The Potential of Plant Growth-Promoting Fungi Enhances the Growth, Yield, and Phytochemical Compounds of Oryza sativa L. (Maled Phai Cultivar) Under Field Conditions
Abstract
:1. Introduction
2. Results
2.1. Determination of Plant Growth and Harvesting
2.2. Quantification of AMF Spores and Colonization in Plant Roots
2.3. The Effects of PGPF on the Phytochemical Properties Under Field Conditions
3. Discussion
4. Materials and Methods
4.1. Preparation of AMF Inoculum in Greenhouse Condition
4.2. Preparation of Trichoderma Inoculum
4.3. Experimental Design and Rice Cultivation
4.4. Determination of Plant Growth Parameters
4.5. Nutrient Contents
4.6. Determination of Phytochemical Compounds in Rice Seeds
4.7. Determination of PGPF Colonization in Plant Roots
4.8. Quantification of AMF Spores
4.9. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pengkumsri, N.; Chaiyasut, C.; Saenjum, C.; Sirilun, S.; Peerajan, S.; Suwannalert, P.; Sivamaruthi, B.S. Physicochemical and antioxidative properties of black, brown and red rice varieties of northern Thailand. Food Sci. Technol. 2015, 35, 331–338. [Google Scholar] [CrossRef]
- Sompong, R.; Siebenhandl-Ehn, S.; Linsberger-Martin, G.; Berghofer, E. Physicochemical and antioxidative properties of red and black rice varieties from Thailand, China and Sri Lanka. Food Chem. 2011, 124, 132–140. [Google Scholar] [CrossRef]
- Kapcum, N.; Uriyapongson, J.; Alli, I.; Phimphilai, S. Anthocyanins, phenolic compounds and antioxidant activities in colored corn cob and colored rice bran. Int. Food Res. J. 2016, 23, 2347–2356. [Google Scholar]
- Asem, I.D.; Imotomba, R.K.; Mazumder, P.B.; Laishram, J.M. Anthocyanin content in the black scented rice (Chakhao): Its impact on human health and plant defense. Symbiosis. 2015, 66, 47–54. [Google Scholar] [CrossRef]
- Ashrafuzzaman, M.; Hossen, F.A.; Razi Ismail, M.; Hoque, M.A.; Islam, M.Z.; Shahidullah, S.M.; Meon, S. Efficiency of plant growth-promoting rhizobacteria (PGPR) for the enhancement of rice growth. Afr. J. Biotechnol. 2009, 8, 1247–1252. [Google Scholar]
- Soumare, A.; Diédhiou, A.G.; Arora, N.K.; Al-Ani, L.K.T.; Ngom, M.; Fall, S.; Hafidi, M.; Ouhdouch, Y.; Kouisni, L.; Sy, M.O. Potential role and utilization of plant growth promoting microbes in plant tissue culture. Front. Microbiol. 2021, 12, 649878. [Google Scholar] [CrossRef] [PubMed]
- Ripa, F.A.; Cao, W.D.; Tong, S.; Sun, J.G. Assessment of plant growth promoting and abiotic stress tolerance properties of wheat endophytic fungi. BioMed Res. Int. 2019, 1, 6105865. [Google Scholar] [CrossRef]
- Bernaola, L.; Cange, G.; Way, M.O.; Gore, J.; Hardke, J.; Stout, M. Natural colonization of rice by arbuscular mycorrhizal fungi in different production areas. Rice Sci. 2018, 25, 169–174. [Google Scholar] [CrossRef]
- Wangiyana, W.; Farida, N.; Aryana, I.G.P.M. Yield performance of several promising lines of black rice as affected by application of mycorrhiza biofertilizer and additive intercropping with soybean under aerobic irrigation system on raised-beds. IOP Conf. Ser. Earth Environ. Sci. 2021, 913, 012005. [Google Scholar] [CrossRef]
