Yield and Quality of Walnuts Subjected to Deficit Irrigation in Mountainous Water-Starved Environments
Abstract
:1. Introduction
2. Results and Discussion
2.1. Walnut Yield Response to Deficit Irrigation
2.2. Water Productivity
2.3. Walnut Quality Parameters
2.3.1. Morphological and Physical Features
2.3.2. Antioxidant Activity and Total Phenolic Content
2.3.3. Sugars and Mineral Contents
2.3.4. Walnut Fatty Acid Profile
2.4. Descriptive Sensory Analysis
3. Materials and Methods
3.1. Study Area
3.2. Irrigation Strategies and Experimental Design
3.3. Physical and Chemical Walnut Nut Analysis
3.3.1. Morphological, Moisture Content, Instrumental Color, Cutting Force, and Water Activity Measurements
3.3.2. Antioxidant Activity and Total Polyphenol Determination
3.3.3. Sugar and Fatty Acid Methyl Ester Determination
3.3.4. Mineral Content Determination
3.3.5. Descriptive Analysis
3.4. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AA | Antioxidant activity |
ETC | Crop evapotranspiration |
FAMEs | Fatty acid methyl esters |
MUFAs | Monounsaturated fatty acids |
PUFAs | Polyunsaturated fatty acids |
RDI | Regulated deficit irrigation |
SDI | Sustained deficit irrigation |
SFAs | Saturated fatty acids |
TPC | Total phenolic content |
WP | Water productivity |
YR | Yield reduction |
References
- Bernard, A.; Barreneche, T.; Lheureux, F.; Dirlewanger, E. Analysis of genetic diversity and structure in a worldwide walnut (Juglans regia L.) germplasm using SSR markers. PLoS ONE 2018, 13, e0208021. [Google Scholar] [CrossRef] [PubMed]
- Nicolescu, V.N.; Rédei, K.; Vor, T.; Bastien, J.C.; Brus, R.; Benčať, T.; Đodan, M.; Cvjetkovic, B.; Andrašev, S.; La Porta, N.; et al. A review of black walnut (Juglans nigra L.) ecology and management in Europe. Trees 2020, 34, 1087–1112. [Google Scholar] [CrossRef]
- Woźniak, M.; Waśkiewicz, A.; Ratajczak, I. The content of phenolic compounds and mineral elements in edible nuts. Molecules 2022, 27, 4326. [Google Scholar] [CrossRef] [PubMed]
- Vahdati, K. Traditions and folks for walnut growing around the Silk Road. Acta Hortic. 2014, 1032, 19–24. [Google Scholar] [CrossRef]
- Luo, X.; Zhou, H.; Cao, D.; Yan, F.; Chen, P.; Wang, J.; Woeste, K.; Chen, X.; Fei, Z.; An, H.; et al. Domestication and selection footprints in Persian walnuts (Juglans regia). PLoS Genet. 2022, 18, e1010513. [Google Scholar] [CrossRef]
- FAOSTAT. Food and Agriculture Organization of the United Nations. 2022. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 12 October 2023).
- ESYRCE Encuesta Sobre Superficies y Rendimientos de Cultivos. Ministerio de Agricultura y Pesca y Alimentación. Subsecretaría de Agricultura, Pesca y Alimentación. 2023. Available online: https://www.mapa.gob.es/es/estadistica/temas/estadisticas-agrarias/agricultura/esyrce/ (accessed on 10 June 2024).
- Fulton, A. Evaluating Water Requirements of Developing Walnut Orchards in the Sacramento Valley; Walnut Research Reports; California Walnut Board: Sacramento, CA, USA, 2013. [Google Scholar]
- Dökmen, F.; Ahi, Y.; Köksal, D.D. Irrigation of walnut trees in the vicinity of Hisareyn—Gölcük/Kocaeli, Turkey. Eur. Water 2017, 59, 339–342. [Google Scholar]
- Abdullah, A.H.; Dham, A.; Radhi, H.; Hussein, A.Z.; Abid, M.M.; Hameed, M.N.; Hussny, H.K. Irrigation water volume and water efficiency of walnut orchards in As-Suwayda, Syria. J. Nuts 2023, 14, 181–190. [Google Scholar] [CrossRef]
- Perulli, G.D.; Baldi, E.; Toselli, M.; Gentile, S.L.; Solimando, D.; Anconelli, S.; Perez Pastor, A.; Boini, A.; Grappadelli, L.C.; Manfrini, L. Optimization of irrigation on walnut through the IRRIFRAME water balance model. Irrig. Sci. 2025. [Google Scholar] [CrossRef]
- Tapia, M.I.; Sánchez, M.J.R.; García, P.J.; Ramírez, R.; Hernández, T.; González, G.D. Comparative study of the nutritional and bioactive compounds content of four walnut (Juglans regia L.) cultivars. J. Food Compos. Anal. 2013, 31, 232–237. [Google Scholar] [CrossRef]
- Chen, H.; Zhao, M.; Lin, L.; Wang, J.; Sun-Waterhouse, D.; Dong, Y.; Wang, J.; Sun-Waterhouse, D.; Dong, Y.; Zhuang, M.; et al. Identification of antioxidative peptides from defatted walnut meal hydrolysate with potential for improving learning and memory. Food Res. Int. 2015, 78, 216–223. [Google Scholar] [CrossRef]
- Antora, S.A.; Ho, K.V.; Lin, C.H.; Thomas, A.L.; Lovell, S.T.; Krishnaswamy, K. Quantification of vitamins, minerals, and amino acids in black walnut (Juglans nigra). Front. Nutr. 2022, 9, 936189. [Google Scholar] [CrossRef] [PubMed]
- Ali, G.; Zeb, A. Bioactive composition and medicinal properties of walnut kernels. J. Agric. Food Res. 2024, 18, 101442. [Google Scholar] [CrossRef]
- Hayes, D.; Angove, M.J.; Tucci, J.; Dennis, C. Walnuts (Juglans regia) chemical composition and research in human health. Crit. Rev. Food Sci. Nutr. 2016, 56, 1231–1241. [Google Scholar] [CrossRef]
- Nogales, B.J.; Baca, B.B.; Hernández, H.J.M.; Garcia, R.; Barroso, J.M.; Heredia, F.J.; Rato, A.E. Assessment of total fat and fatty acids in walnuts using near-infrared hyperspectral imaging. Front. Plant Sci. 2021, 12, 729880. [Google Scholar] [CrossRef]
- Das, U.N. Essential fatty acids—A review. Curr. Pharm. Biotechnol. 2006, 7, 467–482. [Google Scholar] [CrossRef]
