Application of the Montgomery Equation in Morphometric Analysis of Tepals: A Case Study of Liriodendron × sinoamericanum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Flower Collection Information
2.2. Data Acquisition
2.3. Statistical Analyses
3. Results
4. Discussion
4.1. Effectiveness of the Montgomery Equation in Calculating the Tepal Area
4.2. Exploration of the Montgomery Parameter in Quantifying Tepal Shapes
4.3. Evolution of Perianth Differentiation in Magnoliaceae: Insights from Morphometrics and Gene Expression
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sauquet, H.; von Balthazar, M.; Magallón, S.; Doyle, J.A.; Endress, P.K.; Bailes, E.J.; Barroso de Morais, E.; Bull-Hereñu, K.; Carrive, L.; Chartier, M.; et al. The ancestral flower of angiosperms and its early diversification. Nat. Commun. 2017, 8, 16047. [Google Scholar] [CrossRef]
- Steeves, T.A.; Sussex, I.M. Patterns in Plant Development, 2nd ed.; Cambridge University: Cambridge, MA, USA, 1989. [Google Scholar]
- Krizek, B.A.; Fletcher, J.C. Molecular mechanisms of flower development: An armchair guide. Nat. Rev. Genet. 2005, 6, 688–698. [Google Scholar] [CrossRef]
- Chaffey, N. Raven biology of plants, 8th ed. Ann. Bot. 2014, 113, 8. [Google Scholar] [CrossRef]
- Simpson, M.G. Plant Systematics, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 130–146. [Google Scholar]
- Yao, X.; Zhang, W.; Duan, X.; Yuan, Y.; Zhang, R.; Shan, H.; Kong, H. The making of elaborate petals in Nigella through developmental repatterning. New Phytol. 2019, 223, 385–396. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Shan, H.; Yao, X.; Cheng, J.; Jiang, Y.; Yin, X.; Kong, H. Petal development and elaboration. J. Exp. Bot. 2022, 73, 3308–3318. [Google Scholar] [CrossRef] [PubMed]
- Chittka, L.; Raine, N.E. Recognition of flowers by pollinators. Curr. Opin. Plant Biol. 2006, 9, 428–435. [Google Scholar] [CrossRef]
- Katsuhara, K.R.; Kitamura, S.; Ushimaru, A. Functional significance of petals as landing sites in fungus-gnat pollinated flowers of Mitella pauciflora (Saxifragaceae). Funct. Ecol. 2017, 31, 1193–1200. [Google Scholar] [CrossRef]
- Whittall, J.B.; Hodges, S.A. Pollinator shifts drive increasingly long nectar spurs in columbine flowers. Nature 2007, 447, 706–709. [Google Scholar] [CrossRef]
- Cai, K.; Zhu, S.; Jiang, Z.; Xu, K.; Sun, X.; Li, X. Biological macromolecules mediated by environmental signals affect flowering regulation in plants: A comprehensive review. Plant Physiol. Biochem. 2024, 214, 108931. [Google Scholar] [CrossRef]
- López-Martínez, A.M.; Magallón, S.; von Balthazar, M.; Schönenberger, J.; Sauquet, H.; Chartier, M. Angiosperm flowers reached their highest morphological diversity early in their evolutionary history. New Phytol. 2024, 241, 1348–1360. [Google Scholar] [CrossRef]
- Endress, P.K. The flowers in extant basal angiosperms and inferences on ancestral flowers. Int. J. Plant Sci. 2001, 162, 1111–1140. [Google Scholar] [CrossRef]
- Ushimaru, A.; Fukup, A.; Imamura, A. Effect of floral organ sizes on female reproductive success in Erythronium japonicum (Liliaceae). J. Plant Biol. 2003, 46, 245–249. [Google Scholar] [CrossRef]
- Mu, Y.; Shi, P.; Wang, J.; Yao, W.; Chen, L.; Hölscher, D.; Niklas, K.J. Testing the relationship among tepal area, length, and width using four Magnolia species. Trees Struct. Funct. 2025, 39, 19. [Google Scholar] [CrossRef]