- Zhao, Y.Y.; Cartabia, A.; Lalaymia, I.; Declerck, S. Arbuscular mycorrhizal fungi: Source of secondary metabolite production in medicinal plants. Mycorrhiza. 2022, 32, 221–251. [Google Scholar] [CrossRef]
- Baron, N.C.; Rigobelo, E.C. Endophytic fungi: A tool for plant growth promotion and sustainable agriculture. Mycology 2022, 13, 39–55. [Google Scholar] [CrossRef]
- Baron, N.C.; de Souza Pollo, A.; Rigobelo, E.C. Purpureocillium lilacinum and Metarhizium marquandii as plant growth-promoting fungi. PeerJ. 2020, 8, 1–25. [Google Scholar] [CrossRef] [PubMed]
- White, J.F.; Kingsley, K.L.; Verma, S.K.; Kowalski, K.P. Rhizophagy cycle: An oxidative process in plants for nutrient extraction from symbiotic microbes. Microorganisms. 2018, 6, 95. [Google Scholar] [CrossRef]
- Nacoon, S.; Seemakram, W.; Gateta, T.; Theerakulpisut, P.; Sanitchon, J.; Kuyper, T.W.; Boonlue, S. Accumulation of health-promoting compounds in upland black rice by interacting mycorrhizal and endophytic fungi. J. Fungi 2023, 9, 1152. [Google Scholar] [CrossRef] [PubMed]
- Gateta, T.; Nacoon, S.; Seemakram, W.; Ekprasert, J.; Theerakulpisut, P.; Sanitchon, J.; Suwannarach, N.; Boonlue, S. The potential of Endophytic fungi for enhancing the growth and accumulation of phenolic compounds and anthocyanin in maled phai rice (Oryza sativa L.). J. Fungi. 2023, 9, 937. [Google Scholar] [CrossRef]
- Schweiger, R.; Müller, C. Leaf metabolome in arbuscular mycorrhizal symbiosis. Curr. Opin. Plant Biol. 2015, 26, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Riccardi, G.; Milano, A.; Pasca, M.R.; Nies, D.H. Genomic analysis of zinc homeostasis in Mycobacterium tuberculosis. FEMS Microbiol. Lett. 2008, 287, 1–7. [Google Scholar] [CrossRef]
- Gebremeskel, K.; Birhane, E.; Habtu, S.; Haile, M.; Chanyalew, S.; Tadele, Z.; Assefa, K. Arbuscular mycorrhizal fungi improve morphological and yield performance of Eragrostis tef genotypes in Tigray, Ethiopia. Sci. Rep. 2024, 14, 29716. [Google Scholar] [CrossRef]
- Sun, R.T.; Feng, X.C.; Zhang, Z.Z.; Zhou, N.; Feng, H.D.; Liu, Y.M.; Wu, Q.S. Root Trichoderma Regulate Changes in Sugar and Medicinal Compositions of Polygonum cuspidatum. Front. Plant Sci. 2022, 13, 818909. [Google Scholar]
- Poveda, J.; Baptista, P.; Sacristán, S.; Velasco, P. Editorial: Beneficial effects of fungal Trichoderma s in major agricultural crops. Front. Plant Sci. 2022, 13, 1061112. [Google Scholar] [CrossRef]
- Angelard, C.; Colard, A.; Niculita-Hirzel, H.; Croll, D.; Sanders, I.R. Segregation in a mycorrhizal fungus alters rice growth and symbiosis-specific gene transcription. Curr. Biol. 2010, 20, 1216–1221. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, A.O.; Graf Junior, A.L.; Carraro, T.d.A.; Colonia, B.S.O.; May De Mio, L.L.; Soccol, C.R. Bioprospecting of Trichoderma strains for controlling pathogens from soybean, maize, and beans, and their microbiome characterization. Eur. J. Plant Pathol. 2025, 171, 561–579. [Google Scholar] [CrossRef]