- Amin, F.; Masoodi, F.A.; Baba, W.N.; Khan, A.A.; Ganie, B.A. Effect of different ripening stages on walnut kernel quality: Antioxidant activities, lipid characterization and antibacterial properties. J. Food Sci. Technol. 2017, 54, 3791–3801. [Google Scholar] [CrossRef]
- Shirin, E.; Rashid, J.; Farshad, N.; Zohreh, Z. Persian walnut composition and its importance in human health. Int. J. Enteric Pathog. 2018, 6, 3–9. [Google Scholar] [CrossRef]
- Vu, D.C.; Vo, P.H.; Coggeshall, M.V.; Lin, C.H. Identification and characterization of phenolic compounds in black walnut kernels. J. Agric. Food Chem. 2018, 66, 4503–4511. [Google Scholar] [CrossRef]
- Fan, N.; Fusco, J.L.; Rosenberg, D.W. Antioxidant and anti-inflammatory properties of walnut constituents: Focus on personalized cancer prevention and the microbiome. Antioxidants 2023, 12, 982. [Google Scholar] [CrossRef]
- Rabadán, A.; Álvarez, O.M.; Pardo, J.E. A comparison of the effect of genotype and weather conditions on the nutritional composition of most important commercial nuts. Sci. Hortic. 2019, 244, 218–224. [Google Scholar] [CrossRef]
- Mo, R.; Zheng, Y.; Ni, Z.; Shen, D.; Liu, Y. The phytochemical components of walnuts and their application for geographical origin based on chemical markers. Food Qual. Saf. 2022, 6, fyac052. [Google Scholar] [CrossRef]
- Wu, S.; Ni, Z.; Wang, R.; Zhao, B.; Han, Y.; Zheng, Y.; Liu, F.; Yonghong, G.; Tang, F.; Liu, Y. The effects of cultivar and climate zone on phytochemical components of walnut (Juglans regia L.). Food Energy Secur. 2020, 9, e196. [Google Scholar] [CrossRef]
- Li, Q.; Yin, R.; Zhang, Q.R.; Wang, X.P.; Hu, X.J.; Gao, Z.D.; Duan, Z.M. Chemometrics analysis on the content of fatty acid compositions in different walnut (Juglans regia L.) varieties. Eur. Food Res. Technol. 2017, 243, 2235–2242. [Google Scholar] [CrossRef]
- Trandafir, I.; Cosmulescu, S.; Botu, M.; Nour, V. Antioxidant activity, and phenolic and mineral contents of the walnut kernel (Juglans regia L.) as a function of the pellicle color. Fruits 2016, 71, 177–184. [Google Scholar] [CrossRef]
- Rabadán, A.; Pardo, J.E.; Pardo, G.A.; Álvarez, O.M. Effect of genotype and crop year on the nutritional value of walnut virgin oil and defatted flour. Sci. Total Environ. 2018, 634, 1092–1099. [Google Scholar] [CrossRef]
- Fuentealba, C.; Hernández, I.; Saa, S.; Toledo, L.; Burdiles, P.; Chirinos, R.; Campos, C.; Brown, P.; Pedreschi, R. Colour and in vitro quality attributes of walnuts from different growing conditions correlate with key precursors of primary and secondary metabolism. Food Chem. 2017, 232, 664–672. [Google Scholar] [CrossRef]
- Lynch, C.; Koppel, K.; Reid, W. Sensory profiles and seasonal variation of black walnut cultivars. J. Food Sci. 2016, 81, S719–S727. [Google Scholar] [CrossRef]
- Kodad, O.; Estopañan, G.; Juan, T.; Company, R.S.I.; Sindic, M. Genotype and year variability of the chemical composition of walnut oil of Moroccan seedlings from the high Atlas Mountains. Grasas Aceites 2016, 67, 8. [Google Scholar] [CrossRef]
- Lindner, M.; Maroschek, M.; Netherer, S.; Kremer, A.; Barbati, A.; Garcia, G.J.; Seidl, R.; Delzon, S.; Corona, P.; Kolströma, M.; et al. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For. Ecol. Manag. 2010, 259, 698–709. [Google Scholar] [CrossRef]
- Fernández, E.; Mojahid, H.; Fadón, E.; Rodrigo, J.; Ruiz, D.; Egea, J.A.; Ben Mimoun, M.; Kodad, O.; El Yaacoubi, A.; Ghrab, M.; et al. Climate change impacts on winter chill in Mediterranean temperate fruit orchards. Reg. Environ. Change 2023, 23, 7. [Google Scholar] [CrossRef]
- Funes, I.; Savé, R.; de Herralde, F.; Biel, C.; Pla, E.; Pascual, D.; Zabalza, J.; Cantos, G.; Borràs, G.; Vayreda, J.; et al. Modeling impacts of climate change on the water needs and growing cycle of crops in three Mediterranean basins. Agric. Water Manag. 2021, 249, 106797. [Google Scholar] [CrossRef]
- Rocha, J.; Carvalho, S.C.; Diogo, P.; Beça, P.; Keizer, J.J.; Nunes, J.P. Impacts of climate change on reservoir water availability, quality and irrigation needs in a water scarce Mediterranean region (southern Portugal). Sci. Total Environ. 2020, 736, 139477. [Google Scholar] [CrossRef] [PubMed]
- Gorguner, M.; Kavvas, M.L. Modeling impacts of future climate change on reservoir storages and irrigation water demands in a Mediterranean basin. Sci. Total Environ. 2020, 748, 141246. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Liu, W.; Tang, Q.; Liu, B.; Wada, Y.; Yang, H. Global agricultural water scarcity assessment incorporating blue and green water availability under future climate change. Earths Future 2022, 10, e2021EF002567. [Google Scholar] [CrossRef]
- Martínez, V.J.; Olcina, J.; Delacámara, G.; Guirado, G.; Maestre, F.T. Complex policy mixes are needed to cope with agricultural water demands under climate change. Water Resour. Manag. 2023, 37, 2805–2834. [Google Scholar] [CrossRef]
- García-Tejero, I.F.; Durán, Z.V.H. Water Scarcity and Sustainable Agriculture in Semiarid Environment. Tools, Strategies, and Challenges for Woody Crops; Academic Press Elsevier: London, UK, 2018. [Google Scholar]
