Integrated Phylogenomics and Expression Profiling of the TRM Gene Family in Brassica napus Reveals Their Role in Development and Stress Tolerance
Abstract
:1. Introduction
2. Results
2.1. One Hundred TON1 Recruiting Motif Family Members in Westar Were Mainly Divided into Eight Subfamilies
2.2. Gene Motif and Structure of the BnaTRMs
2.3. Chromosome Distributions of the BnaTRM Genes
2.4. Synteny Analysis of BnaTRM Genes
2.5. The Biophysical Properties of BnaTRMs
2.6. Cis-Regulatory Elements Identification in Promoters
2.7. Expression Profiling Analysis of 29 BnaTRM Genes Across 12 Distinct Tissues
2.8. Differential Expression Analysis of BnaTRM Gene Family in Cold-Tolerant Varieties and Cold-Sensitive Varieties
2.9. Transcriptional Response of TRM Genes to Abiotic Stress in Brassica napus
3. Discussion
3.1. Genomic Architecture and Evolutionary Dynamics of TRM Genes in Brassica napus
3.2. Functional Prediction of BnaTRM Gene Family
3.3. Limitations and Future Directions
4. Materials and Methods
4.1. Identification of the TRM Family
4.2. Chromosome Location
4.3. Sequence Alignment and Phylogeny Analysis of BnaTRMs
4.4. Synteny Analysis of BnaTRM Genes
4.5. The Biophysical Properties of BnaTRMs
4.6. The Identification of Cis-Regulatory Elements in Promoter Regions
4.7. RNA Isolation and Quantitative Real-Time PCR (qRT-PCR) Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Blackshaw, R.E.; Johnson, E.N.; Gan, Y.; May, W.E.; McAndrews, D.W.; Barthet, V.; McDonald, T.; Wispinski, D. Alternative oilseed crops for biodiesel feedstock on the Canadian prairies. Can. J. Plant Sci. 2011, 91, 889–896. [Google Scholar] [CrossRef]
- Bayer, P.E.; Hurgobin, B.; Golicz, A.A.; Chan, C.-K.K.; Yuan, Y.; Lee, H.; Renton, M.; Meng, J.; Li, R.; Long, Y.; et al. Assembly and comparison of two closely related Brassica napus genomes. Plant Biotechnol. J. 2017, 15, 1602–1610. [Google Scholar] [CrossRef]
- Chalhoub, B. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 2014, 345, 1255, Erratum in Science 2014, 348, 1260782. [Google Scholar] [CrossRef]
- Sun, F.; Fan, G.; Hu, Q.; Zhou, Y.; Guan, M.; Tong, C.; Li, J.; Du, D.; Qi, C.; Jiang, L.; et al. The high-quality genome of Brassica napus cultivar ‘ZS11’ reveals the introgression history in semi-winter morphotype. Plant J. 2017, 92, 452–468. [Google Scholar] [CrossRef]
- Drevensek, S.; Goussot, M.; Duroc, Y.; Christodoulidou, A.; Steyaert, S.; Schaefer, E.; Duvernois, E.; Grandjean, O.; Vantard, M.; Bouchez, D.; et al. The Arabidopsis TRM1-TON1 Interaction Reveals a Recruitment Network Common to Plant Cortical Microtubule Arrays and Eukaryotic Centrosomes. Plant Cell 2012, 24, 178–191. [Google Scholar] [CrossRef]
- Camilleri, C.; Azimzadeh, J.; Pastuglia, M.; Bellini, C.; Grandjean, O.; Bouchez, D. The Arabidopsis TONNEAU2 gene encodes a putative novel protein phosphatase 2A regulatory subunit essential for the control of the cortical cytoskeleton. Plant Cell 2002, 14, 833–845. [Google Scholar] [CrossRef]
