Copper and Temperature Interactions Induce Differential Physiological and Metal Exclusion Responses in the Model Brown Macroalga Ectocarpus
Abstract
:1. Introduction
2. Results
2.1. Growth
2.2. Photosynthetic Performance
2.3. Photosynthetic Pigments Content
2.4. Intra- and Extracellular Cu Accumulation
3. Discussion
4. Materials and Methods
4.1. Strain Selection
4.2. Culture Conditions and Experimental Design
4.3. Growth Rate
4.4. Photosynthesis and Energy Dissipation as In Vivo Chlorophyll a Fluorescence
4.5. Pigments Content
4.6. Metal Content Analysis
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
α | Efficiency of light captured for photosynthesis |
CCAP | Culture Collection of Algae and Protozoa |
Chla | Chlorophyll a |
Chlc | Chlorophyll c |
Ek | Minimum saturating irradiance |
ETRmax | Maximum electron transport rate |
F | Basal fluorescence in the light-adapted state |
Fo | Basal fluorescence in the dark-adapted state |
Fm | Maximal fluorescence of the dark-adapted |
Fm’ | Maximal fluorescence of the light -adapted |
ΔF/Fmʹ | Effective quantum yield in the light-adapted state |
Fv/Fm | Maximum quantum yield |
FW | Fresh weight |
Fx | Fucoxanthin |
MHWs | Marine heat waves |
NPQ | Non-photochemical quenching |
NPQmax | Maximal non-photochemical quenching |
NSW | Natural seawater |
PAR | Photosynthetically active radiation |
PSII | Photosystem II |
RGR | Relative growth rate |
RLC | Rapid light curve |
ROS | Reactive oxygen species |
RuBisCO | Ribulose-l,5-bisphosphate carboxylase/oxygenase |
SST | Sea surface temperature |
SP | Saturating pulse of light |
References
- Christie, H.; Norderhaug, K.; Fredriksen, S. Macrophytes as Habitat for Fauna. Mar. Ecol. Prog. Ser. 2009, 396, 221–233. [Google Scholar] [CrossRef]
- Costanza, R.; de Groot, R.; Sutton, P.; van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the Global Value of Ecosystem Services. Glob. Environ. Change 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Steneck, R.S.; Graham, M.H.; Bourque, B.J.; Corbett, D.; Erlandson, J.M.; Estes, J.A.; Tegner, M.J. Kelp Forest Ecosystems: Biodiversity, Stability, Resilience and Future. Environ. Conserv. 2002, 29, 436–459. [Google Scholar] [CrossRef]
- Graham, M.H. Effects of Local Deforestation on the Diversity and Structure of Southern California Giant Kelp Forest Food Webs. Ecosystems 2004, 7, 341–357. [Google Scholar] [CrossRef]
- Umanzor, S.; Ladah, L.; Calderon-Aguilera, L.E.; Zertuche-González, J.A. Testing the Relative Importance of Intertidal Sea-weeds as Ecosystem Engineers across Tidal Heights. J. Exp. Mar. Biol. Ecol. 2019, 511, 100–107. [Google Scholar] [CrossRef]
- Rönnbäck, P.; Kautsky, N.; Pihl, L.; Troell, M.; Söderqvist, T.; Wennhage, H. Ecosystem Goods and Services from Swedish Coastal Habitats: Identification, Valuation, and Implications of Ecosystem Shifts. Ambio 2007, 36, 534–544. [Google Scholar] [CrossRef]
- Bischof, K.; Gómez, I.; Molis, M.; Hanelt, D.; Karsten, U.; Lüder, U.; Roleda, M.Y.; Zacher, K.; Wiencke, C. Ultraviolet Radiation Shapes Seaweed Communities. Rev. Environ. Sci. Biotechnol. 2006, 5, 141–166. [Google Scholar] [CrossRef]