- García-Tejero, I.F.; Durán, Z.V.H. Optimizing Plant Water Use Efficiency for Sustainable Environment; Multidisciplinary Digital Publishing Institute (MPDI): Basel, Switzerland, 2022; 366p, ISBN 978-3-0365-5136-4. [Google Scholar] [CrossRef]
- García-Tejero, I.F.; Durán, Z.V.H. Future of irrigation in agriculture in southern Europe. Agriculture 2022, 12, 820. [Google Scholar] [CrossRef]
- Gauthier, M.M.; Jacobs, D.F. Walnut (Juglans spp.) ecophysiology in response to environmental stresses and potential acclimation to climate change. Ann. For. Sci. 2011, 68, 1277–1290. [Google Scholar] [CrossRef]
- Sadat, H.M.; Vahdati, K.; Boroomand, N.; Mehdi, A.M.; Asadi, Y.S. How walnut roots respond to drought stress: A morphological and anatomical study. South-West. J. Hortic. Biol. Environ. 2019, 10, 51–64. [Google Scholar]
- Wang, B.; Zhang, J.; Pei, D.; Yu, L. Combined effects of water stress and salinity on growth, physiological, and biochemical traits in two walnut genotypes. Physiol. Plant. 2021, 172, 176–187. [Google Scholar] [CrossRef]
- Scartazza, A.; Proietti, S.; Moscatello, S.; Augusti, A.; Monteverdi, M.C.; Brugnoli, E.; Battistelli, A. Effect of water shortage on photosynthesis, growth and storage carbohydrate accumulation in walnut (Juglans regia L.). Acta Hortic. 2001, 544, 227–232. [Google Scholar] [CrossRef]
- Fulton, A.; Buchner, R. The Effect of Water Stress on Walnut Tree Growth, Productivity and Economics; UCEC University of California: Berkeley, CA, USA, 2006; 15p. [Google Scholar]
- Lucier, A.A.; Hinckley, T.M. Phenology, growth and water relations of irrigated and non-irrigated black walnut. For. Ecol. Manag. 1982, 4, 127–142. [Google Scholar] [CrossRef]
- Tyree, M.T.; Cochard, H.; Cruiziat, P.; Sinclair, B.; Améglio, T. Drought-induced leaf shedding in walnut: Evidence for vulnerability segmentation. Plant Cell Environ. 1993, 16, 879–882. [Google Scholar] [CrossRef]
- Cochard, H.; Coll, L.; Le Roux, X.; Améglio, T. Unraveling the effects of plant hydraulics on stomatal closure during water stress in walnut. Plant Physiol. 2002, 128, 282–290. [Google Scholar] [CrossRef]
- Fulton, A.; Buchner, R. Drought Tip: Drought Strategies for California Walnut Production; ANR Publication; Universiy of California: Berkeley, CA, USA, 2015; 6p. [Google Scholar] [CrossRef]
- Llanes, A.; Andrade, A.; Alemano, S.; Luna, V. Metabolomic approach to understand plant adaptations to water and salt stress. In Plant Metabolites and Regulation Under Environmental Stress; Ahmad, P., Ahanger, M.A., Singh, V.P., Tripathi, D.K., Alam, P., Alyemeni, M.N., Eds.; Academic Press Elsevier: Amsterdam, The Netherlands, 2018; Chapter 6; pp. 133–144. [Google Scholar] [CrossRef]
- Isah, T. Stress and defence responses in plant secondary metabolites production. Biol. Res. 2019, 52, 39. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, D.O.; Wightman, E.L. Herbal extracts and phytochemicals: Plant secondary metabolites and the enhancement of human brain function. Adv. Nutr. 2011, 2, 32–50. [Google Scholar] [CrossRef] [PubMed]
- García-Tejero, I.F.; Lipan, L.; Gutiérrez, G.S.; Durán, Z.V.H.; Jančo, I.; Hernández, F.; Cárceles, B.; Carbonell, B.A.A. Deficit irrigation and its implications for HydroSOStainable almond production. Agronomy 2020, 10, 1632. [Google Scholar] [CrossRef]
- Bignami, C.; Cristofori, V.; Ghini, P.; Rugini, E. Effects of irrigation on growth and yield components of hazelnut (Corylus avellana L.) in central Italy. Acta Hortic. 2009, 845, 309–314. [Google Scholar] [CrossRef]
- Olubode, O.O.; Adekunle, J.T.T.; Hammed, L.A.; Olaiya, A.O. Evaluation of production practices and yield enhancing techniques on productivity of cashew (Anacardium occidentale L.). Fruits 2018, 73, 75–100. [Google Scholar] [CrossRef]
- Bringhenti, T.; Moriondo, M.; Abdulai, I.; Joubert, E.; Roetter, R.P.; Taylor, P.J.; Hoffmann, M.P. Adopting and evaluating a simple model for macadamia tree transpiration in periodically water-scarce subtropical regions. Sci. Hortic. 2025, 341, 113970. [Google Scholar] [CrossRef]
- Wells, L. Enhancing irrigation efficiency for pecans in humid climates. Acta Hortic. 2016, 1112, 241–246. [Google Scholar] [CrossRef]
- Noguera-Artiaga, L.; Sánchez, B.P.; Hernández, F.; Burgos, H.A.; Pérez, L.D.; Carbonell, B.A.A. Influence of regulated deficit irrigation and rootstock on the functional, nutritional and sensory quality of pistachio nuts. Sci. Hortic. 2020, 261, 108994. [Google Scholar] [CrossRef]
- Loewe, M.V.; Delard, C.; Del Río, R.; Balzarini, M. Recommendations for increasing yield of the edible Pinus pinea L. pine nuts. PLoS ONE 2024, 19, e0300008. [Google Scholar] [CrossRef]
- Aletà, N.; Rovira, M.; Ninot, A.; Vilanova, A. ‘Chandler’ walnut trees trained in three kinds of central leader: Structured, semi-structured and free—Results at the age of six. Acta Hortic. 2005, 705, 479–485. [Google Scholar] [CrossRef]
- Kornov, G.; Germanova, D.; Hristova, N. Effect of regulated water deficit irrigation on the growth of walnut trees. J. Mt. Agric. Balk. 2024, 27, 304–315. [Google Scholar]
- Goldhamer, D.A.; Beede, R.; Sibbett, S.; DeJong, T.M.; Ramos, D.; Phene, R.C.; Doyle, J. Third Year Effects of Deficit Irrigation on Walnut Tree Performance. 1988. Available online: https://ucdavis.app.box.com/s/ou95ap227h21esu10dde0i8nh8zjsccr (accessed on 22 April 2025).