- Chen, D.; Saeed, M.; Ali, M.N.H.A.; Raheel, M.; Ashraf, W.; Hassan, Z.; Hassan, M.Z.; Farooq, U.; Hakim, M.F.; Rao, M.J.; et al. Plant growth promoting rhizobacteria (PGPR) and arbuscular mycorrhizal fungi combined application reveals Enhanced soil fertility and rice production. Agronomy. 2023, 13, 550. [Google Scholar] [CrossRef]
- Nacoon, S.; Seemakram, W.; Ekprasert, J.; Theerakulpisut, P.; Sanitchon, J.; Kuyper, T.W.; Boonlue, S. Arbuscular mycorrhizal fungi enhance growth and increase concentrations of anthocyanin, phenolic compounds, and antioxidant activity of black rice (Oryza sativa L.). Soil Syst. 2023, 7, 44. [Google Scholar] [CrossRef]
- Netto, A.F.R.; Freitas, M.S.M.; Martins, M.A.; de Carvalho, A.J.C.; Filho, J.A.V. Efeito de fungos micorrízicos arbusculares na bioprodução de fenóis totais e no crescimento de Passiflora alata Curtis. Rev. Bras. Plantas Med. 2014, 16, 1–9. [Google Scholar] [CrossRef]
- Seemakram, W.; Paluka, J.; Suebrasri, T.; Lapjit, C.; Kanokmedhakul, S.; Kuyper, T.W.; Ekprasert, J.; Boonlue, S. Enhancement of growth and Cannabinoids content of hemp (Cannabis sativa) using arbuscular mycorrhizal fungi. Front. Plant Sci. 2022, 13, 845794. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Mawgoud, M.; Bouqellah, N.A.; Korany, S.M.; Reyad, A.M.; Hassan, A.H.A.; Alsherif, E.A.; AbdElgawad, H. Arbuscular mycorrhizal fungi as an effective approach to enhance the growth and metabolism of soybean plants under thallium (TI) toxicity. Plant Physiol. Biochem. 2023, 203, 108077. [Google Scholar] [CrossRef]
- Stratton, C.A.; Ray, S.; Bradley, B.A.; Kaye, J.P.; Ali, J.G.; Murrell, E.G. Nutrition vs association: Plant defenses are altered by arbuscular mycorrhizal fungi association not by nutritional provisioning alone. BMC Plant Biol. 2022, 22, 1–10. [Google Scholar] [CrossRef] [PubMed]
- García-Latorre, C.; Rodrigo, S.; Santamaría, O. Trichoderma s as Plant Nutrient Uptake-Promoter in Plants BT—Trichoderma s: Mineral Nutrient Management; Maheshwari, D.K., Dheeman, S., Eds.; Springer International Publishing: Cham, Switzerland, 2021; Volume 3, pp. 247–265. [Google Scholar]
- Loján, P.; Senés-Guerrero, C.; Suárez, J.P.; Kromann, P.; SCHÜßLER, A.; Declerck, S. Potato field-inoculation in Ecuador with Rhizophagus irregularis: No impact on growth performance and associated arbuscular mycorrhizal fungal communities. Symbiosis 2017, 73, 45–56. [Google Scholar] [CrossRef]
- Boonlue, S.; Surapat, W.; Pukahuta, C.; Suwanarit, P.; Suwanarit, A.; Morinaga, T. Diversity and efficiency of arbuscular mycorrhizal fungi in soils from organic chili (Capsicum frutescens) farms. Mycoscience 2012, 53, 10–16. [Google Scholar] [CrossRef]
- Trouvelot, A.; Kough, J.; Gianinazzi-Pearson, V. Evaluation of VA infection levels in root systems: Research for estimation methods having a functional significance. In Physiological and Genetical Aspects of Mycorrhizae; Gianinazzi-Pearson, V., Gianinazzi, S., Eds.; INRA Press: Paris, France, 1986; pp. 217–221. [Google Scholar]