- Ehrhardt, D.W.; Shaw, S.L. Microtubule dynamics and organization in the plant cortical array. Annu. Rev. Plant Biol. 2006, 57, 859–875. [Google Scholar] [CrossRef]
- Duroc, Y.; Bouchez, D.; Pastuglia, M. The Preprophase Band and Division Site Determination in Land Plants. In The Plant Cytoskeleton; Liu, B., Ed.; Springer: New York, NY, USA, 2011; pp. 145–185. [Google Scholar]
- Landrein, B.; Hamant, O. How mechanical stress controls microtubule behavior and morphogenesis in plants: History, experiments and revisited theories. Plant J. 2013, 75, 324–338. [Google Scholar] [CrossRef]
- Wade, R.H. On and Around Microtubules: An Overview. Mol. Biotechnol. 2009, 43, 177–191. [Google Scholar] [CrossRef]
- Azimzadeh, J.; Nacry, P.; Christodoulidou, A.; Drevensek, S.; Camilleri, C.; Amiour, N.; Parcy, F.; Pastuglia, M.; Bouchez, D. Arabidopsis TONNEAU1 proteins are essential for preprophase band formation and interact with centrin. Plant Cell 2008, 20, 2146–2159. [Google Scholar] [CrossRef]
- Lee, Y.K.; Kim, G.-T.; Kim, I.-J.; Park, J.; Kwak, S.-S.; Choi, G.; Chung, W.-I. LONGIFOLIA1 and LONGIFOLIA2, two homologous genes, regulate longitudinal cell elongation in Arabidopsis. Development 2006, 133, 4305–4314. [Google Scholar] [CrossRef]
- Schmitz, A.J.; Begcy, K.; Sarath, G.; Walia, H. Rice Ovate Family Protein 2 (OFP2) alters hormonal homeostasis and vasculature development. Plant Sci. 2015, 241, 177–188. [Google Scholar] [CrossRef]
- Zhan, P.; Ma, S.; Xiao, Z.; Li, F.; Wei, X.; Lin, S.; Wang, X.; Ji, Z.; Fu, Y.; Pan, J.; et al. Natural variations in grain length 10 (GL10) regulate rice grain size. J. Genet. Genomics 2022, 49, 405–413. [Google Scholar] [CrossRef]
- Wu, S.; Zhang, B.; Keyhaninejad, N.; Rodriguez, G.R.; Kim, H.J.; Chakrabarti, M.; Illa-Berenguer, E.; Taitano, N.K.; Gonzalo, M.J.; Diaz, A.; et al. A common genetic mechanism underlies morphological diversity in fruits and other plant organs. Nat. Commun. 2018, 9, 4734. [Google Scholar] [CrossRef]
- Bao, Z.; Guo, Y.; Deng, Y.; Zang, J.; Zhang, J.; Deng, Y.; Ouyang, B.; Qu, X.; Buerstenbinder, K.; Wang, P. Microtubule-associated protein SlMAP70 interacts with IQ67-domain protein SlIQD21a to regulate fruit shape in tomato. Plant Cell 2023, 35, 4266–4283. [Google Scholar] [CrossRef]
- Bao, Z.; Xu, Z.; Zang, J.; Buerstenbinder, K.; Wang, P. The Morphological Diversity of Plant Organs: Manipulating the Organization of Microtubules May Do the Trick. Front. Cell Dev. Biol. 2021, 9, 649626. [Google Scholar] [CrossRef]
- McNally, F.J.; Roll-Mecak, A. Microtubule-severing enzymes: From cellular functions to molecular mechanism. J. Cell Biol. 2018, 217, 4057–4069. [Google Scholar] [CrossRef]
- Schaefer, E.; Belcram, K.; Uyttewaal, M.; Duroc, Y.; Goussot, M.; Legland, D.; Laruelle, E.; de Tauzia-Moreau, M.-L.; Pastuglia, M.; Bouchez, D. The preprophase band of microtubules controls the robustness of division orientation in plants. Science 2017, 356, 186–189. [Google Scholar] [CrossRef]
