Scholar] [CrossRef]
- LaFountain, A.M.; Yuan, Y. Repressors of Anthocyanin Biosynthesis. New Phytol. 2021, 231, 933–949. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.R.; Krantz, J.K.; Joiner, J.N.; Conover, C.A. Light Compensation Point and Leaf Distribution of Ficus Benjamina as Affected by Light Intensity and Nitrogen—Potassium Nutrition1. J. Am. Soc. Hortic. Sci. 1979, 104, 335–338. [Google Scholar] [CrossRef]
- White, A.J.; Critchley, C. Rapid Light Curves: A New Fluorescence Method to Assess the State of the Photosynthetic Apparatus. Photosynth. Res. 1999, 59, 63–72. [Google Scholar] [CrossRef]
- Ralph, P.J.; Gademann, R. Rapid Light Curves: A Powerful Tool to Assess Photosynthetic Activity. Aquat. Bot. 2005, 82, 222–237. [Google Scholar] [CrossRef]
- Jespersen, D.; Xiao, B. Use of Rapid Light Curves to Evaluate Photosynthetic Changes in Turfgrasses Exposed to Low-light Conditions. Int. Turfgrass Soc. Res. J. 2022, 14, 205–214. [Google Scholar] [CrossRef]
- Tsimilli-Michael, M. Special Issue in Honour of Prof. Reto J. Strasser—Revisiting JIP-Test: An Educative Review on Concepts, Assumptions, Approximations, Definitions and Terminology. Photosynthetica 2020, 58, 275–292. [Google Scholar] [CrossRef]
- Stirbet, A.; Govindjee. On the Relation between the Kautsky Effect (Chlorophyll a Fluorescence Induction) and Photosystem II: Basics and Applications of the OJIP Fluorescence Transient. J. Photochem. Photobiol. B 2011, 104, 236–257. [Google Scholar] [CrossRef]
- Schansker, G.; Tóth, S.Z.; Strasser, R.J. Dark Recovery of the Chl a Fluorescence Transient (OJIP) after Light Adaptation: The qT-Component of Non-Photochemical Quenching Is Related to an Activated Photosystem I Acceptor Side. Biochim. Biophys. Acta BBA-Bioenerg. 2006, 1757, 787–797. [Google Scholar] [CrossRef]
- Strasser, R.J.; Tsimilli-Michael, M.; Qiang, S.; Goltsev, V. Simultaneous in Vivo Recording of Prompt and Delayed Fluorescence and 820-Nm Reflection Changes during Drying and after Rehydration of the Resurrection Plant Haberlea Rhodopensis. Biochim. Biophys. Acta BBA-Bioenerg. 2010, 1797, 1313–1326. [Google Scholar] [CrossRef]
- Kalaji, H.M.; Goltsev, V.; Bosa, K.; Allakhverdiev, S.I.; Strasser, R.J.; Govindjee. Experimental in Vivo Measurements of Light Emission in Plants: A Perspective Dedicated to David Walker. Photosynth. Res. 2012, 114, 69–96. [Google Scholar] [CrossRef]
- Bielczynski, L.W.; Łącki, M.K.; Hoefnagels, I.; Gambin, A.; Croce, R. Leaf and Plant Age Affects Photosynthetic Performance and Photoprotective Capacity. Plant Physiol. 2017, 175, 1634–1648. [Google Scholar] [CrossRef] [PubMed]
- Bąba, W.; Kalaji, H.M.; Kompała-Bąba, A.; Goltsev, V. Acclimatization of Photosynthetic Apparatus of Tor Grass (Brachypodium Pinnatum) during Expansion. PLoS ONE 2016, 11, e0156201. [Google Scholar] [CrossRef] [PubMed]
- Rattan, K.J. An Inter-Basin Comparison of Nutrient Limitation and the Irradiance Response of Pulse-Amplitude Modulated (PAM) Fluorescence in Lake Erie Phytoplankton. Aquat. Ecol. 2014, 48, 107–125. [Google Scholar] [CrossRef]