- Sennoi, R.; Singkham, N.; Jogloy, S.; Boonlue, S.; Saksirirat, W.; Kesmala, T.; Patanothai, A. Biological control of southern stem rot caused by Sclerotium rolfsii using Trichoderma harzianum and arbuscular mycorrhizal fungi on Jerusalem artichoke (Helianthus tuberosus L.). Crop Prot. 2013, 54, 148–153. [Google Scholar] [CrossRef]
- Arnon, D.I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in beta vulgaris. Plant Physiol. 1949, 24, 1–15. [Google Scholar] [CrossRef]
- Kjeldahl, J. Neue Methode zur Bestimmung des Stickstoffs in organischen Körpern (New method for the determination of nitrogen in organic substances). Z. Anal. Chem. 1883, 22, 366–383. [Google Scholar] [CrossRef]
- Twine, J.R.; Williams, C.H. The determination of phosphorus in kjeldahl digests of plant material by automatic analysis. Commun. Soil Sci. Plant Anal. 1971, 2, 485–489. [Google Scholar] [CrossRef]
- Hesse, P.R. A Textbook of Soil Chemical Analysis; Murray: London, UK, 1971; pp. 120–309. [Google Scholar]
- Yodmanee, S.; Karrila, T.T.; Pakdeechanuan, P. Physical, chemical and antioxidant properties of pigmented rice grown in Southern Thailand. Int. Food Res. J. 2011, 18, 901–906. [Google Scholar]
- Torino, M.I.; Limón, R.I.; Martínez-Villaluenga, C.; Mäkinen, S.; Pihlanto, A.; Vidal-Valverde, C.; Frias, J. Antioxidant and antihypertensive properties of liquid and solid state fermented lentils. Food Chem. 2013, 136, 1030–1037. [Google Scholar] [CrossRef]
- Leong, L.P.; Shui, G. An investigation of antioxidant capacity of fruits in Singapore markets. Food Chem. 2002, 76, 69–75. [Google Scholar] [CrossRef]
- Koske, R.E.; Gemma, J.N. A modified procedure for staining roots to detect VA mycorrhizas. Mycol. Res. 1989, 92, 486–488. [Google Scholar] [CrossRef]
- Mehmood, A.; Hussain, A.; Irshad, M.; Hamayun, M.; Iqbal, A.; Khan, N. In vitro production of IAA by endophytic fungus Aspergillus awamori and its growth promoting activities in Zea mays. Symbiosis 2019, 77, 225–235. [Google Scholar] [CrossRef]
- Daniels, B.A.; Skipper, H.D. Method for the Recovery and Quantitative Estimation of Propagules from Soil. In Method and Principle of Mycorrhizal Research; Schenck, N.C., Ed.; American Phytopathological Society: St. Paul, MN, USA, 1982; pp. 29–36. [Google Scholar]
Treatments | Plant Height (cm) | Number of Tillers | Shoot Dry Weight (g) | Number of Panicles | Grain Weight (kg/ha) | Harvest Index (HI) |
---|---|---|---|---|---|---|
T1 | 88.64 c | 9.93 d | 21.52 d | 7.00 c | 1310.70 c | 0.33 a |
T2 | 96.29 b | 13.13 c | 29.75 c | 9.00 b | 2416.70 b | 0.38 a |
T3 | 98.84 ab | 16.08 b | 44.45 b | 11.00 a | 3420.40 a | 0.32 a |
T4 | 100.65 a | 19.18 a | 54.56 a | 12.00 a | 4120.40 a | 0.33 a |
T5 | 96.53 b | 17.33 ab | 53.11 a | 11.00 a | 4034.40 a | 0.30 a |
% CV | 2.42 | 12.17 | 10.92 | 8.34 | 20.13 | 16.46 |
F-test | ** | ** | ** | ** | ** | ns |
Treatments | Pn (µmol CO2 m−2 s−1) | gs (H2O m−2 s−1) | Tr (mmol H2O m−2 s−1) | WUE (µmol CO2/H2O m−2 s−1) | SPAD Values | Chlorophyll Content (mg/L) |