- Calvo, F.E.; Trentacoste, E.R.; Silvente, S.T. Vegetative growth, yield, and crop water productivity response to different irrigation regimes in high density walnut orchards (Juglans regia L.) in a semi-arid environment in Argentina. Agric. Water Manag. 2022, 274, 107969. [Google Scholar] [CrossRef]
- Goldhamer, D.A.; Beede, R.; Sibbett, S.; Ramos, D.; Katayama, D. Second-Year Recovery of Hedgerow Walnuts from Sustained Deficit Irrigation; Report to the California Walnut Board; California Walnut Board: Sacramento, CA, USA, 1990; pp. 73–81. [Google Scholar]
- Buchner, R.P.; Fulton, A.E.; Gilles, C.K.; Lampinen, B.D.; Shackel, K.A.; Metcalf, S.G.; Little, C.C.; Prichard, T.L.; Schwankl, L.J. Effects of regulated deficit irrigation on walnut grafted on ‘Northern California Black’ or ‘Paradox’ rootstock. Acta Hortic. 2008, 792, 141–146. [Google Scholar] [CrossRef]
- Guiqing, X.; Jinyao, L.; Haifang, H.; Tuqiang, C. Effect of deficit irrigation on physiological, morphological and fruit quality traits of six walnut tree cultivars in the inland area of Central Asia. Sci. Hortic. 2024, 329, 112951. [Google Scholar] [CrossRef]
- Cohen, M.; Valancogne, C.; Dayau, S.; Ameglio, T.; Cruiziat, P.; Archer, P. Yield and physiological responses of walnut trees in semiarid conditions: Applications to irrigation scheduling. Acta Hortic. 1997, 449, 273–280. [Google Scholar] [CrossRef]
- Sadeghi-Majd, R.; Vahdati, K.; Roozban, M.R.; Arab, M.; Sütyemez, M. Optimizing environmental conditions and irrigation regimes can improve grafting success in Persian walnut. Acta Sci. Pol. Hortorum Cultus 2022, 21, 43–51. [Google Scholar] [CrossRef]
- Xue, J.; Fulton, A.; Kisekka, I. Evaluating the role of remote sensing-based energy balance models in improving site-specific irrigation management for young walnut orchards. Agric. Water Manag. 2021, 256, 107132. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Zhao, J.H.; Yang, W.X.; Jiang, Y.W.; Liao, K.; Halidanmu, T.; Renaguli, K. Effects of regulated deficit irrigation on soil temperature and yield of walnut trees under drip irrigation. Xinjiang Agric. Sci. 2022, 59, 95–104. [Google Scholar] [CrossRef]
- Apáti, F.; Kovács, E.; Kocsis, M. Effect of postharvest on the economic viability of walnut production. Int. J. Hortic. Sci. 2018, 24, 28–38. [Google Scholar] [CrossRef]
- Lampinen, B.; Buchner, R.; Fulton, A.; Grant, J.; Mills, N.; Prichard, T.; Schwankl, L.; Shackel, K.; Gilles, C.; Little, C. Irrigation Management in Walnut Using Evapotranspiration, Soil and Plant-Based Data; Report to the California Walnut Board; California Walnut Board: Sacramento, CA, USA, 2004; pp. 113–136. [Google Scholar]
- Charrier, G.; Bonhomme, M.; Lacointe, A.; Améglio, T. Are budburst dates, dormancy and cold acclimation in walnut trees (Juglans regia L.) under mainly genotypic or environmental control? Int. J. Biometeorol. 2011, 55, 763–774. [Google Scholar] [CrossRef]
- Ramos, D.; Brown, L.; Uriu, K.; Marangoni, B. Water stress affects size and quality of walnuts. Calif. Agric. 1978, 32, 5–8. [Google Scholar]
- Pakrah, S.; Rahemi, M.; Nabipour, A.; Zahedzadeh, F.; Kakavand, F.; Vahdati, K. Sensory and nutritional attributes of Persian walnut kernel influenced by maturity stage, drying method, and cultivar. J. Food Process. Preserv. 2021, 45, 15513. [Google Scholar] [CrossRef]
- Calvo, F.; Trentacoste, E.; Silvente, S. Influence of irrigation regime and seasonal temperatures on nut quality and the oil fatty acid profile of walnuts (Juglans regia L.). J. Saudi Soc. Agric. Sci. 2023, 22, 576–583. [Google Scholar] [CrossRef]
- Stephenson, R.A.; Gallagher, E.C.; Doogan, V.J. Macadamia responses to mild water stress at different phenological stages. Aust. J. Exp. Agric. 2003, 54, 67–75. [Google Scholar] [CrossRef]
- Goldhamer, D.A.; Viveros, M.; Salinas, M. Regulated deficit irrigation in almonds: Effects of variations in applied water and stress timing on yield and yield components. Irrig. Sci. 2006, 24, 101–114. [Google Scholar] [CrossRef]
- Gama, T.; Wallace, H.M.; Trueman, S.J.; Hosseini-Bai, S. Quality and shelf life of tree nuts: A review. Sci. Hortic. 2018, 242, 116–126. [Google Scholar] [CrossRef]
- Maté, J.I.; Saltveit, M.E.; Krochta, J.M. Peanut and walnut rancidity: Effects of oxygen concentration and relative humidity. J. Food Sci. 1996, 61, 465–469. [Google Scholar] [CrossRef]
- Boaghi, E.; Resitca, V.; Ciumac, J. Water activity influence on walnuts (Juglans regia L.) microbiological and oxidative stability. Int. J. Food Sci. Nutr. Diet. 2019, 8, 401–404. [Google Scholar]
- Bolling, B.W.; Chen, C.Y.; McKay, D.L.; Blumberg, J.B. Tree nut phytochemicals: Composition, antioxidant capacity, bioactivity, impact factors. A systematic review of almonds, Brazils, cashews, hazelnuts, macadamias, pecans, pine nuts, pistachios and walnuts. Nutr. Res. Rev. 2011, 24, 244–275. [Google Scholar] [CrossRef] [PubMed]