- Rattan, K.J. Comparative Analyses of Physiological Assays and Chlorophyll a Variable Fluorescence Parameters: Investigating the Importance of Phosphorus Availability in Oligotrophic and Eutrophic Freshwater Systems. Aquat. Ecol. 2017, 51, 359–375. [Google Scholar] [CrossRef]
- Cui, Y.; Zhang, H.; Lin, S. Enhancement of Non-Photochemical Quenching as an Adaptive Strategy under Phosphorus Deprivation in the Dinoflagellate Karlodinium veneficum. Front. Microbiol. 2017, 8, 404. [Google Scholar] [CrossRef]
- Henley, W.J. Measurement and interpretation of photosynthetic light-response curves in algae in the context of photoinhibition and diel changes. J. Phycol. 1993, 29, 729. [Google Scholar] [CrossRef]
- Harrison, J.W.; Smith, R.E.H. Effects of Nutrients and Irradiance on PSII Variable Fluorescence of Lake Phytoplankton Assemblages. Aquat. Sci. 2013, 75, 399–411. [Google Scholar] [CrossRef]
- Schansker, G.; Srivastava, A.; Govindjee; Strasser, R.J. Characterization of the 820-Nm Transmission Signal Paralleling the Chlorophyll a Fluorescence Rise (OJIP) in Pea Leaves. Funct. Plant Biol. 2003, 30, 785. [Google Scholar] [CrossRef]
- Gao, J.; Li, P.; Ma, F.; Goltsev, V. Photosynthetic Performance during Leaf Expansion in Malus Micromalus Probed by Chlorophyll a Fluorescence and Modulated 820nm Reflection. J. Photochem. Photobiol. B 2014, 137, 144–150. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, Y.; Lu, Y.; Shi, J.; Chen, S.; Strasser, R.J.; Qiang, S.; Hu, Z. Special Issue in Honour of Prof. Reto J. Strasser—Effect of AtLFNR1 Deficiency on Chlorophyll a Fluorescence Rise Kinetics OJIP of Arabidopsis. Photosynthetica 2020, 58, 391–398. [Google Scholar] [CrossRef]
- Dąbrowski, P.; Baczewska-Dąbrowska, A.H.; Kalaji, H.M.; Goltsev, V.; Paunov, M.; Rapacz, M.; Wójcik-Jagła, M.; Pawluśkiewicz, B.; Bąba, W.; Brestic, M. Exploration of Chlorophyll a Fluorescence and Plant Gas Exchange Parameters as Indicators of Drought Tolerance in Perennial Ryegrass. Sensors 2019, 19, 2736. [Google Scholar] [CrossRef] [PubMed]
- El-Mejjaouy, Y.; Belmrhar, L.; Zeroual, Y.; Dumont, B.; Mercatoris, B.; Oukarroum, A. PCA-Based Detection of Phosphorous Deficiency in Wheat Plants Using Prompt Fluorescence and 820 Nm Modulated Reflection Signals. PLoS ONE 2023, 18, e0286046. [Google Scholar] [CrossRef] [PubMed]
- Dumas, L.; Chazaux, M.; Peltier, G.; Johnson, X.; Alric, J. Cytochrome b 6 f Function and Localization, Phosphorylation State of Thylakoid Membrane Proteins and Consequences on Cyclic Electron Flow. Photosynth. Res. 2016, 129, 307–320. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.E.; Berry, J.A. The Role of Cytochrome B6f in the Control of Steady-State Photosynthesis: A Conceptual and Quantitative Model. Photosynth. Res. 2021, 148, 101–136. [Google Scholar] [CrossRef]
- Goltsev, V.; Zaharieva, I.; Chernev, P.; Kouzmanova, M.; Kalaji, H.M.; Yordanov, I.; Krasteva, V.; Alexandrov, V.; Stefanov, D.; Allakhverdiev, S.I.; et al. Drought-Induced Modifications of Photosynthetic Electron Transport in Intact Leaves: Analysis and Use of Neural Networks as a Tool for a Rapid Non-Invasive Estimation. Biochim. Biophys. Acta BBA-Bioenerg. 2012, 1817, 1490–1498. [Google Scholar] [CrossRef]