---|---|---|---|---|---|---|
T1 | 13.10 b | 0.18 a | 2.67 a | 4.91 b | 28.40 b | 31.27 c |
T2 | 13.85 b | 0.17 a | 2.87 a | 4.81 b | 36.03 a | 39.63 c |
T3 | 17.33 a | 0.16 a | 2.62 a | 6.62 a | 36.20 a | 66.54 a |
T4 | 16.90 a | 0.14 a | 2.44 a | 7.00 a | 36.32 a | 57.02 b |
T5 | 16.73 a | 0.16 a | 2.60 a | 6.52 a | 37.20 a | 49.91 b |
% CV | 9.39 | 20.4 | 11.29 | 11.65 | 3.87 | 11.29 |
F-test | ** | ns | ns | ** | ** | ** |
Treatments | Root dry Weight (g) | Length (cm) | Surf Area (cm2) | Avg Diam (mm) | Volume (cm3) | Specific Root Length (m/g) | Root Tissue Density (g/cm3) |
---|---|---|---|---|---|---|---|
T1 | 2.80 b | 662.90 c | 138.07 b | 1.10 bc | 1.95 c | 2.41 b | 0.45 a |
T2 | 2.80 b | 917.20 b | 129.09 b | 0.90 d | 1.50 d | 3.34 a | 0.47 a |
T3 | 4.53 a | 1115.70 a | 175.19 a | 1.17 a | 2.58 a | 2.48 b | 0.38 a |
T4 | 3.97 a | 950.20 b | 165.31 a | 1.14 ab | 2.39 ab | 2.40 b | 0.41 a |
T5 | 4.31 a | 1154.80 a | 166.05 a | 1.05 c | 2.24 bc | 2.71 b | 0.44 a |
%CV | 11.77 | 5.39 | 10.43 | 3.96 | 10.12 | 12.96 | 14.89 |
F-test | ** | ** | ** | ** | ** | * | ns |
Treatments | Total Nitrogen (g/kg) | Total Phosphorus (g/kg) | Total Potassium (g/kg) |
---|---|---|---|
T1 | 4.45 c | 1.78 a | 16.15 b |
T2 | 5.50 ab | 2.05 a | 18.21 ab |
T3 | 5.74 ab | 1.98 a | 19.70 a |
T4 | 5.28 b | 1.89 a | 19.96 a |
T5 | 6.01 a | 2.16 a | 20.23 a |
% CV | 8.41 | 12.51 | 7.52 |
F-test | ** | ns | ** |
Treatments | Number of AMF Spores (Spore Soil−1) | AMF Colonization (%) | Trichoderma Colonization (%) |
---|---|---|---|
T1 | 0.00 c | 2.67 b | 5.84 b |
T2 | 0.00 c | 5.54 b | 7.50 b |
T3 | 2.39 b | 32.91 a | 13.33 b |
T4 | 0.10 c | 5.54 b | 80.84 a |
T5 | 2.70 a | 32.93 a | 70.00 a |
% CV | 6.91 | 15.9 | 27.55 |
F-test | ** | ** | ** |
Treatments | Phenolic Compound (mg/L) | Anthocyanin (mg. Cy-3-G eq./100 g) | Antioxidant (% DPPH Scavenging) |
---|---|---|---|
T1 | 166.41 c | 56.84 b | 91.23 c |
T2 | 164.02 c | 53.17 b | 91.92 bc |
T3 | 226.37 a | 72.97 a | 94.03 ab |
T4 | 190.51 b | 59.43 b | 92.61 abc |
T5 | 211.03 a | 57.67 b | 94.38 a |
% CV | 5.34 | 8.86 | 1.52 |
F-test | ** | ** | * |
Correlation | Till | Pani | Grain | Shoot | Root | Length | Surf | Diam | Vol | SRL | RTD | Pheno | Antho | DPPH | N | P | K | Spore | AMF |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Panicle number | 0.90 ** | ||||||||||||||||||
Grain weight | 0.79 ** | 0.83 ** | |||||||||||||||||
Shoot dry weight | 0.83 ** | 0.80 ** | 0.91 ** | ||||||||||||||||
Root dry weight | 0.61 ** | 0.67 ** | 0.63 ** | 0.75 ** | |||||||||||||||
Root length | 0.53 * | 0.56 ** | 0.72 ** | 0.76 ** | 0.76 ** | ||||||||||||||
Root surface area | 0.49 * | 0.42 ns | 0.66 ** | 0.70 ** | 0.67 ** | 0.61 ** | |||||||||||||
Root diameter | 0.24 ns | 0.22 ns | 0.32 ns | 0.34 ns | 0.50 * | 0.10 ns | 0.52 * | ||||||||||||
Root volume | 0.47 * | 0.42 ns | 0.60 ** | 0.64 ** | 0.70 ** | 0.47 * | 0.93 ** | 0.79 ** | |||||||||||
SRL | −0.23 ns | −0.23 ns | −0.05 ns | −0.19 ns | −0.53 * | 0.12 ns | −0.34 ns | −0.67 ** | −0.55 * | ||||||||||