- Okatan, V.; Gündeşli, M.A.; Kafkas, N.E.; Attar, S.H.; Kahramanoğlu, I.; Usanmaz, S.; Aşkın, M.A. Phenolic compounds, antioxidant activity, fatty acids and volatile profiles of 18 different walnut (Juglans regia L.) cultivars and genotypes. Erwerbs-Obstbau 2022, 64, 247–260. [Google Scholar] [CrossRef]
- Koyuncu, M.A.; Ekinci, K.; Gun, A. The effects of altitude on fruit quality and compression load for cracking of walnuts (Juglans regia L.). J. Food Qual. 2004, 27, 407–417. [Google Scholar] [CrossRef]
- Kabiri, G.; Bouda, S.; Elhansali, M.; Haddioui, A. Morphological and pomological variability analysis of walnut (Juglans regia L.) genetic resources from the middle and high atlas of Morocco. Atlas J. Biol. 2018, 575–582. [Google Scholar] [CrossRef]
- Neveu, V.; Perez, J.; Vos, J.F.; Crespy, V.; du Chaffaut, L.; Mennen, L.; Knox, C.; Eisner, R.; Cruz, J.; Wishart, D.; et al. Phenol-Explorer: An online comprehensive database on polyphenol contents in foods. Database 2010, 2010, bap024. [Google Scholar] [CrossRef]
- Torabian, S.; Haddad, E.; Rajaram, S.; Banta, J.; Sabaté, J. Acute effect of nut consumption on plasma total polyphenols, antioxidant capacity and lipid peroxidation. J. Hum. Nutr. Diet. 2009, 22, 64–71. [Google Scholar] [CrossRef]
- Ojeda-Amador, R.M.; Salvador, M.D.; Gómez, A.S.; Fregapane, G. Characterization of virgin walnut oils and their residual cakes produced from different varieties. Food Res. Int. 2018, 108, 396–404. [Google Scholar] [CrossRef]
- Wu, X.; Beecher, G.R.; Holden, J.M.; Haytowitz, D.B.; Gebhardt, S.E.; Prior, R.L. Lipophilic and hydrophilic antioxidant capacities of common foods in the United States. J. Agric. Food Chem. 2004, 52, 4026–4037. [Google Scholar] [CrossRef]
- Christopoulos, M.V.; Tsantili, E. Effects of temperature and packaging atmosphere on total antioxidants and colour of walnut (Juglans regia L.) kernels during storage. Sci. Hortic. 2011, 131, 49–57. [Google Scholar] [CrossRef]
- Calvo, F.E.; Silvente, S.T.; Trentacoste, E.R. Leaf biochemical and kernel metabolite profiles as potential biomarkers of water deficit in walnut (Juglans regia L.) cv. Chandler. Sustainability 2023, 15, 13472. [Google Scholar] [CrossRef]
- Chen, T.; Xu, G.; Li, J.; Hu, H. Hydraulic trait variation with tree height affects fruit quality of walnut trees under drought stress. Agronomy 2022, 12, 1647. [Google Scholar] [CrossRef]
- Nanos, G.D.; Kazantzis, I.; Kefalas, P.; Petrakis, C.; Stavroulakis, G.G. Irrigation and harvest time affect almond kernel quality and composition. Sci. Hortic. 2002, 96, 249–256. [Google Scholar] [CrossRef]
- Kazankaya, A.; Fikret, B.M.; Yörük, I.H.; Balta, F.; Battal, P. Analysis of sugar composition in nut crops. Asian J. Chem. 2008, 20, 1519–1525. [Google Scholar]
- Mitrovic, M.; Stanisavljevic, M.; Gavrilovic, D.J. Biochemical composition of fruits of some important walnut cultivars and selections. Acta Hortic. 1997, 442, 205–208. [Google Scholar] [CrossRef]
- Council Directive 90/496/EEC (2008) Council Directive 90/496/EEC of 24 September 1990 on Nutrition Labelling for Foodstuffs (90/496/EEC). Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CONSLEG:1990L0496:20081211:EN:PDF (accessed on 22 April 2025).
- Cindrić, J.I.; Zeiner, M.; Hlebec, D. Mineral composition of elements in walnuts and walnut oils. Int. J. Environ. Res. Public Health 2018, 15, 2674. [Google Scholar] [CrossRef]
- Carbonell-Barrachina, Á.A.; Memmi, H.; Noguera, A.L.; Gijón, L.M.D.; Ciapa, R.; Pérez, L.D. Quality attributes of pistachio nuts as affected by rootstock and deficit irrigation. J. Sci. Food Agric. 2015, 95, 2866–2873. [Google Scholar] [CrossRef]
- Lipan, L.; Cano-Lamadrid, M.; Corell, M.; Sendra, E.; Hernández, F.; Stan, L.; Vodnar, D.C.; Vázquez, A.L.; Carbonell, B.A.A. Sensory profile and acceptability of hydroSOStainable almonds. Foods 2019, 8, 64. [Google Scholar] [CrossRef]
- Rébufa, C.; Artaud, J.; LeDréau, Y. Walnut (Juglans regia L.) oil chemical composition depending on variety, locality, extraction process and storage conditions: A comprehensive review. J. Food Compos. Anal. 2022, 110, 104534. [Google Scholar] [CrossRef]
- Martínez, M.L.; Maestri, D.M. Oil chemical variation in walnut (Juglans regia L.) genotypes grown in Argentina. Eur. J. Lipid Sci. Technol. 2008, 110, 1183–1189. [Google Scholar] [CrossRef]
- Martínez, M.L.; Mattea, M.A.; Maestri, D.M. Varietal and crop year effects on lipid composition of walnut (Juglans regia) genotypes. J. Am. Oil Chem. Soc. 2006, 83, 791–796. [Google Scholar] [CrossRef]
- Akhiani, S.; Afshari, H.; Parvaneh, T. Evaluation of some phenological and pomological characteristics of selected walnut genotypes from Shahroud-Iran. J. Nuts 2017, 8, 21–30. [Google Scholar] [CrossRef]
- Esteki, M.; Farajmand, B.; Amanifar, S.; Barkhordari, R.; Ahadiyan, Z.; Dashtaki, E.; Mohammadlou, M.; Heyden, I.V. Classification and authentication of Iranian walnuts according to their geographical origin based on gas chromatographic fatty acid fingerprint analysis using pattern recognition methods. Chemom. Intell. Lab. Syst. 2017, 171, 251–258. [Google Scholar] [CrossRef]