- Dąbrowski, P.; Baczewska-Dąbrowska, A.H.; Bussotti, F.; Pollastrini, M.; Piekut, K.; Kowalik, W.; Wróbel, J.; Kalaji, H.M. Photosynthetic Efficiency of Microcystis Ssp. under Salt Stress. Environ. Exp. Bot. 2021, 186, 104459. [Google Scholar] [CrossRef]
- Salvatori, E.; Fusaro, L.; Gottardini, E.; Pollastrini, M.; Goltsev, V.; Strasser, R.J.; Bussotti, F. Plant Stress Analysis: Application of Prompt, Delayed Chlorophyll Fluorescence and 820 nm Modulated Reflectance. Insights from Independent Experiments. Plant Physiol. Biochem. 2014, 85, 105–113. [Google Scholar] [CrossRef]
- Oukarroum, A.; Lebrihi, A.; Gharous, M.E.; Goltsev, V.; Strasser, R.J. Desiccation-Induced Changes of Photosynthetic Transport in Parmelina Tiliacea (Hoffm.) Ach. Analysed by Simultaneous Measurements of the Kinetics of Prompt Fluorescence, Delayed Fluorescence and Modulated 820 nm Reflection. J. Lumin. 2018, 198, 302–308. [Google Scholar] [CrossRef]
- Zhou, R.; Kan, X.; Chen, J.; Hua, H.; Li, Y.; Ren, J.; Feng, K.; Liu, H.; Deng, D.; Yin, Z. Drought-Induced Changes in Photosynthetic Electron Transport in Maize Probed by Prompt Fluorescence, Delayed Fluorescence, P700 and Cyclic Electron Flow Signals. Environ. Exp. Bot. 2019, 158, 51–62. [Google Scholar] [CrossRef]
- D’Hooghe, P.; Escamez, S.; Trouverie, J.; Avice, J.-C. Sulphur Limitation Provokes Physiological and Leaf Proteome Changes in Oilseed Rape That Lead to Perturbation of Sulphur, Carbon and Oxidative Metabolisms. BMC Plant Biol. 2013, 13, 23. [Google Scholar] [CrossRef]
- Samborska-Skutnik, I.A.; Kalaji, H.M.; Sieczko, L.; Bąba, W. Special Issue in Honour of Prof. Reto J. Strasser—Structural and Functional Response of Photosynthetic Apparatus of Radish Plants to Iron Deficiency. Photosynthetica 2020, 58, 205–213. [Google Scholar] [CrossRef]
- Kalaji, H.M.; Oukarroum, A.; Alexandrov, V.; Kouzmanova, M.; Brestic, M.; Zivcak, M.; Samborska, I.A.; Cetner, M.D.; Allakhverdiev, S.I.; Goltsev, V. Identification of Nutrient Deficiency in Maize and Tomato Plants by in Vivo Chlorophyll a Fluorescence Measurements. Plant Physiol. Biochem. 2014, 81, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Kalaji, H.M.; Bąba, W.; Gediga, K.; Goltsev, V.; Samborska, I.A.; Cetner, M.D.; Dimitrova, S.; Piszcz, U.; Bielecki, K.; Karmowska, K.; et al. Chlorophyll Fluorescence as a Tool for Nutrient Status Identification in Rapeseed Plants. Photosynth. Res. 2018, 136, 329–343. [Google Scholar] [CrossRef] [PubMed]
- Aleksandrov, V. Identification of Nutrient Deficiency in Bean Plants by Prompt Chlorophyll Fluorescence Measurements and Artificial Neural Networks. arXiv 2019, arXiv:1906.03312. [Google Scholar] [CrossRef]
- Živčák, M.; Olšovská, K.; Slamka, P.; Galambošová, J.; Rataj, V.; Shao, H.-B.; Kalaji, H.M.; Brestič, M. Measurements of Chlorophyll Fluorescence in Different Leaf Positions May Detect Nitrogen Deficiency in Wheat. Zemdirb.-Agric. 2014, 101, 437–444. [Google Scholar] [CrossRef]