- Spinner, L.; Gadeyne, A.; Belcram, K.; Goussot, M.; Moison, M.; Duroc, Y.; Eeckhout, D.; De Winne, N.; Schaefer, E.; Van de Slijke, E.; et al. A protein phosphatase 2A complex spatially controls plant cell division. Nat. Commun. 2013, 4, 1863. [Google Scholar] [CrossRef]
- Guo, Q.; Ng, P.Q.; Shi, S.; Fan, D.; Li, J.; Zhao, J.; Wang, H.; David, R.; Mittal, P.; Trung, D.; et al. Arabidopsis TRM5 encodes a nuclear-localised bifunctional tRNA guanine and inosine-N1-methyltransferase that is important for growth. PLoS ONE 2019, 14, e0225064. [Google Scholar] [CrossRef]
- Tang, J.; Jia, P.; Xin, P.; Chu, J.; Shi, D.-Q.; Yang, W.-C. The Arabidopsis TRM61/TRM6 complex is a bona fide tRNA N1-methyladenosine methyltransferase. J. Exp. Bot. 2020, 71, 3024–3036. [Google Scholar] [CrossRef]
- Wu, L.; Chen, X.; Zhang, P.; Yan, S.; Zhang, T.; Li, Y. TON1 recruiting motif 21 positively regulates the flavonoid metabolic pathway at the translational level in Arabidopsis thaliana. Planta 2024, 259, 65. [Google Scholar] [CrossRef]
- Wang, S.; Li, S.; Liu, Q.; Wu, K.; Zhang, J.; Wang, S.; Wang, Y.; Chen, X.; Zhang, Y.; Gao, C.; et al. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nat. Genet. 2015, 47, 949–954. [Google Scholar] [CrossRef]
- Wang, Y.; Xiong, G.; Hu, J.; Jiang, L.; Yu, H.; Xu, J.; Fang, Y.; Zeng, L.; Xu, E.; Xu, J.; et al. Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nat. Genet. 2015, 47, 944–948. [Google Scholar] [CrossRef]
- Liu, J.; Van Eck, J.; Cong, B.; Tanksley, S.D. A new class of regulatory genes underlying the cause of pear-shaped tomato fruit. Proc. Natl. Acad. Sci. USA 2002, 99, 13302–13306. [Google Scholar] [CrossRef]
- Van Der Knaap, E.; Lippman, Z.B.; Tanksley, S.D. Extremely elongated tomato fruit controlled by four quantitative trait loci with epistatic interactions. TAG Theor. Appl. Genet. Theor. Angew. Genet. 2002, 104, 241–247. [Google Scholar] [CrossRef]
- Rodriguez, G.R.; Kim, H.J.; van der Knaap, E. Mapping of two suppressors of OVATE (sov) loci in tomato. Heredity 2013, 111, 256–264. [Google Scholar] [CrossRef]
- Zhang, B.; Li, Q.; Keyhaninejad, N.; Taitano, N.; Sapkota, M.; Snouffer, A.; van der Knaap, E. A combinatorial TRM-OFP module bilaterally fine-tunes tomato fruit shape. New Phytol. 2023, 238, 2393–2409. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, K.; Wang, Z.; Chu, S.; Chen, C.; Wang, L.; Ren, Z. Pan-Genome Analysis of TRM Gene Family and Their Expression Pattern under Abiotic and Biotic Stresses in Cucumber. Horticulturae 2024, 10, 908. [Google Scholar] [CrossRef]
- Shokri-Gharelo, R.; Noparvar, P.M. Molecular response of canola to salt stress: Insights on tolerance mechanisms. PeerJ 2018, 6, e4822. [Google Scholar] [CrossRef]
- Ma, H.; Liu, M. The microtubule cytoskeleton acts as a sensor for stress response signaling in plants. Mol. Biol. Rep. 2019, 46, 5603–5608. [Google Scholar] [CrossRef]
- Kerr, G.P.; Carter, J.V. Relationship between Freezing Tolerance of Root-Tip Cells and Cold Stability of Microtubules in Rye (Secale cereale L. cv Puma). Plant Physiol. 1990, 93, 77–82. [Google Scholar] [CrossRef]