- Gao, P.; Jin, J.; Liu, R.; Jin, Q.; Wang, X. Chemical compositions of walnut (Juglans regia L.) oils from different cultivated regions in China. J. Am. Oil Chem. Soc. 2018, 95, 825–834. [Google Scholar] [CrossRef]
- Cittadini, M.C.; Martín, D.; Gallo, S.; Fuente, G.; Bodoira, R.; Martínez, M.; Maestri, D. Evaluation of hazelnut and walnut oil chemical traits from conventional cultivars and native genetic resources in a non-traditional crop environment from Argentina. Eur. Food Res. Technol. 2020, 246, 833–843. [Google Scholar] [CrossRef]
- Pereira, J.A.; Oliveira, I.; Sousa, A.; Ferreira, I.C.; Bento, A.; Estevinho, L. Bioactive properties and chemical composition of six walnut (Juglans regia L.) cultivars. Food Chem. Toxicol. 2008, 46, 2103–2111. [Google Scholar] [CrossRef]
- Njike, V.Y.; Ayettey, R.; Petraro, P.; Treu, J.A.; Katz, D.L. Walnut ingestion in adults at risk for diabetes: Effects on body composition, diet quality, and cardiac risk measures. BMJ Open Diabetes Res. Care 2015, 3, e000115. [Google Scholar] [CrossRef]
- Simopoulos, A. An increase in the omega-6/omega-3 fatty acid ratio increases the risk for obesity. Nutrients 2016, 8, 128. [Google Scholar] [CrossRef]
- Zec, M.; Glibetic, M. Health benefits of nut consumption. In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar] [CrossRef]
- Özcan, M.M.; Endes, Z.; Er, F. Physical and chemical properties of some seed and kernels oils. Asian J. Chem. 2010, 22, 6531–65360. [Google Scholar] [CrossRef]
- Verardo, V.; Bendini, A.; Cerretani, L.; Malaguti, D.; Cozzolino, E.; Caboni, M.F. Capillary gas chromatography analysis of lipid composition and evaluation of phenolic compounds by micellar electrokinetic chromatography in Italian walnut (Juglans regia L.): Irrigation and fertilization influence. J. Food Qual. 2009, 32, 262–281. [Google Scholar] [CrossRef]
- Amaral, J.S.; Casal, S.; Pereira, J.A.; Seabra, R.M.; Oliveira, B.P.P. Determination of sterol and fatty acid compositions, oxidative stability, and nutritional value of six walnut (Juglans regia L.) cultivars grown in Portugal. J. Agric. Food Chem. 2003, 51, 7698–7702. [Google Scholar] [CrossRef] [PubMed]
- Yerlikaya, C.; Yucel, S.; Erturk, U.; Korukluoğlu, M. Proximate composition, minerals and fatty acid composition of Juglans regia L. genotypes and cultivars grown in Turkey. Braz. Arch. Biol. Technol. 2012, 55, 677–683. [Google Scholar] [CrossRef]
- Simsek, M. Chemical, mineral, and fatty acid compositions of various types of walnut (Juglans regia L.) in Turkey. Bulg. Chem. Commun. 2016, 48, 66–70. [Google Scholar]
- Gutiérrez, G.S.; Lipan, L.; Durán, Z.V.H.; Sendra, E.; Hernández, F.; Hernández, Z.M.S.; Carbonell, B.A.A.; García-Tejero, I.F. Deficit irrigation as a suitable strategy to enhance the nutritional composition of HydroSOS almonds. Water 2020, 12, 3336. [Google Scholar] [CrossRef]
- Chen, J.; Liu, H. Nutritional indices for assessing fatty acids: A mini-review. Int. J. Mol. Sci. 2020, 21, 5695. [Google Scholar] [CrossRef]
- EFSA. Labelling reference intake values for n-3 and n-6 860 polyunsaturated fatty acids. EFSA J. 2009, 1176, 1–11. [Google Scholar] [CrossRef]
- Ingels, C.A.; McGranahan, G.H.; Noble, A.C. Sensory evaluation of selected Persian walnut cultivars. HortScience 1990, 25, 1446–1447. [Google Scholar] [CrossRef]
- Shepherd, R.; Colwill, J.S.; Daget, N.; Thomson, D.M.H.; McEwan, J.A.; Lyon, D.H. Sensory evaluation. In Encyclopaedia of Food Science, Food Technology and Nutrition; Macrae, R., Robinson, R.K., Sadler, M.J., Eds.; Academic Press: London, UK, 1993; pp. 4023–4075. [Google Scholar]
- Sinesio, F.; Moneta, E. Sensory evaluation of walnut fruit. Food Qual. Prefer. 1997, 8, 35–43. [Google Scholar] [CrossRef]
- Peleg, H.; Gacon, K.; Schlich, P.; Noble, A.C. Bitterness and astringency of flavan-3-ol monomers, dimers and trimers. J. Sci. Food Agric. 1999, 79, 1123–1128. [Google Scholar] [CrossRef]
- FAO. World Reference Base for Soil Resources; World Soil Resources Report 84; FAO: Rome, Italy, 1998. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration (Guidelines for Computing Crop Water Requirements); FAO—Irrigation and Drainage, Paper 56; FAO: Rome, Italy, 1998. [Google Scholar]
- AOAC. Official Methods of Analysis, 15th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1995. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Brand, W.W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Björk, L.; Trajkovski, V.; Uggla, M. Evaluation of antioxidant activities of rosehip ethanol extracts in different test systems. J. Sci. Food Agric. 2000, 80, 2021–2027. [Google Scholar] [CrossRef]
- Lipan, L.; Martín, P.M.J.; Sánchez, R.L.; Cano, L.M.; Sendra, E.; Hernández, F.; Burló, F.; Vázquez, A.L.; Andreu, L.; Carbonell-Barrachina, A.A. Almond fruit quality can be improved by means of deficit irrigation strategies. Agric. Water Manag. 2019, 217, 236–242. [Google Scholar] [CrossRef]