- Schansker, G.; Ohnishi, M.; Furutani, R.; Miyake, C. Identification of Twelve Different Mineral Deficiencies in Hydroponically Grown Sunflower Plants on the Basis of Short Measurements of the Fluorescence and P700 Oxidation/Reduction Kinetics. Front. Plant Sci. 2022, 13, 894607. [Google Scholar] [CrossRef]
- Schansker, G.; Tóth, S.Z.; Strasser, R.J. Methylviologen and Dibromothymoquinone Treatments of Pea Leaves Reveal the Role of Photosystem I in the Chl a Fluorescence Rise OJIP. Biochim. Biophys. Acta BBA-Bioenerg. 2005, 1706, 250–261. [Google Scholar] [CrossRef]
- Tikhonov, A.N. The Cytochrome B6f Complex at the Crossroad of Photosynthetic Electron Transport Pathways. Plant Physiol. Biochem. 2014, 81, 163–183. [Google Scholar] [CrossRef]
- Carstensen, A.; Herdean, A.; Schmidt, S.B.; Sharma, A.; Spetea, C.; Pribil, M.; Husted, S. The Impacts of Phosphorus Deficiency on the Photosynthetic Electron Transport Chain. Plant Physiol. 2018, 177, 271–284. [Google Scholar] [CrossRef]
- Kalaji, H.M.; Jajoo, A.; Oukarroum, A.; Brestic, M.; Zivcak, M.; Samborska, I.A.; Cetner, M.D.; Łukasik, I.; Goltsev, V.; Ladle, R.J. Chlorophyll a Fluorescence as a Tool to Monitor Physiological Status of Plants under Abiotic Stress Conditions. Acta Physiol. Plant. 2016, 38, 102. [Google Scholar] [CrossRef]
- Yusuf Mohd, A.; Kumar, D.; Rajwanshi, R.; Strasser, R.J.; Tsimilli-Michael, M.; Govindjee; Sarin, N.B. Overexpression of γ-Tocopherol Methyl Transferase Gene in Transgenic Brassica Juncea Plants Alleviates Abiotic Stress: Physiological and Chlorophyll a Fluorescence Measurements. Biochim. Biophys. Acta BBA-Bioenerg. 2010, 1797, 1428–1438. [Google Scholar] [CrossRef] [PubMed]
- Tóth, S.Z.; Schansker, G.; Garab, G.; Strasser, R.J. Photosynthetic Electron Transport Activity in Heat-Treated Barley Leaves: The Role of Internal Alternative Electron Donors to Photosystem II. Biochim. Biophys. Acta BBA-Bioenerg. 2007, 1767, 295–305. [Google Scholar] [CrossRef] [PubMed]
- Oukarroum, A.; Schansker, G.; Strasser, R.J. Drought Stress Effects on Photosystem I Content and Photosystem II Thermotolerance Analyzed Using Chl a Fluorescence Kinetics in Barley Varieties Differing in Their Drought Tolerance. Physiol. Plant. 2009, 137, 188–199. [Google Scholar] [CrossRef] [PubMed]
- Laisk, A.; Oja, V. Kinetics of Photosystem II Electron Transport: A Mathematical Analysis Based on Chlorophyll Fluorescence Induction. Photosynth. Res. 2018, 136, 63–82. [Google Scholar] [CrossRef]
- Munekage, Y.; Hojo, M.; Meurer, J.; Endo, T.; Tasaka, M.; Shikanai, T. PGR5 Is Involved in Cyclic Electron Flow around Photosystem I and Is Essential for Photoprotection in Arabidopsis. Cell 2002, 110, 361–371. [Google Scholar] [CrossRef]
- DalCorso, G.; Pesaresi, P.; Masiero, S.; Aseeva, E.; Schünemann, D.; Finazzi, G.; Joliot, P.; Barbato, R.; Leister, D. A Complex Containing PGRL1 and PGR5 Is Involved in the Switch between Linear and Cyclic Electron Flow in Arabidopsis. Cell 2008, 132, 273–285. [Google Scholar] [CrossRef]
- Peltier, G.; Aro, E.-M.; Shikanai, T. NDH-1 and NDH-2 Plastoquinone Reductases in Oxygenic Photosynthesis. Annu. Rev. Plant Biol. 2016, 67, 55–80. [Google Scholar] [CrossRef]