- Wang, C.; Li, J.; Yuan, M. Salt tolerance requires cortical microtubule reorganization in Arabidopsis. Plant Cell Physiol. 2007, 48, 1534–1547. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Z.; He, Y.; Liu, D.; Liu, Y.; Liang, C.; Xie, M.; Jia, Y.; Ke, Q.; Zhou, Y.; et al. Structural variation reshapes population gene expression and trait variation in 2105 Brassica napus accessions. Nat. Genet. 2024, 56, 2538–2550. [Google Scholar] [CrossRef]
- Ding, Y.; Feng, L.; Li, P.; Yang, X.; Li, M.; Liu, H.; Xu, J.; Zhang, J.; Sun, S.; Zhou, X.; et al. The Alpha/Beta-Hydrolase Fold Superfamily in Brassica napus: Expression Profiles and Functional Implications of Clade-3 BnABH Proteins in Response to Abiotic Stress. Int. J. Mol. Sci. 2025, 26, 4746. [Google Scholar] [CrossRef]
- Wang, R.; Wu, G.; Zhang, J.; Hu, W.; Yao, X.; Jiang, L.; Zhu, Y. Integration of GWAS and transcriptome analysis to identify temperature-dependent genes involved in germination of rapeseed (Brassica napus L.). Front. Plant Sci. 2025, 16, 1551317. [Google Scholar] [CrossRef]
- Wu, G.; Zhou, Y.; Zhang, J.; Gong, M.; Jiang, L.; Zhu, Y. Genome-wide association study and candidate gene identification for the cold tolerance at the seedling stage of rapeseed (Brassica napus L.). Crop Des. 2025, 4, 100083. [Google Scholar] [CrossRef]
- Gu, Y.; Zhao, Q.-C.; Sun, D.-L.; Song, W.-Q. Construction of genetic linkage map and localization of NBS-LRR like resistance gene analogues in cauliflower (Brassica oleracea var. botrytis). Yi Chuan = Hereditas 2007, 29, 751–757. [Google Scholar] [CrossRef]
- Liu, M.; Chang, W.; Fan, Y.; Sun, W.; Qu, C.; Zhang, K.; Liu, L.; Xu, X.; Tang, Z.; Li, J.; et al. Genome-Wide Identification and Characterization of NODULE-INCEPTION-Like Protein (NLP) Family Genes in Brassica napus. Int. J. Mol. Sci. 2018, 19, 2270. [Google Scholar] [CrossRef]
- Song, X.; Lu, X.; Shen, Y.; Guo, S.; Guan, Y. A modified supercritical Dubinin-Radushkevich model for the accurate estimation of high pressure methane adsorption on shales. Int. J. Coal Geol. 2018, 193, 1–15. [Google Scholar] [CrossRef]
- Wang, T.; Hu, J.; Ma, X.; Li, C.; Yang, Q.; Feng, S.; Li, M.; Li, N.; Song, X. Identification, evolution and expression analyses of whole genome-wide TLP gene family in Brassica napus. BMC Genomics 2020, 21, 264. [Google Scholar] [CrossRef] [PubMed]
Gene ID | Amino Acid | Molecular Weight | pI | Instability Index | Aliphatic Index | GRAVY | Subcellular Location * | |
---|---|---|---|---|---|---|---|---|
1 | BnaA01T0003500WE | 893 | 99,267.92 | 5.54 | 65.68 | 70.36 | −0.673 | nucl |
2 | BnaA03T0020300WE | 442 | 50,428.59 | 5.46 | 58.99 | 76.45 | −0.658 | nucl |
3 | BnaA02T0001100WE | 427 | 47,976.39 | 5.27 | 62.08 | 61.83 | −0.937 | chlo |
4 | BnaA02T0005200WE | 427 | 47,976.39 | 5.27 | 62.08 | 61.83 | −0.937 | chlo |
5 | BnaA02T0059900WE | 882 | 98,631.55 | 9.3 | 65.97 | 68.28 | −0.851 | nucl |
6 | BnaA02T0162800WE | 771 | 85,854.29 | 9.15 | 56.42 | 72.68 | −0.579 | nucl |