- Cano-Lamadrid, M.; Girona, D.; García, G.E.; Dominguis, R.V.; Domingo, C.; Sendra, E.; López, L.D.; Carbonell, B.A.A. Distribution of essential and non-essential elements in rice located in a Protected Natural Reserve “Marjal de Pego-Oliva”. J. Food Compos. Anal. 2020, 94, 103654. [Google Scholar] [CrossRef]
Weight (g) | Size (mm) | Instrumental Color | Cutting Force | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Whole | Kernel | Shell | Length | Width | Thickness | L* | a* | b* | C | Hue | Hardness (N) | NF | |
ANOVA Test † | |||||||||||||
Irrigation | *** | *** | *** | *** | *** | *** | ** | *** | NS | NS | *** | *** | *** |
Cultivar | *** | NS | *** | NS | *** | NS | *** | *** | *** | *** | *** | *** | *** |
Irrigation × Cultivar | *** | *** | *** | *** | *** | *** | ** | *** | *** | *** | *** | *** | *** |
Tukey’s Multiple Range Test ‡ | |||||||||||||
Irrigation | |||||||||||||
C100 | 10.20 a | 4.55 a | 5.64 a | 36.7 a | 32.6 a | 30.7 a | 53.8 b | 7.63 a | 28.8 | 29.9 | 75.2 b | 28.4 b | 32.9 bc |
SDI75 | 9.08 bc | 4.06 b | 5.02 ab | 35.7 a | 31.0 b | 29.4 b | 55.5 a | 7.23 a | 28.9 | 29.9 | 76.0 a | 33.7 a | 29.2 c |
SDI50 | 9.35 ab | 4.11 ab | 5.24 ab | 35.5 a | 31.3 b | 29.4 b | 55.2 a | 7.66 a | 29.7 | 30.7 | 75.5 b | 28.7 b | 41.9 a |
SDI33 | 8.22 c | 3.53 c | 4.68 b | 32.9 b | 29.7 c | 28.2 c | 56.5 a | 6.84 b | 29.2 | 30.1 | 76.9 a | 29.3 b | 38.4 ab |
Cultivar | |||||||||||||
Cisco | 9.59 a | 4.08 | 5.51 a | 35.2 | 31.5 a | 29.3 | 56.3 a | 8.16 a | 30.6 a | 31.7 a | 75.0 b | 29.0 b | 36.9 a |
Chandler | 8.83 b | 4.05 | 4.78 b | 35.2 | 30.9 b | 29.6 | 54.4 b | 6.58 b | 27.9 b | 28.7 b | 76.7 a | 31.1 a | 34.3 b |
Irrigation × Cultivar | |||||||||||||
C100 × Cisco | 10.5 a | 4.61 a | 5.86 a | 36.5 a | 33.1 a | 30.6 a | 54.8 b | 8.90 a | 31.7 a | 33.0 a | 74.1 b | 26.4 c | 35.0 b |
SDI75 × Cisco | 9.58 b | 4.06 a | 5.52 a | 35.8 ab | 31.2 b | 29.3 ab | 57.9 a | 7.54 b | 30.1 a | 31.1 b | 75.9 a | 32.2 b | 29.2 c |
SDI50 × Cisco | 10.5 a | 4.51 a | 6.04 a | 36.7 a | 32.9 a | 30.4 a | 54.3 b | 8.97 a | 30.4 a | 31.7 b | 73.5 b | 26.6 c | 42.0 a |
SDI33 × Cisco | 7.75 d | 3.13 c | 4.62 b | 32.0 c | 28.7 c | 26.8 c | 57.8 a | 7.44 b | 30.4 a | 31.4 b | 76.3 a | 30.8 b | 41.4 a |
C100 × Chandler | 9.91 b | 4.49 a | 5.42 a | 36.9 a | 32.1 a | 30.7 a | 53.0 c | 6.66 c | 26.7 d | 27.5 d | 76.0 a | 30.5 b | 30.8 c |
SDI75 × Chandler | 8.57 c | 4.06 a | 4.51 b | 35.6 ab | 30.9 b | 29.5 ab | 53.4 c | 6.94 c | 27.8 c | 28.7 d | 76.0 a | 35.2 a | 29.1 c |
SDI50 × Chandler | 8.15 c | 3.72 b | 4.43 b | 34.3 b | 29.7 b | 28.5 b | 56.0 b | 6.47 c | 29.1 b | 29.8 c | 77.4 a | 30.8 b | 41.8 a |
SDI33 × Chandler | 8.69 c | 3.93 ab | 4.75 b | 33.9 bc | 30.8 b | 29.5 ab | 55.3 b | 6.24 c | 28.0 c | 28.8 d | 77.5 a | 27.9 c | 35.5 b |
Kernel Ratio | Dry Weight | Water Activity | |
---|---|---|---|
(%) | (aw) | ||
ANOVA Test † | |||
Irrigation | *** | *** | *** |
Cultivar | NS | NS | NS |
Irrigation × Cultivar | *** | *** | *** |
Tukey’s Multiple Range Test ‡ | |||
Irrigation | |||
C100 | 39.0 a | 6.59 a | 0.72 a |
SDI75 | 40.7 a | 3.26 c | 0.61 b |
SDI50 | 29.5 b | 5.49 ab | 0.67 a |
SDI33 | 38.0 a | 4.76 b | 0.60 b |
Cultivar | |||
Cisco | 36.1 | 5.23 | 0.66 |
Chandler | 37.5 | 4.82 | 0.64 |
Irrigation × Cultivar | |||
C100 × Cisco | 38.1 ab | 7.23 a | 0.78 a |
SDI75 × Cisco | 36.7 ab | 2.97 d | 0.61 bc |
SDI50 × Cisco | 34.0 bc | 5.17 abcd | 0.68 b |
SDI33 × Cisco | 35.5 abc | 5.56 abc | 0.58 c |
C100 × Chandler | 39.9 ab | 5.95 ab | 0.66 bc |
SDI75 × Chandler | 44.6 a | 3.55 cd | 0.60 bc |
SDI50 × Chandler | 25.0 c | 5.81 abc | 0.67 bc |
SDI33 × Chandler | 40.5 ab | 3.96 bcd | 0.61 bc |
ABTS•+ | DPPH• | FRAP | TPC | |
---|---|---|---|---|
(mmol Trolox kg−1) | (g GAE kg−1) | |||
ANOVA Test † | ||||
Irrigation | *** | *** | *** | *** |
Cultivar | *** | *** | *** | *** |
Irrigation × Cultivar | *** | *** | *** | *** |
Irrigation | Tukey’s Multiple Range Test ‡ | |||
C100 | 140 a | 227 a | 149 a | 35.6 b |
SDI75 | 122 b | 221 a | 141 b | 36.4 b |
SDI50 | 115 b | 226 a | 148 ab | 39.1 a |
SDI33 | 138 a | 195 b | 152 a | 36.4 b |
Cultivar | ||||
Cisco | 148 a | 237 a | 159 a | 40.2 a |
Chandler | 110 b | 197 b | 135 b | 33.6 b |
Irrigation × Cultivar | ||||
C100 × Cisco | 164 a | 254 a | 168 ab | 42.6 a |
SDI75 × Cisco | 136 b | 248 a | 136 cd | 37.2 b |
SDI50 × Cisco | 131 b | 250 a | 159 b | 42.2 a |
SDI33 × Cisco | 162 a | 196 b | 174 a | 38.7 b |
C100 × Chandler | 117 c | 200 b | 130 d | 28.7 d |
SDI75 × Chandler | 109 d | 194 b | 145 c | 35.6 c |
SDI50 × Chandler | 98.3 d | 201 b | 136 cd | 35.9 c |
SDI33 × Chandler | 115 c | 193 b | 129 d | 34.0 c |
Sucrose | Glucose | Σ Sugars | |
---|---|---|---|
(g kg−1dw) | |||
ANOVA Test † | |||
Irrigation | *** | ** | ** |
Cultivar | NS | ** | NS |
Irrigation × Cultivar | *** | ** | ** |
Tukey’s Multiple Range Test ‡ | |||
Irrigation | |||
C100 | 27.3 a | 14.8 b | 42.2 a |
SDI75 | 24.4 b | 16.2 a | 40.6 a |