- Johnson, X.; Steinbeck, J.; Dent, R.M.; Takahashi, H.; Richaud, P.; Ozawa, S.-I.; Houille-Vernes, L.; Petroutsos, D.; Rappaport, F.; Grossman, A.R.; et al. Proton Gradient Regulation 5-Mediated Cyclic Electron Flow under ATP- or Redox-Limited Conditions: A Study of ΔATpase Pgr5 and ΔrbcL Pgr5 Mutants in the Green Alga Chlamydomonas Reinhardtii. Plant Physiol. 2014, 165, 438–452. [Google Scholar] [CrossRef]
- McDonald, A.E.; Ivanov, A.G.; Bode, R.; Maxwell, D.P.; Rodermel, S.R.; Hüner, N.P.A. Flexibility in Photosynthetic Electron Transport: The Physiological Role of Plastoquinol Terminal Oxidase (PTOX). Biochim. Biophys. Acta BBA-Bioenerg. 2011, 1807, 954–967. [Google Scholar] [CrossRef]
- Shimakawa, G.; Miyake, C. Oxidation of P700 Ensures Robust Photosynthesis. Front. Plant Sci. 2018, 9, 1617. [Google Scholar] [CrossRef]
- Urban, A.; Rogowski, P.; Romanowska, E. Crucial Role of the PTOX and CET Pathways in Optimizing ATP Synthesis in Mesophyll Chloroplasts of C3 and C4 Plants. Environ. Exp. Bot. 2022, 202, 105024. [Google Scholar] [CrossRef]
- Miyake, C. Alternative Electron Flows (Water–Water Cycle and Cyclic Electron Flow Around PSI) in Photosynthesis: Molecular Mechanisms and Physiological Functions. Plant Cell Physiol. 2010, 51, 1951–1963. [Google Scholar] [CrossRef] [PubMed]
- Steinberg, R.A. Mineral Requirements of Lemna Minor. Plant Physiol. 1946, 21, 42–48. [Google Scholar] [CrossRef] [PubMed]
- ISO 20227:2017(en); Water quality—Determination of the Growth Inhibition Effects of Waste Waters, Natural Waters and Chemicals on the Duckweed Spirodela polyrhiza—Method Using a Stock Culture Independent Microbiotest. ISO: Geneva, Switzerland. Available online: https://www.iso.org/obp/ui/en/#iso:std:iso:20227:ed-1:v1:en (accessed on 24 April 2025).
- Lichtenthaler, H.K.; Buschmann, C. Chlorophylls and Carotenoids: Measurement and Characterization by UV-VIS Spectroscopy. Curr. Protoc. Food Anal. Chem. 2001, 1, F4.3.1–F4.3.8. [Google Scholar] [CrossRef]
- Appenroth, K.-J.; Krech, K.; Keresztes, Á.; Fischer, W.; Koloczek, H. Effects of Nickel on the Chloroplasts of the Duckweeds Spirodela polyrhiza and Lemna Minor and Their Possible Use in Biomonitoring and Phytoremediation. Chemosphere 2010, 78, 216–223. [Google Scholar] [CrossRef]
- Mancinelli, A.L.; Yang, C.P.; Lindquist, P.; Anderson, O.R.; Rabino, I. Photocontrol of Anthocyanin Synthesis: III. The Action of Streptomycin on the Synthesis of Chlorophyll and Anthocyanin. Plant Physiol. 1975, 55, 251–257. [Google Scholar] [CrossRef]
- Neff, M.M.; Chory, J. Genetic Interactions between Phytochrome A, Phytochrome B, and Cryptochrome 1 during Arabidopsis Development1. Plant Physiol. 1998, 118, 27–35. [Google Scholar] [CrossRef]
- Taghavi, T.; Patel, H.; Rafie, R. Comparing pH Differential and Methanol-based Methods for Anthocyanin Assessments of Strawberries. Food Sci. Nutr. 2022, 10, 2123–2131. [Google Scholar] [CrossRef]
- Filbin, G.J.; Hough, R.A. Photosynthesis, Photorespiration, and Productivity in Lemna Minor L. Limnol. Oceanogr. 1985, 30, 322–334. [Google Scholar] [CrossRef]
- Walker, D. The Use of the Oxygen Electrode and Fluorescence Probes in Simple Measurements of Photosynthesis; University of Sheffield: Sheffield, UK, 1987; p. 212. [Google Scholar]