RTD | −0.10 ns | −0.03 ns | −0.39 ns | −0.27 ns | −0.09 ns | −0.30 ns | −0.37 ns | −0.59 ** | −0.47 * | −0.19 ns | |||||||||
Phenolic compound | 0.46 * | 0.42 ns | 0.56 ** | 0.62 ** | 0.81 ** | 0.74 ** | 0.82 ** | 0.47 * | 0.77 ** | −0.33 ns | −0.30 ns | ||||||||
Anthocya-nin | 0.27 ns | 0.32 ns | 0.39 ns | 0.26 ns | 0.46 * | 0.35 ns | 0.48 * | 0.66 ** | 0.61 ** | −0.24 ns | −0.60 ** | 0.66 ** | |||||||
DPPH | 0.43 ns | 0.34 ns | 0.31 ns | 0.34 ns | −0.10 ns | 0.11 ns | −0.08 ns | −0.44 ns | −0.25 ns | 0.31 ns | 0.24 ns | −0.28 ns | −0.49 * | ||||||
N | 0.36 ns | 0.43 ns | 0.51 * | 0.46 * | 0.49 * | 0.64 ** | 0.32 ns | −0.08 ns | 0.20 ns | 0.13 ns | −0.03 ns | 0.62 ** | 0.30 ns | 0.08 ns | |||||
P | 0.21 ns | 0.21 ns | 0.30 ns | 0.24 ns | 0.13 ns | 0.35 ns | 0.17 ns | −0.20 ns | 0.03 ns | 0.21 ns | 0.00 ns | 0.30 ns | −0.04 ns | 0.13 ns | 0.43 ns | ||||
K | 0.60 ** | 0.48 * | 0.5 6 ** | 0.67 ** | 0.57 ** | 0.65 ** | 0.54 * | 0.17 ns | 0.45 * | −0.05 ns | −0.20 ns | 0.60 ** | 0.16 ns | 0.42 ns | 0.58 ** | 0.39 ns | |||
AMF spore number | 0.35 ns | 0.39 ns | 0.48 * | 0.51 * | 0.74 ** | 0.78 ** | 0.57 ** | 0.29 ns | 0.52 * | −0.14 ns | −0.23 ns | 0.82 ** | 0.50 * | −0.33 ns | 0.60 ** | 0.32 ns | 0.48 * | ||
AMF colonization | 0.34 ns | 0.43 ns | 0.51 * | 0.51 * | 0.74 ** | 0.80 ** | 0.55 * | 0.29 ns | 0.51 * | −0.12 ns | −0.25 ns | 0.81 ** | 0.53 * | −0.34 ns | 0.60 ** | 0.35 ns | 0.45 * | 0.98 ** | |
Trichoderma colonization | 0.60 ** | 0.53 * | 0.72 ** | 0.80 ** | 0.45 * | 0.43 ns | 0.47 * | 0.26 ns | 0.42 ns | −0.19 ns | −0.17 ns | 0.29 ns | −0.11 ns | 0.47 * | 0.25 ns | 0.06 ns | 0.53 * | 0.21 ns | 0.18 ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seemakram, W.; Nacoon, S.; Ekprasert, J.; Theerakulpisut, P.; Sanitchon, J.; Boonlue, S. The Potential of Plant Growth-Promoting Fungi Enhances the Growth, Yield, and Phytochemical Compounds of Oryza sativa L. (Maled Phai Cultivar) Under Field Conditions. Plants 2025, 14, 1839. https://doi.org/10.3390/plants14121839
Seemakram W, Nacoon S, Ekprasert J, Theerakulpisut P, Sanitchon J, Boonlue S. The Potential of Plant Growth-Promoting Fungi Enhances the Growth, Yield, and Phytochemical Compounds of Oryza sativa L. (Maled Phai Cultivar) Under Field Conditions. Plants. 2025; 14(12):1839. https://doi.org/10.3390/plants14121839
Chicago/Turabian StyleSeemakram, Wasan, Sabaiporn Nacoon, Jindarat Ekprasert, Piyada Theerakulpisut, Jirawat Sanitchon, and Sophon Boonlue. 2025. "The Potential of Plant Growth-Promoting Fungi Enhances the Growth, Yield, and Phytochemical Compounds of Oryza sativa L. (Maled Phai Cultivar) Under Field Conditions" Plants 14, no. 12: 1839. https://doi.org/10.3390/plants14121839
APA StyleSeemakram, W., Nacoon, S., Ekprasert, J., Theerakulpisut, P., Sanitchon, J., & Boonlue, S. (2025). The Potential of Plant Growth-Promoting Fungi Enhances the Growth, Yield, and Phytochemical Compounds of Oryza sativa L. (Maled Phai Cultivar) Under Field Conditions. Plants, 14(12), 1839. https://doi.org/10.3390/plants14121839