- Tonon, T.; Eveillard, D.; Prigent, S.; Bourdon, J.; Potin, P.; Boyen, C.; Siegel, A. Toward Systems Biology in Brown Algae to Explore Acclimation and Adaptation to the Shore Environment. OMICS 2011, 15, 883–892. [Google Scholar] [CrossRef]
- Harley, C.D.G.; Anderson, K.M.; Demes, K.W.; Jorve, J.P.; Kordas, R.L.; Coyle, T.A.; Graham, M.H. Effects of Climate Change on Global Seaweed Communities. J. Phycol. 2012, 48, 1064–1078. [Google Scholar] [CrossRef]
- Laffoley, D.; Baxter, J.M. Explaining Ocean Warming: Causes, Scale, Effects and Consequences; IUCN: Gland, Switzerland, 2016; ISBN 9782831718064. [Google Scholar]
- Contreras, L.; Mella, D.; Moenne, A.; Correa, J.A. Differential Responses to Copper-Induced Oxidative Stress in the Marine Macroalgae Lessonia nigrescens and Scytosiphon lomentaria (Phaeophyceae). Aquat. Toxicol. 2009, 94, 94–102. [Google Scholar] [CrossRef]
- Kroeker, K.J.; Kordas, R.L.; Harley, C.D.G. Embracing Interactions in Ocean Acidification Research: Confronting Multiple Stressor Scenarios and Context Dependence. Biol. Lett. 2017, 13, 20160802. [Google Scholar] [CrossRef]
- Pörtner, H.-O.; Roberts, D.C.; Adams, H.; Adelekan, I.; Adler, C.; Adrian, R.; Aldunce, P.; Ali, E.; Ara Begum, R.; Bednar-Friedl, B.; et al. Technical Summary. In Climate Change 2022—Impacts, Adaptation and Vulnerability; Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK, 2023; pp. 37–118. [Google Scholar]
- Cael, B.B.; Burger, F.A.; Henson, S.A.; Britten, G.L.; Frölicher, T.L. Historical and Future Maximum Sea Surface Temperatures. Sci. Adv. 2025, 10, eadj5569. [Google Scholar] [CrossRef] [PubMed]
- Barrientos, S.; Piñeiro-Corbeira, C.; Barreiro, R. Twenty-Five Years on: Widespread Kelp Forest Decline Revealed in a Potential Climatic Refugium. J. Environ. Manag. 2025, 373, 123734. [Google Scholar] [CrossRef] [PubMed]
- Graiff, A.; Franke, K.; Karsten, U.; Liesner, D.; Gordillo, F.J.L.; Iñiguez, C. Differential Effects of Warming on Carbon Budget, Photosynthetic Yield and Biochemical Composition of Cold-Temperate and Arctic Isolates of Laminaria digitata (Phaeophyceae). J. Plant. Physiol. 2025, 306, 154436. [Google Scholar] [CrossRef] [PubMed]
- Bischoff-Bäsmann, B.; Wiencke, C. Temperature Requirement for Growth and Survival of Antarctic Rhodophyta. J. Phycol. 1996, 32, 525–535. [Google Scholar] [CrossRef]
- Bischoff-Bäsmann, B.; Bartsch, I.; Xia, B.; Wiencke, C. Temperature Responses of Macroalgae from the Tropical Island Hainan (P.R. China). Phycol. Res. 1997, 45, 91–104. [Google Scholar] [CrossRef]
- Duarte, L.; Viejo, R.M. Environmental and Phenotypic Heterogeneity of Populations at the Trailing Range-Edge of the Habitat-Forming Macroalga Fucus serratus. Mar. Environ. Res. 2018, 136, 16–26. [Google Scholar] [CrossRef]
- Hernández, S.; García, A.G.; Arenas, F.; Escribano, M.P.; Jueterbock, A.; De Clerck, O.; Maggs, C.A.; Franco, J.N.; Martínez, B.D.C. Range-Edge Populations of Seaweeds Show Niche Unfilling and Poor Adaptation to Increased Temperatures. J. Biogeogr. 2023, 50, 780–791. [Google Scholar] [CrossRef]
- Allakhverdiev, S.I.; Kreslavski, V.D.; Klimov, V.V.; Los, D.A.; Carpentier, R.; Mohanty, P. Heat Stress: An Overview of Molecular Responses in Photosynthesis. Photosynth. Res. 2008, 98, 541. [Google Scholar] [CrossRef]