7 | BnaA02T0207500WE | 1004 | 111,547.12 | 9.27 | 63.28 | 71.27 | −0.765 | nucl |
8 | BnaA02T0247600WE | 492 | 55,305.13 | 4.86 | 63.96 | 71.34 | −0.61 | nucl |
9 | BnaA02T0371400WE | 682 | 75,521.09 | 9.09 | 55.4 | 68.3 | −0.681 | nucl |
10 | BnaA03T0002600WE | 274 | 31,918.15 | 4.37 | 72.97 | 72.15 | −0.777 | nucl |
11 | BnaA03T0015300WE | 778 | 88,777.39 | 6.04 | 64.22 | 68.02 | −0.921 | nucl |
12 | BnaA03T0189100WE | 399 | 45,643.76 | 4.96 | 63.38 | 64.81 | −0.865 | nucl |
13 | BnaA03T0206700WE | 461 | 52,564.18 | 5.62 | 53.8 | 72.26 | −0.775 | nucl |
14 | BnaA03T0290500WE | 798 | 90,854.57 | 5.49 | 57.45 | 80.88 | −0.644 | nucl |
15 | BnaA03T0296800WE | 860 | 96,532.39 | 9.42 | 69.02 | 69.51 | −0.786 | nucl |
16 | BnaA04T0010200WE | 647 | 72,419.75 | 4.84 | 64.08 | 80.7 | −0.475 | nucl |
17 | BnaA04T0050800WE | 899 | 101,494.36 | 6.66 | 64.76 | 62.58 | −0.938 | cyto |
18 | BnaA04T0223200WE | 413 | 47,155.49 | 5.27 | 69.42 | 64.72 | −0.856 | nucl |
19 | BnaA04T0276400WE | 652 | 73,052.54 | 4.9 | 60.22 | 74.42 | −0.657 | nucl |
20 | BnaA05T0045700WE | 674 | 76,122.5 | 4.78 | 58.66 | 66.53 | −0.795 | nucl |
21 | BnaA05T0068200WE | 712 | 81,103.55 | 6.4 | 63.77 | 63.72 | −0.904 | nucl |
22 | BnaA05T0075500WE | 436 | 49,818.09 | 5.07 | 63.45 | 59.27 | −1.014 | nucl |
23 | BnaA06T0268400WE | 705 | 78,784.51 | 9.55 | 67.86 | 68.17 | −0.823 | nucl |
24 | BnaA06T0467500WE | 198 | 22,545.77 | 4.76 | 50.63 | 97.42 | −0.332 | nucl |
25 | BnaA07T0005300WE | 760 | 85,531.42 | 8.97 | 62.59 | 69.47 | −0.697 | nucl |
26 | BnaA07T0028400WE | 766 | 87,786.1 | 5.69 | 66.14 | 69.18 | −0.841 | nucl |
27 | BnaA07T0061900WE | 722 | 80,996.43 | 9.62 | 62.23 | 69.92 | −0.864 | nucl |
28 | BnaA07T0178000WE | 854 | 96,069.8 | 7.18 | 68.97 | 64.18 | −0.905 | nucl |
29 | BnaA07T0198700WE | 800 | 88,413.82 | 8.21 | 54.93 | 67.96 | −0.698 | nucl |
30 | BnaA07T0284900WE | 806 | 89,215.04 | 9.2 | 51.71 | 72.72 | −0.591 | nucl |
31 | BnaA08T0155700WE | 445 | 50,683.9 | 9.84 | 67.8 | 64.61 | −0.969 | nucl |
32 | BnaA08T0233600WE | 828 | 92,656.53 | 9.1 | 61.85 | 74.86 | −0.738 | nucl |
33 | BnaA08T0282300WE | 508 | 59,099.71 | 6.16 | 53.22 | 77.28 | −0.828 | nucl |
34 | BnaA09T0005200WE | 860 | 97,167.81 | 5.86 | 57.61 | 82.55 | −0.6 | chlo |
35 | BnaA09T0052100WE | 814 | 90,343.02 | 5.89 | 55.09 | 69.07 | −0.666 | nucl |
36 | BnaA09T0069100WE | 447 | 49,538.56 | 9.86 | 65.45 | 65.01 | −0.851 | nucl |
37 | BnaA09T0138200WE | 511 | 59,130.95 | 6.02 | 52.86 | 85.4 | −0.72 | nucl |
38 | BnaA09T0176000WE | 815 | 92,650.45 | 9.01 | 44.57 | 71.15 | −0.929 | nucl |
39 | BnaA09T0182600WE | 755 | 84,694.03 | 5.45 | 61.55 | 75.79 | −0.652 | chlo |
40 | BnaA09T0234700WE | 476 | 53,576.42 | 4.72 | 60.88 | 73.09 | −0.571 | nucl |
41 | BnaA09T0466000WE | 856 | 95,817.42 | 6.58 | 65.54 | 66.07 | −0.837 | nucl |
42 | BnaA09T0523800WE | 642 | 72,259.34 | 4.82 | 57.86 | 81.18 | −0.579 | nucl |
43 | BnaA09T0538400WE | 544 | 61,533.42 | 9.12 | 80.14 | 77.41 | −0.664 | nucl |
44 | BnaA09T0580700WE | 835 | 93,263.41 | 9.61 | 66.2 | 73.53 | −0.756 | nucl |