- Montgomery, E.G. Correlation studies in corn. Nebr. Agric. Exp. Stn. Annu. Rep. 1911, 24, 108–159. [Google Scholar]
- Shi, P.; Liu, M.; Yu, X.; Gielis, J.; Ratkowsky, D.A. Proportional relationship between leaf area and the product of leaf length and width of four types of special leaf shapes. Forests 2019, 10, 178. [Google Scholar] [CrossRef]
- Yu, X.; Shi, P.; Schrader, J.; Niklas, K.J. Nondestructive estimation of leaf area for 15 species of vines with different leaf shapes. Am. J. Bot. 2020, 107, 1481–1490. [Google Scholar] [CrossRef]
- Schrader, J.; Shi, P.; Royer, D.L.; Peppe, D.J.; Gallagher, R.V.; Li, Y.; Wang, R.; Wright, I.J. Leaf size estimation based on leaf length, width and shape. Ann. Bot. 2021, 128, 395–406. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, J.; Mu, Y.; Yao, W.; Wang, H.; Shi, P. Testing the validity of the Montgomery–Koyama–Smith equation for calculating the total petal area per flower using two Rosaceae species. Plants 2024, 13, 3499. [Google Scholar] [CrossRef]
- Wang, J.; Shi, P.; Yao, W.; Wang, L.; Li, Q.; Tan, R. The scaling relationship between perianth fresh mass and area: Proof of concept using Magnolia × soulangeana Soul.-Bod. Trees Struct. Funct. 2024, 38, 241–249. [Google Scholar] [CrossRef]
- Shi, P.; Ratkowsky, D.A.; Li, Y.; Zhang, L.; Lin, S.; Gielis, J. A general leaf area geometric formula exists for plants—Evidence from the simplified Gielis equation. Forests 2018, 9, 714. [Google Scholar] [CrossRef]
- Su, J.; Niklas, K.J.; Huang, W.; Yu, X.; Yang, Y.; Shi, P. Lamina shape does not correlate with lamina surface area: An analysis based on the simplified Gielis equation. Glob. Ecol. Conserv. 2019, 19, e00666. [Google Scholar] [CrossRef]
- Shi, P.; Gielis, J.; Quinn, B.K.; Niklas, K.J.; Ratkowsky, D.A.; Schrader, J.; Ruan, H.; Wang, L.; Niinemets, Ü. ‘biogeom’: An R package for simulating and fitting natural shapes. Ann. N. Y. Acad. Sci. 2022, 1516, 123–134. [Google Scholar] [CrossRef] [PubMed]
- Student. The probable error of a mean. Biometrika 1908, 6, 1–25. [Google Scholar] [CrossRef]
- Efron, B.; Tibshirani, R. An Introduction to the Bootstrap, 1st ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 1993. [Google Scholar]
- Sandhu, H.S.; Shi, P.; Kuang, X.; Xue, F.; Ge, F. Applications of the bootstrap to insect physiology. Fla. Entomol. 2011, 94, 1036–1041. [Google Scholar] [CrossRef]
- Jain, T.C.; Misra, D.K. Leaf area estimation by linear measurements in Ricinus communis. Nature 1966, 212, 741–742. [Google Scholar] [CrossRef]
- Mu, Y.; Ke, H.; Shi, P.; Wang, L.; Deng, L.; Shi, Z.; Liu, M.; Niklas, K.J. Comparison between computer recognition and manual measurement methods for the estimation of leaf area. Ann. Bot. 2024, 134, 501–510. [Google Scholar] [CrossRef]
- Zhang, L.; Niklas, K.J.; Niinemets, Ü.; Li, Q.; Yu, K.; Li, J.; Chen, L. Stomatal area estimation based on stomatal length and width of four Magnoliaceae species: Even “kidney”-shaped stomata are not elliptical. Trees Struct. Funct. 2023, 37, 1333–1342. [Google Scholar] [CrossRef]
- Endress, P.; Matthews, M. Elaborate petals and staminodes in eudicots: Diversity, function, and evolution. Org. Divers. Evol. 2006, 6, 257–293. [Google Scholar] [CrossRef]