- Eggert, A. Seaweed Responses to Temperature. In Seaweed Biology: Novel Insights into Ecophysiology, Ecology and Utilization; Wiencke, C., Bischof, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 47–66. ISBN 978-3-642-28451-9. [Google Scholar]
- Mathur, S.; Agrawal, D.; Jajoo, A. Photosynthesis: Response to High Temperature Stress. J. Photochem. Photobiol. B 2014, 137, 116–126. [Google Scholar] [CrossRef]
- Davison, I. Adaptation of Photosynthesis in Laminaria saccharina (Phaeophyta) to Changes in Growth Temperature. J. Phycol. 1987, 23, 273–283. [Google Scholar] [CrossRef]
- Sachdev, S.; Ansari, S.A.; Ansari, M.I. Photosynthetic Apparatus: Major Site of Oxidative Damage. In Reactive Oxygen Species in Plants: The Right Balance; Sachdev, S., Ansari, S.A., Ansari, M.I., Eds.; Springer Nature: Singapore, 2023; pp. 75–92. ISBN 978-981-19-9884-3. [Google Scholar]
- Kreusch, M.; Poltronieri, E.; Bouvie, F.; Batista, D.; Pereira, D.T.; Ramlov, F.; Maraschin, M.; Bouzon, Z.L.; Schmidt, É.C.; Simioni, C. Ocean Warming and Copper Pollution: Implications for Metabolic Compounds of the Agarophyte Gelidium floridanum (Gelidiales, Rhodophyta). J. Phycol. 2018, 54, 870–878. [Google Scholar] [CrossRef] [PubMed]
- Sáez, C.A.; Roncarati, F.; Moenne, A.; Moody, A.J.; Brown, M.T. Copper-Induced Intra-Specific Oxidative Damage and Anti-oxidant Responses in Strains of the Brown Alga Ectocarpus siliculosus with Different Pollution Histories. Aquat. Toxicol. 2015, 159, 81–89. [Google Scholar] [CrossRef]
- Nielsen, H.D.; Nielsen, S.L. Adaptation to High Light Irradiances Enhances the Photosynthetic Cu2+ Resistance in Cu2+ Tolerant and Non-Tolerant Populations of the Brown Macroalgae Fucus serratus. Mar. Pollut. Bull. 2010, 60, 710–717. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.T.; Newman, J.E.; Han, T. Inter-Population Comparisons of Copper Resistance and Accumulation in the Red Sea-weed, Gracilariopsis longissima. Ecotoxicology 2012, 21, 591–600. [Google Scholar] [CrossRef]
- Moenne, A.; González, A.; Sáez, C.A. Mechanisms of Metal Tolerance in Marine Macroalgae, with Emphasis on Copper Tolerance in Chlorophyta and Rhodophyta. Aquat. Toxicol. 2016, 176, 30–37. [Google Scholar] [CrossRef]
- Fernandes, J.C.; Henriques, F.S. Biochemical, Physiological, and Structural Effects of Excess Copper in Plants. Bot. Rev. 1991, 57, 246–273. [Google Scholar] [CrossRef]
- Joshi, M.K.; Mohanty, P. Chlorophyll a Fluorescence as a Probe of Heavy Metal Ion Toxicity in Plants. In Chlorophyll a Fluorescence: A Signature of Photosynthesis; Papageorgiou, G.C., Govindjee, Eds.; Springer: Dordrecht, The Netherlands, 2004; pp. 637–661. [Google Scholar]
- Küpper, H.; Šetlík, I.; Spiller, M.; Küpper, F.C.; Prášil, O. Heavy Metal-Induced Inhibition of Photosynthesis: Targets of in Vivo Heavy Metal Chlorophyll Formation. J. Phycol. 2002, 38, 429–441. [Google Scholar] [CrossRef]
- Küpper, H.; Küpper, F.; Spiller, M. Environmental Relevance of Heavy Metal-Substituted Chlorophylls Using the Example of Water Plants. J. Exp. Bot. 1996, 47, 259–266. [Google Scholar] [CrossRef]
- Küpper, H.; Küpper, F.; Spiller, M. In Situ Detection of Heavy Metal Substituted Chlorophylls in Water Plants. Photosynth. Res. 1998, 58, 123–133. [Google Scholar] [CrossRef]