45 | BnaA09T0662300WE | 460 | 52,907.51 | 5.7 | 55.41 | 72.67 | −0.746 | nucl |
46 | BnaA10T0057200WE | 539 | 61,801.35 | 6.47 | 52.29 | 70.13 | −0.847 | nucl |
47 | BnaA10T0086600WE | 493 | 55,727.57 | 9.82 | 70.03 | 71.18 | −0.886 | nucl |
48 | BnaA10T0204100WE | 896 | 99,567.65 | 9.29 | 69.04 | 64.98 | −0.814 | nucl |
49 | BnaA10T0283700WE | 506 | 57,832.3 | 5.04 | 71.35 | 66.44 | −0.782 | nucl |
50 | BnaA10T0290700WE | 788 | 89,566.8 | 5.21 | 69.87 | 71.12 | −0.899 | nucl |
51 | BnaC01T0073000WE | 867 | 96,464.1 | 5.89 | 65.2 | 69.33 | −0.683 | nucl |
52 | BnaC02T0063200WE | 852 | 95,550.24 | 9.31 | 65.89 | 67.27 | −0.83 | nucl |
53 | BnaC02T0201300WE | 751 | 83,971.47 | 9.08 | 58.09 | 75.17 | −0.585 | nucl |
54 | BnaC02T0270900WE | 998 | 111,051.48 | 9.3 | 61.59 | 69.66 | −0.797 | nucl |
55 | BnaC02T0346900WE | 469 | 52,939.49 | 4.96 | 61.14 | 70.04 | −0.674 | nucl |
56 | BnaC02T0484200WE | 710 | 79,307.97 | 9.03 | 58.19 | 69.86 | −0.684 | nucl |
57 | BnaC03T0141700WE | 402 | 46,007.15 | 4.94 | 64.13 | 64.58 | −0.879 | nucl |
58 | BnaC03T0163900WE | 464 | 52,831.39 | 5.6 | 58.24 | 72.82 | −0.766 | nucl |
59 | BnaC03T0270700WE | 750 | 85,781.03 | 5.65 | 53.28 | 81.37 | −0.677 | nucl |
60 | BnaC03T0277600WE | 864 | 97,194.43 | 9.54 | 67.49 | 69.64 | −0.794 | nucl |
61 | BnaC03T0482600WE | 716 | 80,290.29 | 9.5 | 66.4 | 68.76 | −0.832 | nucl |
62 | BnaC04T0062800WE | 698 | 78,849.91 | 4.94 | 60.02 | 66.48 | −0.778 | nucl |
63 | BnaC04T0093600WE | 726 | 82,317.98 | 6.22 | 63.06 | 65.72 | −0.825 | nucl |
64 | BnaC04T0102900WE | 404 | 46,423.23 | 4.94 | 68.45 | 60.59 | −1.045 | nucl |
65 | BnaC04T0261700WE | 673 | 75,663.01 | 4.7 | 63.19 | 79.29 | −0.582 | nucl |
66 | BnaC04T0281700WE | 682 | 75,880.55 | 8.27 | 51.54 | 69.87 | −0.645 | nucl |
67 | BnaC04T0322500WE | 889 | 99,862.63 | 6.33 | 67.2 | 64.38 | −0.871 | cyto |
68 | BnaC04T0535300WE | 416 | 47,449.8 | 5.41 | 65.58 | 63.1 | −0.891 | nucl |
69 | BnaC04T0593100WE | 657 | 73,552.03 | 4.99 | 62.64 | 73.87 | −0.669 | nucl |
70 | BnaC05T0054600WE | 539 | 62,144 | 6.15 | 56.71 | 78.63 | −0.756 | nucl |
71 | BnaC05T0554900WE | 833 | 93,695.01 | 9.57 | 60.21 | 66.37 | −0.866 | nucl |
72 | BnaC05T0557900WE | 823 | 92,629.67 | 9.33 | 61.49 | 66.34 | −0.841 | nucl |
73 | BnaC06T0172800WE | 898 | 100,912.08 | 6.38 | 67.1 | 65.49 | −0.874 | nucl |
74 | BnaC06T0241500WE | 807 | 89,398.11 | 8.46 | 55.86 | 67.01 | −0.711 | nucl |
75 | BnaC06T0356200WE | 792 | 87,809.97 | 9.12 | 53.76 | 71.91 | −0.632 | nucl |
76 | BnaC07T0002300WE | 716 | 80,145.54 | 6.56 | 64.23 | 68.45 | −0.688 | nucl |
77 | BnaC07T0043500WE | 771 | 88,206.85 | 5.93 | 62.67 | 71.62 | −0.788 | nucl |
78 | BnaC07T0077300WE | 727 | 81,314.9 | 9.61 | 62.42 | 70.25 | −0.837 | nucl |
79 | BnaC07T0178800WE | 814 | 92,518.49 | 9.1 | 43.29 | 72.09 | −0.915 | nucl |
80 | BnaC07T0185500WE | 750 | 84,253.74 | 5.62 | 62.17 | 76.67 | −0.636 | chlo |
81 | BnaC07T0220600WE | 812 | 91,124.51 | 5.43 | 62.07 | 75.12 | −0.594 | chlo |
82 | BnaC08T0003900WE | 512 | 59,406.12 | 5.93 | 51.39 | 78.96 | −0.817 | nucl |