- Schreiber, U. Pulse-Amplitude-Modulation (PAM) Fluorometry and Saturation Pulse Method: An Overview. In Chlorophyll a Fluorescence: Advances in Photosynthesis and Respiration; Papageorgiou, G.C., Govindjee, Eds.; Springer: Dordrecht, The Netherlands, 2004; Volume 19. [Google Scholar] [CrossRef]
- Platt, T.; Gallegos, C.L.; Harrison, W.G. Photoinhibition of Photosynthesis in Natural Assemblages of Marine Phytoplankton. J. Mar. Res. 1980, 38, 687–701. [Google Scholar]
- Çiçek, N.; Oukarroum, A.; Strasser, R.J.; Schansker, G. Salt Stress Effects on the Photosynthetic Electron Transport Chain in Two Chickpea Lines Differing in Their Salt Stress Tolerance. Photosynth. Res. 2018, 136, 291–301. [Google Scholar] [CrossRef] [PubMed]
- Kalaji, H.M.; Schansker, G.; Brestic, M.; Bussotti, F.; Calatayud, A.; Ferroni, L.; Goltsev, V.; Guidi, L.; Jajoo, A.; Li, P.; et al. Frequently Asked Questions about Chlorophyll Fluorescence, the Sequel. Photosynth. Res. 2017, 132, 13–66. [Google Scholar] [CrossRef] [PubMed]
- Ellis, P.D. The Essential Guide to Effect Sizes: Statistical Power, Meta-Analysis, and the Interpretation of Research Results, 1st ed.; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar] [CrossRef]
- Nakagawa, S.; Cuthill, I.C. Effect Size, Confidence Interval and Statistical Significance: A Practical Guide for Biologists. Biol. Rev. 2007, 82, 591–605. [Google Scholar] [CrossRef] [PubMed]
- Hedges, L.V.; Olkin, I. CHAPTER 5—Estimation of a Single Effect Size: Parametric and Nonparametric Methods. In Statistical Methods for Meta-Analysis; Hedges, L.V., Olkin, I., Eds.; Academic Press: San Diego, CA, USA, 1985; pp. 75–106. [Google Scholar] [CrossRef]
PG Diameter (μm) | n | Mean | Standard Deviation | Dunn’s Differences, p-Values | Grouping | ||
---|---|---|---|---|---|---|---|
DF1 | DF2 | GDF | |||||
MF | 40 | 0.797 | 0.244 | 27.346, 0.003 | 43.875, <0.0001 | 62.661, <0.0001 | A |
DF1 | 13 | 0.287 | 0.071 | 0 | 16.529, 0.127 | 35.315, 0.000 | B |
DF2 | 16 | 0.134 | 0.057 | 0 | 18.786, 0.035 | BC | |
GDF | 31 | 0.078 | 0.028 | 0 | C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peršić, V.; Melnjak, A.; Domjan, L.; Zellnig, G.; Antunović Dunić, J. Age-Specific Physiological Adjustments of Spirodela polyrhiza to Sulfur Deficiency. Plants 2025, 14, 1907. https://doi.org/10.3390/plants14131907
Peršić V, Melnjak A, Domjan L, Zellnig G, Antunović Dunić J. Age-Specific Physiological Adjustments of Spirodela polyrhiza to Sulfur Deficiency. Plants. 2025; 14(13):1907. https://doi.org/10.3390/plants14131907
Chicago/Turabian StylePeršić, Vesna, Anja Melnjak, Lucija Domjan, Günther Zellnig, and Jasenka Antunović Dunić. 2025. "Age-Specific Physiological Adjustments of Spirodela polyrhiza to Sulfur Deficiency" Plants 14, no. 13: 1907. https://doi.org/10.3390/plants14131907
APA StylePeršić, V., Melnjak, A., Domjan, L., Zellnig, G., & Antunović Dunić, J. (2025). Age-Specific Physiological Adjustments of Spirodela polyrhiza to Sulfur Deficiency. Plants, 14(13), 1907. https://doi.org/10.3390/plants14131907