- Nielsen, H.D.; Brownlee, C.; Coelho, S.M.; Brown, M.T. Inter-Population Differences in Inherited Copper Tolerance Involve Photosynthetic Adaptation and Exclusion Mechanisms in Fucus serratus. New Phytol. 2003, 160, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Celis-Plá, P.S.M.; Brown, M.T.; Santillán-Sarmiento, A.; Korbee, N.; Sáez, C.A.; Figueroa, F.L. Ecophysiological and Metabolic Responses to Interactive Exposure to Nutrients and Copper Excess in the Brown Macroalga Cystoseira tamariscifolia. Mar. Pollut. Bull. 2018, 128, 214–222. [Google Scholar] [CrossRef] [PubMed]
- Ryan, S.; McLoughlin, P.; O’Donovan, O. A Comprehensive Study of Metal Distribution in Three Main Classes of Seaweed. Environ. Pollut. 2012, 167, 171–177. [Google Scholar] [CrossRef]
- Roncarati, F.; Sáez, C.A.; Greco, M.; Gledhill, M.; Bitonti, M.B.; Brown, M.T. Response Differences between Ectocarpus siliculosus Populations to Copper Stress Involve Cellular Exclusion and Induction of the Phytochelatin Biosynthetic Pathway. Aquat. Toxicol. 2015, 159, 167–175. [Google Scholar] [CrossRef]
- Byrne, R.H.; Kump, L.R.; Cantrell, K.J. The Influence of Temperature and pH on Trace Metal Speciation in Seawater. Mar. Chem. 1988, 25, 163–181. [Google Scholar] [CrossRef]
- Gledhill, M.; Nimmo, M.; Stephen, J.H.; Brown, M.T. The Toxicity of Copper (II) Species to Marine Algae, with Particular Reference to Macroalgae. J. Phycol. 1997, 33, 2–11. [Google Scholar] [CrossRef]
- Altamirano, M.; Flores-Moya, A.; Figueroa, F.L. Effects of UV Radiation and Temperature on Growth of Germlings of Three Species of Fucus (Phaeophyceae). Aquat. Bot. 2003, 75, 9–20. [Google Scholar] [CrossRef]
- Cruces, E.; Huovinen, P.; Gómez, I. Interactive Effects of UV Radiation and Enhanced Temperature on Photosynthesis, Phlorotannin Induction and Antioxidant Activities of Two Sub-Antarctic Brown Algae. Mar. Biol. 2013, 160, 1–13. [Google Scholar] [CrossRef]
- Rautenberger, R.; Huovinen, P.; Gómez, I. Effects of Increased Seawater Temperature on UV Tolerance of Antarctic Marine Macroalgae. Mar. Biol. 2015, 162, 1087–1097. [Google Scholar] [CrossRef]
- Cock, J.M.; Coelho, S.M.; Brownlee, C.; Taylor, A.R. The Ectocarpus Genome Sequence: Insights into Brown Algal Biology and the Evolutionary Diversity of the Eukaryotes. New Phytol. 2010, 188, 1–4. [Google Scholar] [CrossRef]
- Major, K.M.; Davison, I. Influence of Temperature and Light on Growth and Photosynthetic Physiology of Fucus evanescens (Phaeophyta) Embryos. Eur. J. Phycol. 1998, 33, 129–138. [Google Scholar] [CrossRef]
- Bolton, J.J. Ecoclinal Variation in Ectocarpus siliculosus (Phaeophyceae) with Respect to Temperature Growth Optima and Survival Limits. Mar. Biol. 1983, 73, 131–138. [Google Scholar] [CrossRef]
- Wernberg, T.; de Bettignies, T.; Joy, B.A.; Finnegan, P.M. Physiological Responses of Habitat-Forming Seaweeds to Increasing Temperatures. Limnol. Oceanogr. 2016, 61, 2180–2190. [Google Scholar] [CrossRef]
- Nielsen, S.L.; Nielsen, H.D.; Pedersen, M.F. Juvenile Life Stages of the Brown Alga Fucus serratus L. are More Sensitive to Combined Stress from High Copper Concentration and Temperature than Adults. Mar. Biol. 2014, 161, 1895–1904. [Google Scholar] [CrossRef]