83 | BnaC08T0203100WE | 821 | 92,480.81 | 9.48 | 60.94 | 73.7 | −0.791 | nucl |
84 | BnaC08T0287100WE | 850 | 95,141.58 | 6.56 | 66.64 | 65.06 | −0.85 | nucl |
85 | BnaC08T0351700WE | 657 | 73,800.16 | 4.85 | 60.68 | 80.38 | −0.571 | nucl |
86 | BnaC08T0368900WE | 550 | 61,796.54 | 8.97 | 78.06 | 76.42 | −0.655 | nucl |
87 | BnaC08T0416900WE | 845 | 94,589.65 | 9.43 | 68.48 | 74.6 | −0.762 | nucl |
88 | BnaC09T0001400WE | 823 | 93,463.15 | 5.69 | 60.18 | 77.98 | −0.713 | nucl |
89 | BnaC09T0051500WE | 817 | 90,780.52 | 6.3 | 56.05 | 69.41 | −0.681 | nucl |
90 | BnaC09T0078200WE | 448 | 49,796.94 | 9.86 | 62.41 | 66.83 | −0.81 | nucl |
91 | BnaC09T0148800WE | 640 | 73,819.33 | 7.17 | 61.94 | 75.47 | −0.847 | nucl |
92 | BnaC09T0166000WE | 525 | 60,759.83 | 5.68 | 52.79 | 83.47 | −0.735 | nucl |
93 | BnaC09T0268000WE | 472 | 53,039.08 | 4.85 | 62.94 | 76.99 | −0.508 | nucl |
94 | BnaC09T0317500WE | 492 | 55,333.7 | 9.8 | 67.92 | 68.74 | −0.861 | nucl |
95 | BnaC09T0394800WE | 347 | 39,940.55 | 5.9 | 64.51 | 68.21 | −0.945 | nucl |
96 | BnaC09T0480100WE | 902 | 100,381.76 | 9.18 | 69.3 | 68.4 | −0.766 | nucl |
97 | BnaC09T0579200WE | 627 | 70,490.47 | 5.33 | 71.22 | 64.51 | −0.72 | nucl |
98 | BnaC09T0587700WE | 849 | 96,506.85 | 5.32 | 66.98 | 71.74 | −0.864 | nucl |
99 | Bnascaffold2730T0005700WE | 778 | 88,777.39 | 6.04 | 64.22 | 68.02 | −0.921 | nucl |
100 | Bnascaffold3320T0000100WE | 838 | 95,324.53 | 5.27 | 66.12 | 72.1 | −0.866 | nucl |
Cis-Elements | Function of Cis-Elements | Number of Genes | |
---|---|---|---|
1 | 3-AF1 binding site | light-responsive element | 6 |
2 | AACA_motif | involved in endosperm-specific negative expression | 2 |
3 | ABRE | cis-acting element involved in the abscisic acid responsiveness | 17 |
4 | ACE | cis-acting element involved in light responsiveness | 3 |
5 | AE-box | part of a module for light response | 9 |
6 | ARE | cis-acting regulatory element essential for the anaerobic induction | 17 |
7 | ATC-motif | part of a conserved DNA module involved in light responsiveness | 2 |
8 | ATCT-motif | part of a conserved DNA module involved in light responsiveness | 4 |
9 | AT-rich element | binding site of AT-rich DNA binding protein (ATBP-1) | 7 |
10 | AuxRR-core | cis-acting regulatory element involved in auxin responsiveness | 1 |
11 | Box 4 | part of a conserved DNA module involved in light responsiveness | 18 |
12 | Box II | part of a light-responsive element | 2 |
13 | CAG-motif | part of a light-response element | 1 |
14 | CAT-box | cis-acting regulatory element related to meristem expression | 3 |
15 | CCAAT-box | MYBHv1 binding site | 4 |
16 | CGTCA-motif | cis-acting regulatory element involved in the MeJA responsiveness | 16 |
17 | chs-CMA1a | part of a light-responsive element | 3 |
18 | chs-CMA2a | part of a light-responsive element | 1 |
19 | circadian | cis-acting regulatory element involved in circadian control | 4 |
20 | GA-motif | part of a light-responsive element | 3 |