- Davies, K.M.; Albert, N.W.; Schwinn, K.E. From landing lights to mimicry: The molecular regulation of flower colouration and mechanisms for pigmentation patterning. Funct. Plant Biol. 2012, 39, 619–638. [Google Scholar] [CrossRef]
- Robinson, D.O.; Roeder, A.H. Themes and variations in cell type patterning in the plant epidermis. Curr. Opin. Genet. Dev. 2015, 32, 55–65. [Google Scholar] [CrossRef]
- Moyroud, E.; Wenzel, T.; Middleton, R.; Rudall, P.J.; Banks, H.; Reed, A.; Mellers, G.; Killoran, P.; Westwood, M.M.; Steiner, U.; et al. Disorder in convergent floral nanostructures enhances signalling to bees. Nature 2017, 550, 469–474. [Google Scholar] [CrossRef] [PubMed]
- Ringham, L.; Owens, A.; Cieslak, M.; Harder, L.D.; Prusinkiewicz, P. Modeling flower pigmentation patterns. ACM Trans. Graph. 2021, 40, 1–14. [Google Scholar] [CrossRef]
- Su, S.; Zhao, L.; Ren, Y.; Zhang, X. Diversity of petals in Berberidaceae: Development, micromorphology, and structure of floral nectaries. Protoplasma 2021, 258, 905–922. [Google Scholar] [CrossRef] [PubMed]
- Shi, P.; Liu, M.; Ratkowsky, D.A.; Gielis, J.; Su, J.; Yu, X.; Wang, P.; Zhang, L.; Lin, Z.; Schrader, J. Leaf area–length allometry and its implications in leaf shape evolution. Trees Struct. Funct. 2019, 33, 1073–1085. [Google Scholar] [CrossRef]
- Coen, E.S.; Meyerowitz, E.M. The war of the whorls: Genetic interactions controlling flower development. Nature 1991, 353, 31–37. [Google Scholar] [CrossRef]
- Sattler, R.; Jeune, B. Multivariate analysis confirms the continuum view of plant form. Ann. Bot. 1992, 69, 249–262. [Google Scholar] [CrossRef]
- Moyroud, E.; Glover, B.J. The Evolution of diverse floral morphologies. Curr. Biol. 2017, 27, R941–R951. [Google Scholar] [CrossRef]
- He, J.; Reddy, G.V.P.; Liu, M.; Shi, P. A general formula for calculating surface area of the similarly shaped leaves: Evidence from six Magnoliaceae species. Glob. Ecol. Conserv. 2020, 23, e01129. [Google Scholar] [CrossRef]
- Cronquist, A. The Evolution and Classification of Flowering Plants, 2nd ed.; Scientific Publications Department, New York Botanical Garden: Bronx, NY, USA, 1988. [Google Scholar]
- Soltis, P.S.; Soltis, D.E. The origin and diversification of angiosperms. Am. J. Bot. 2004, 91, 1614–1626. [Google Scholar] [CrossRef]
- Kim, S.; Koh, J.; Ma, H.; Hu, Y.; Endress, P.K.; Hauser, B.A.; Buzgo, M.; Soltis, S.P.; Soltiset, D.E. Sequence and expression studies of A-, B-, and E-Class MADS-Box homologues in Eupomatia (Eupomatiaceae): Support for the bracteate origin of the calyptra. Int. J. Plant Sci. 2005, 166, 185–198. [Google Scholar] [CrossRef]
- Kim, S.; Koh, J.; Yoo, M.; Kong, H.; Hu, Y.; Ma, H.; Soltis, P.S.; Soltis, D.E. Expression of floral MADS-box genes in basal angiosperms: Implications for the evolution of floral regulators. Plant J. 2005, 43, 724–744. [Google Scholar] [CrossRef] [PubMed]
- Kramer, E.M.; Irish, V.F. Evolution of the petal and stamen developmental programs: Evidence from comparative studies of the lower eudicots and basal angiosperms. Int. J. Plant Sci. 2000, 161, S29–S40. [Google Scholar] [CrossRef]
- Ronse De Craene, L.P. Are petals sterile stamens or bracts? The origin and evolution of petals in the core eudicots. Ann. Bot. 2007, 100, 621–630. [Google Scholar] [CrossRef] [PubMed]