- Vavilin, D.V.; Polynov, V.A.; Matorin, D.N.; Venediktov, P.S. Sublethal Concentrations of Copper Stimulate Photosystem II Photoinhibition in Chlorella pyrenoidosa. J. Plant Physiol. 1995, 146, 609–614. [Google Scholar] [CrossRef]
- Machalek, K.M.; Davison, I.; Falkowski, P.G. Thermal Acclimation and Photoacclimation of Photosynthesis in the Brown Alga Laminaria saccharina. Plant Cell Environ. 1996, 19, 1005–1016. [Google Scholar] [CrossRef]
- Davison, I.; Davison, J.O. The Effect of Growth Temperature on Enzyme Activities in the Brown Alga Laminaria saccharina. Br. Phycol. J. 1987, 22, 77–87. [Google Scholar] [CrossRef]
- Ma, J.; Xie, Y.; Ge, W.; Lu, Z.; Bao, X.; Ding, H.; Chen, C.; Wu, Y.; Chen, G.; Xu, J. Effect of Heavy Metal Copper on the Physiological Characteristics of Ulva lactuca at Different Temperatures. Sci. Rep. 2025, 15, 9795. [Google Scholar] [CrossRef]
- Celis-Plá, P.S.M.; Korbee, N.; Gómez-Garreta, A.; Figueroa, F.L. Seasonal Photoacclimation Patterns in the Intertidal Macroalga Cystoseira tamariscifolia (Ochrophyta). Sci. Mar. 2014, 78, 377–388. [Google Scholar] [CrossRef]
- Al-Janabi, B.; Kruse, I.; Graiff, A.; Karsten, U.; Wahl, M. Genotypic Variation Influences Tolerance to Warming and Acidification of Early Life-Stage Fucus vesiculosus L. (Phaeophyceae) in a Seasonally Fluctuating Environment. Mar. Biol. 2016, 163, 14. [Google Scholar] [CrossRef]
- Latowski, D.; Kuczyńska, P.; Strzałka, K. Xanthophyll Cycle—A Mechanism Protecting Plants against Oxidative Stress. Redox Rep. 2011, 16, 78–90. [Google Scholar] [CrossRef] [PubMed]
- Connan, S.; Stengel, D.B. Impacts of Ambient Salinity and Copper on Brown Algae: 2. Interactive Effects on Phenolic Pool and Assessment of Metal Binding Capacity of Phlorotannin. Aquat. Toxicol. 2011, 104, 1–13. [Google Scholar] [CrossRef]
- Hall, A.; Fielding, A.H.; Butler, M. Mechanisms of Copper Tolerance in the Marine Fouling Alga Ectocarpus siliculosus—Evidence for an Exclusion Mechanism. Mar. Biol. 1979, 54, 195–199. [Google Scholar] [CrossRef]
- Ritter, A.; Ubertini, M.; Romac, S.; Gaillard, F.; Delage, L.; Mann, A.; Cock, J.M.; Tonon, T.; Correa, J.A.; Potin, P. Copper Stress Proteomics Highlights Local Adaptation of Two Strains of the Model Brown Alga Ectocarpus siliculosus. Proteomics 2010, 10, 2074–2088. [Google Scholar] [CrossRef] [PubMed]
- Hope, A.B.; Aschberger, P.A. Effects of Temperature on Membrane Permeability to Ions. Aust. J. Biol. Sci. 1970, 23, 1047–1060. [Google Scholar] [CrossRef]
- Puig, S.; Thiele, D.J. Molecular Mechanisms of Copper Uptake and Distribution. Curr. Opin. Chem. Biol. 2002, 6, 171–180. [Google Scholar] [CrossRef]
- Quinn, P.J. Effects of Temperature on Cell Membranes. Symp. Soc. Exp. Biol. 1988, 42, 237–258. [Google Scholar] [PubMed]
- Gledhill, M.; Nimmo, M.; Hill, S.J.; Brown, M.T.; Bryan, K. The Release of Copper-Complexing Ligands by the Brown Alga Fucus vesiculosus (Phaeophyceae) in Response to Increasing Total Copper Levels. J. Phycol 1999, 35, 501–509. [Google Scholar] [CrossRef]
- Sáez, C.A.; Ramesh, K.; Greco, M.; Bitonti, M.B.; Brown, M.T. Enzymatic Antioxidant Defences are Transcriptionally Regulated in Es524, a Copper-Tolerant Strain of Ectocarpus siliculosus (Ectocarpales, Phaeophyceae). Phycologia 2015, 54, 425–429. [Google Scholar] [CrossRef]