21 | GARE-motif | gibberellin-responsive element | 9 |
22 | GATA-motif | part of a light-responsive element | 4 |
23 | G-Box | cis-acting regulatory element involved in light responsiveness | 17 |
24 | GCN4_motif | cis-regulatory element involved in endosperm expression | 2 |
25 | GT1-motif | Light-responsive element | 10 |
26 | GTGGC-motif | part of a light-responsive element | 1 |
27 | I-box | part of a light-responsive element | 9 |
28 | LAMP-element | part of a light-responsive element | 3 |
29 | LS7 | part of a light-responsive element | 1 |
30 | LTR | cis-acting element involved in low-temperature responsiveness | 6 |
31 | MBS | MYB binding site involved in drought-inducibility | 10 |
32 | MBSI | MYB binding site involved in flavonoid biosynthetic gene regulation | 5 |
33 | MRE | MYB binding site involved in light responsiveness | 6 |
34 | O2-site | cis-acting regulatory element involved in zein metabolism regulation | 6 |
35 | P-box | gibberellin-responsive element | 14 |
36 | RY-element | cis-acting regulatory element involved in seed-specific regulation | 3 |
37 | Sp1 | light-responsive element | 3 |
38 | TATC-box | cis-acting element involved in gibberellin responsiveness | 3 |
39 | TCA-element | cis-acting element involved in salicylic acid responsiveness | 10 |
40 | TCCC-motif | part of a light-responsive element | 3 |
41 | TC-rich repeats | cis-acting element involved in defense and stress responsiveness | 15 |
42 | TCT-motif | part of a light-responsive element | 28 |
43 | TGA-box | part of an auxin-responsive element | 1 |
44 | TGACG-motif | cis-acting regulatory element involved in the MeJA responsiveness | 16 |
45 | TGA-element | auxin-responsive element | 10 |
46 | WUN-motif | wound-responsive element | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Zhao, K.; Wang, R.; Zhu, Y.; Zhang, H.; Zhang, J.; Yao, X.; Qin, C.; Zhang, P. Integrated Phylogenomics and Expression Profiling of the TRM Gene Family in Brassica napus Reveals Their Role in Development and Stress Tolerance. Plants 2025, 14, 1858. https://doi.org/10.3390/plants14121858
Zhang Y, Zhao K, Wang R, Zhu Y, Zhang H, Zhang J, Yao X, Qin C, Zhang P. Integrated Phylogenomics and Expression Profiling of the TRM Gene Family in Brassica napus Reveals Their Role in Development and Stress Tolerance. Plants. 2025; 14(12):1858. https://doi.org/10.3390/plants14121858
Chicago/Turabian StyleZhang, Yunlu, Ke Zhao, Ruisen Wang, Yang Zhu, Huiqi Zhang, Jingyi Zhang, Xiangtan Yao, Cheng Qin, and Pengcheng Zhang. 2025. "Integrated Phylogenomics and Expression Profiling of the TRM Gene Family in Brassica napus Reveals Their Role in Development and Stress Tolerance" Plants 14, no. 12: 1858. https://doi.org/10.3390/plants14121858
APA StyleZhang, Y., Zhao, K., Wang, R., Zhu, Y., Zhang, H., Zhang, J., Yao, X., Qin, C., & Zhang, P. (2025). Integrated Phylogenomics and Expression Profiling of the TRM Gene Family in Brassica napus Reveals Their Role in Development and Stress Tolerance. Plants, 14(12), 1858. https://doi.org/10.3390/plants14121858