- Warner, K.A.; Rudall, P.J.; Frohlich, M.W. Environmental control of sepalness and petalness in perianth organs of waterlilies: A new Mosaic theory for the evolutionary origin of a differentiated perianth. J. Exp. Bot. 2009, 60, 3559–3574. [Google Scholar] [CrossRef]
- Craene, L.R.D.; Brockington, S. Origin and evolution of petals in angiosperms. Plant Ecol. Evol. 2013, 146, 5–25. [Google Scholar] [CrossRef]
- Shen, Z.; Ding, X.; Cheng, J.; Wu, F.; Yin, H.; Wang, M. Phylogenetic studies of magnoliids: Advances and perspectives. Front. Plant Sci. 2023, 13, 1100302. [Google Scholar] [CrossRef]
- Soltis, D.E.; Chanderbali, A.S.; Kim, S.; Buzgo, M.; Soltis, P.S. The ABC model and its applicability to basal angiosperms. Ann. Bot. 2007, 100, 155–163. [Google Scholar] [CrossRef]
- Wróblewska, M.; Dołzbłasz, A.; Zagórska-Marek, B. The role of ABC genes in shaping perianth phenotype in the basal angiosperm Magnolia. Plant Biol. 2016, 18, 230–238. [Google Scholar] [CrossRef]
- Kramer, E.M.; Di Stilio, V.S.; Schlüter, P.M. Complex patterns of gene duplication in the APETALA3 and PISTILLATA lineages of the Ranunculaceae. Int. J. Plant Sci. 2003, 164, 1–11. [Google Scholar] [CrossRef]
- Causier, B.; Schwarz-Sommer, Z.; Davies, B. Floral organ identity: 20 years of ABCs. Semin. Cell Dev. Biol. 2010, 21, 73–79. [Google Scholar] [CrossRef]
- Soltis, D.E.; Ma, H.; Frohlich, M.W.; Soltis, P.S.; Albert, V.A.; Oppenheimer, D.G.; Altman, N.S.; de Pamphilis, C.; Leebens-Mack, J. The floral genome: An evolutionary history of gene duplication and shifting patterns of gene expression. Trends Plant Sci. 2007, 12, 358–367. [Google Scholar] [CrossRef] [PubMed]
- Fenster, C.B.; Armbruster, W.S.; Wilson, P.; Dudash, M.R.; Thomson, J.D. Pollination syndromes and floral specialization. Annu. Rev. Ecol. Evol. Syst. 2004, 35, 375–403. [Google Scholar] [CrossRef]
- Hao, Z.; Liu, S.; Hu, L.; Shi, J.; Chen, J. Transcriptome analysis and metabolic profiling reveal the key role of carotenoids in the petal coloration of Liriodendron tulipifera. Hortic. Res. 2020, 7, 70. [Google Scholar] [CrossRef]
- Hao, Z.; Zong, Y.; Liu, H.; Tu, Z.; Li, H. Cloning, characterization and functional analysis of the LtuPTOX gene, a homologue of Arabidopsis thaliana IMMUTANS derived from Liriodendron tulipifera. Genes 2019, 10, 878. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, Z.; Wang, J.; Sun, G.; Yao, W.; Shi, P.; Ruan, H. Application of the Montgomery Equation in Morphometric Analysis of Tepals: A Case Study of Liriodendron × sinoamericanum. Plants 2025, 14, 1861. https://doi.org/10.3390/plants14121861
Shi Z, Wang J, Sun G, Yao W, Shi P, Ruan H. Application of the Montgomery Equation in Morphometric Analysis of Tepals: A Case Study of Liriodendron × sinoamericanum. Plants. 2025; 14(12):1861. https://doi.org/10.3390/plants14121861
Chicago/Turabian StyleShi, Zhuyue, Jinfeng Wang, Guohong Sun, Wenjing Yao, Peijian Shi, and Honghua Ruan. 2025. "Application of the Montgomery Equation in Morphometric Analysis of Tepals: A Case Study of Liriodendron × sinoamericanum" Plants 14, no. 12: 1861. https://doi.org/10.3390/plants14121861
APA StyleShi, Z., Wang, J., Sun, G., Yao, W., Shi, P., & Ruan, H. (2025). Application of the Montgomery Equation in Morphometric Analysis of Tepals: A Case Study of Liriodendron × sinoamericanum. Plants, 14(12), 1861. https://doi.org/10.3390/plants14121861