- Visviki, I.; Rachlin, J.W. Acute and Chronic Exposure of Dunaliella salina and Chlamydomonas bullosa to Copper and Cadmium: Effects on Ultrastructure. Arch. Environ. Contam. Toxicol. 1994, 26, 154–162. [Google Scholar] [CrossRef]
- Lima, R.B.; dos Santos, T.B.; Vieira, L.G.E.; Ferrarese, M.d.L.L.; Ferrarese-Filho, O.; Donatti, L.; Boeger, M.R.T.; Petkowicz, C.L.d.O. Heat Stress Causes Alterations in the Cell-Wall Polymers and Anatomy of Coffee Leaves (Coffea arabica L.). Carbohydr. Polym. 2013, 93, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Heumann, H.G. Effects of heavy metals on growth and ultrastructure of Chara vulgaris. Protoplasma 1987, 136, 37–48. [Google Scholar] [CrossRef]
- Sáez, C.A.; González, A.; Contreras, R.A.; Moody, A.J.; Moenne, A.; Brown, M.T. A Novel Field Transplantation Technique Reveals Intra-Specific Metal-Induced Oxidative Responses in Strains of Ectocarpus siliculosus with Different Pollution Histories. Environ. Pollut. 2015, 199, 130–138. [Google Scholar] [CrossRef]
- Provasoli, L.; Carlucci, A.F. Vitamins and Growth Regulators. In Algal Physiology and Biochemistry; Stewart, W., Ed.; Blackwell Publishing Ltd.: Los Angeles, CA, USA, 1974; pp. 741–778. [Google Scholar]
- Yong, Y.S.; Yong, W.T.L.; Anton, A. Analysis of Formulae for Determination of Seaweed Growth Rate. J. Appl. Phycol. 2013, 25, 1831–1834. [Google Scholar] [CrossRef]
- Figueroa, F.L.; Domínguez-González, B.; Korbee, N. Vulnerability and Acclimation to Increased UVB Radiation in Three Intertidal Macroalgae of Different Morpho-Functional Groups. Mar. Environ. Res. 2014, 97, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, U.; Endo, T.; Mi, H.; Asada, K. Quenching Analysis of Chlorophyll Fluorescence by the Saturation Pulse Method: Particular Aspects Relating to the Study of Eukaryotic Algae and Cyanobacteria. Plant Cell Physiol. 1995, 36, 873–882. [Google Scholar] [CrossRef]
- Eilers, P.H.C.; Peeters, J.C.H. A Model for the Relationship between Light Intensity and the Rate of Photosynthesis in Phytoplankton. Ecol. Modell. 1988, 42, 199–215. [Google Scholar] [CrossRef]
- Celis-Plá, P.S.M.; Martínez, B.; Quintano, E.; García-Sánchez, M.; Pedersen, A.; Navarro, N.; Copertino, M.; Mangaiyarkarasi, N.; Mariath, R.; Figueroa, F.; et al. Short-Term Ecophysiological and Biochemical Responses of Cystoseira tamariscifolia and Ellisolandia elongata to Environmental Changes. Aquat. Biol. 2014, 22, 227–243. [Google Scholar] [CrossRef]
- Ralph, P.J.; Gademann, R. Rapid Light Curves: A Powerful Tool to Assess Photosynthetic Activity. Aquat. Bot. 2005, 82, 222–237. [Google Scholar] [CrossRef]
- Celis-Plá, P.S.M.; Bouzon, Z.L.; Hall-Spencer, J.M.; Schmidt, E.C.; Korbee, N.; Figueroa, F.L. Seasonal Biochemical and Photophysiological Responses in the Intertidal Macroalga Cystoseira tamariscifolia (Ochrophyta). Mar. Environ. Res. 2016, 115, 89–97. [Google Scholar] [CrossRef]
- Seely, G.R.; Duncan, M.J.; Vidaver, W.E. Preparative and Analytical Extraction of Pigments from Brown Algae with Dimethyl Sulfoxide. Mar. Biol. 1972, 12, 184–188. [Google Scholar] [CrossRef]
- Hassler, C.S.; Slaveykova, V.I.; Wilkinson, K.J. Discriminating between Intra- and Extracellular Metals Using Chemical Extractions. Limnol. Oceanogr. Methods 2004, 2, 237–247. [Google Scholar] [CrossRef]
- Coquery, M.; Carvalho, F.P.; Horvat, M.; Azemard, S. World-wide intercomparison exercise for the determination of trace elements in Fucus sample IAEA-140; International Atomic Energy Agency, Marine Environment Laboratory, Report No. 64: Monaco, 1997. [Google Scholar]
- Kimberly, D.A.; Salice, C.J. Complex Interactions between Climate Change and Toxicants: Evidence That Temperature Variability Increases Sensitivity to Cadmium. Ecotoxicology 2014, 23, 809–817. [Google Scholar] [CrossRef] [PubMed]
- Öncel, I.; Keleş, Y.; Üstün, A.S. Interactive Effects of Temperature and Heavy Metal Stress on the Growth and Some Biochemical Compounds in Wheat Seedlings. Environ. Pollut. 2000, 107, 315–320. [Google Scholar] [CrossRef]
- Oukarroum, A.; Perreault, F.; Popovic, R. Interactive Effects of Temperature and Copper on Photosystem II Photochemistry in Chlorella vulgaris. J. Photochem. Photobiol. B 2012, 110, 9–14. [Google Scholar] [CrossRef]
- Wang, M.-J.; Wang, W.-X. Temperature-Dependent Sensitivity of a Marine Diatom to Cadmium Stress Explained by Subcellular Distribution and Thiol Synthesis. Environ. Sci. Technol. 2008, 42, 8603–8608. [Google Scholar] [CrossRef]
Cu Treatment | Cu Accumulation (%) | |||
---|---|---|---|---|
15 °C | 25 °C | |||
Intracellular | Extracellular | Intracellular | Extracellular | |
Control | 82.18 (6.9) | 17.82 (6.9) | 93.12 (14.6) | 6.88 (14.6) |
0.8 μM | 73.47 (10.0) | 26.53 (10.0) | 83.28 (14.2) | 16.72 (14.2) |
1.6 μM | 81.42 (9.9) | 18.58 (9.9) | 50.11 (6.2) | 49.89 (6.2) |
3.2 μM | 63.36 (1.7) | 36.64 (1.7) | 58.12 (5.2) | 41.88 (5.2) |
Treatment | Temperature (°C) | Cu Concentration (μM) | Endpoints (n = 3) |
---|---|---|---|
T1 | 15 | 0 | Day 6 of exposure: Fv/Fm; α; ETRmax; Ek; NPQmax, Pigments, Cu content Day 8 of exposure: RGR |
T2 | 15 | 0.8 | |
T3 | 15 | 1.6 | |
T4 | 15 | 3.2 | |
T5 | 25 | 0 | |
T6 | 25 | 0.8 | |
T7 | 25 | 1.6 | |
T8 | 25 | 3.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santillán-Sarmiento, A.; Celis-Plá, P.S.M.; Moody, A.J.; Saez, C.A.; Brown, M.T. Copper and Temperature Interactions Induce Differential Physiological and Metal Exclusion Responses in the Model Brown Macroalga Ectocarpus. Plants 2025, 14, 1834. https://doi.org/10.3390/plants14121834
Santillán-Sarmiento A, Celis-Plá PSM, Moody AJ, Saez CA, Brown MT. Copper and Temperature Interactions Induce Differential Physiological and Metal Exclusion Responses in the Model Brown Macroalga Ectocarpus. Plants. 2025; 14(12):1834. https://doi.org/10.3390/plants14121834
Chicago/Turabian StyleSantillán-Sarmiento, Alex, Paula S. M. Celis-Plá, A. John Moody, Claudio A. Saez, and Murray T. Brown. 2025. "Copper and Temperature Interactions Induce Differential Physiological and Metal Exclusion Responses in the Model Brown Macroalga Ectocarpus" Plants 14, no. 12: 1834. https://doi.org/10.3390/plants14121834
APA StyleSantillán-Sarmiento, A., Celis-Plá, P. S. M., Moody, A. J., Saez, C. A., & Brown, M. T. (2025). Copper and Temperature Interactions Induce Differential Physiological and Metal Exclusion Responses in the Model Brown Macroalga Ectocarpus. Plants, 14(12), 1834. https://doi.org/10.3390/plants14121834