SDI50 | 26.6 a | 13.8 b | 40.4 a |
SDI33 | 23.4 b | 14.7 b | 38.1 b |
Cultivar | |||
Cisco | 25.3 | 15.3 a | 40.5 |
Chandler | 25.6 | 14.5 b | 40.1 |
Irrigation × Cultivar | |||
C100 × Cisco | 27.9 a | 15.6 ab | 43.5 a |
SDI75 × Cisco | 23.6 cd | 16.0 ab | 39.6 ab |
SDI50 × Cisco | 27.7 a | 13.8 b | 41.5 a |
SDI33 × Cisco | 21.9 d | 15.6 ab | 37.5 c |
C100 × Chandler | 26.8 b | 14.0 ab | 40.8 a |
SDI75 × Chandler | 25.1 c | 16.4 a | 41.5 a |
SDI50 × Chandler | 25.5 c | 13.8 b | 39.3 b |
SDI33 × Chandler | 24.9 c | 13.8 b | 38.7 b |
B | Mg | P | K | Ca | Mn | Fe | Cu | Zn | |
---|---|---|---|---|---|---|---|---|---|
(mg kg−1dw) | |||||||||
ANOVA Test † | |||||||||
Irrigation | NS | NS | * | * | NS | *** | *** | *** | *** |
Cultivar | NS | NS | * | * | NS | *** | *** | *** | *** |
Irrigation × Cultivar | NS | NS | * | * | NS | *** | *** | *** | *** |
Tukey’s Multiple Range Test ‡ | |||||||||
Irrigation | |||||||||
C100 | 14.8 | 10,617 | 35.3 a | 12,940 c | 7.43 | 475 a | 5.33 b | 182 a | 14.8 b |
SDI75 | 12.5 | 11,555 | 30.1 b | 14,462 b | 7.23 | 356 b | 7.83 a | 116 b | 24.1 a |
SDI50 | 14.2 | 11,450 | 34.3 a | 14,024 b | 7.42 | 354 b | 8.66 a | 107 b | 25.5 a |
SDI33 | 13.5 | 11,795 | 30.3 b | 15,467 a | 6.21 | 303 b | 8.19 a | 99 b | 27.5 a |
Cultivar | |||||||||
Cisco | 14.4 | 10,963 | 34.8 a | 13,401 b | 7.40 | 326 b | 9.10 a | 109 b | 28.7 a |
Chandler | 13.1 | 11,746 | 30.2 ab | 15,045 a | 6.75 | 418 a | 5.89 b | 143 a | 17.2 b |
Irrigation × Cultivar | |||||||||
C100 × Cisco | 15.5 | 10,281 | 38.5 a | 12,062 c | 8.13 | 438 ab | 6.37 bc | 169 b | 17.5 c |
SDI75 × Cisco | 12.7 | 11,867 | 32.6 b | 13,728 b | 7.83 | 345 b | 9.92 a | 110 cd | 30.4 a |
SDI50 × Cisco | 15.1 | 10,897 | 37.2 a | 12,969 b | 7.57 | 323 bc | 10.3 a | 89.5 cd | 31.4 a |
SDI33 × Cisco | 14.3 | 10,806 | 30.7 b | 14,845 b | 6.06 | 198 c | 9.87 a | 67.5 d | 35.7 a |
C100 × Chandler | 14.0 | 10,952 | 32.0 b | 13,818 b | 6.73 | 511 a | 4.28 c | 195 a | 12.1 c |
SDI75 × Chandler | 12.2 | 11,243 | 27.6 c | 15,196 b | 6.62 | 366 b | 5.73 bc | 122 c | 17.9 c |
SDI50 × Chandler | 13.4 | 12,003 | 31.4 b | 15,079 b | 7.27 | 385 b | 7.06 b | 125 c | 19.6 bc |
SDI33 × Chandler | 12.7 | 12,784 | 29.9 b | 16,088 a | 6.37 | 408 b | 6.50 bc | 131 c | 19.3 bc |
Compound (FAMEs) | ANOVA Test | Irrigation | Cultivar | |||||
---|---|---|---|---|---|---|---|---|
Irrigation | Cultivar | C100 | SDI75 | SDI50 | SDI33 | Cisco | Chandler | |
(g kg−1dw) | ||||||||
C10:0 (Capric) | *** | *** | 0.003 c | 0.005 a | 0.004 b | 0.003 c | 0.003 b | 0.005 a |
C12:0 (Lauric) | *** | *** | 0.009 b | 0.012 a | 0.008 c | 0.008 c | 0.009 b | 0.010 a |
C14:0 (Myristic) | *** | *** | 0.040 c | 0.053 a | 0.045 b | 0.051 a | 0.049 a | 0.046 b |
C14:1 (Myristoleic) | *** | *** | 0.071 a | 0.071 a | 0.067 b | 0.070 ab | 0.071 a | 0.068 b |
C15:0 (Pentadecylic) | *** | *** | 0.036 b | 0.041 a | 0.038 b | 0.038 b | 0.039 a | 0.037 b |
C16:0 (Palmitic) | *** | *** | 26.9 b | 31.6 a | 24.8 c | 25.8 bc | 27.9 a | 26.6 b |
C16:1c7 (cis-Hexadecenoic) | *** | *** | 0.19 b | 0.21 a | 0.18 b | 0.18 b | 0.19 a | 0.18 b |
C16:1c9 (Palmitoleic) | *** | *** | 0.28 b | 0.31 a | 0.30 a | 0.29 ab | 0.31 a | 0.29 b |
C16:1c10 | *** | *** | 0.012 d | 0.018 a | 0.016 b | 0.013 c | 0.02 a | 0.01 b |
C17:0 (Margaric) | *** | *** | 0.15 b | 0.19 a | 0.14 b | 0.15 b | 0.17 a | 0.14 b |
C17:1 (cis-Heptadecenoic) | *** | *** | 0.05 c | 0.08 a | 0.06 b | 0.06 b | 0.06 b | 0.07 a |
C18:0 (Stearic) | *** | *** | 9.98 b | 11.4 a | 9.59 bc | 9.23 c | 11.3 a | 8.82 b |
C18:1t9 (Elaidic) | *** | *** | 0.10 b | 0.13 a | 0.09 c | 0.08 c | 0.104 a | 0.098 b |
C18:1c9 (Oleic) | *** | *** | 75.5 a | 73.8 b | 66.7 c | 65.6 c | 78.2 a | 62.7 b |
C18:1n7 (cis-Vaccenic) | *** | *** | 3.91 b | 4.21 a | 3.44 d | 3.63 c | 3.84 a | 3.75 b |
C18:2 t8c13 (Linoleaidic) | *** | *** | 0.19 b | 0.25 a | 0.19 b | 0.20 b | 0.20 b | 0.21 a |
C18:2n6cis 9,12 (Linoleic) | *** | *** | 290 b | 311 a | 253 c | 263 c | 288 a | 271 b |
C18:3n6 (γ-Linolenic) | *** | *** | 0.35 b | 0.37 a | 0.31 c | 0.32 c | 0.36 a | 0.31 b |
C20:0 (Arachidic) | *** | *** | 0.16 c | 0.27 a | 0.21 b | 0.22 b | 0.18 b | 0.26 a |
C18:3n3 (α-Linolenic) | *** | *** | 67.6 b | 73.3 a | 67.1 b | 72.2 a | 64.4 b | 75.7 a |
C21:0 (Heneicosanoic) | *** | *** | 0.073 c | 0.082 a | 0.078 b | 0.075 bc | 0.079 a | 0.075 b |
C20:2n6 (Eicosadienoic) | ** | ** | 0.07 b | 0.10 a | 0.08 b | 0.09 ab | 0.08 a | 0.09 a |
C20:3n3 (Eicosatrienoico) | *** | *** | 0.09 b | 0.21 a | 0.10 b | 0.10 b | 0.14 a | 0.12 b |
C20:3n6 (Eicosatrienoico) | *** | *** | 0.03 b | 0.04 a | 0.02 c | 0.03 b | 0.03 a | 0.02 b |
C23:0 (Tricosanoic acid) | *** | *** | 0.030 a | 0.030 a | 0.029 ab | 0.027 b | 0.031 a | 0.027 b |
C20:5n3 (Eicosapentanoico) | *** | *** | 0.016 b | 0.019 a | 0.015 bc | 0.014 c | 0.02 a | 0.01 b |
C24:0 (Lignoceric acid) | *** | *** | 0.047 b | 0.060 a | 0.044 b | 0.046 bc | 0.05 a | 0.04 b |
Oleic:Linoleic | *** | *** | 0.250 b | 0.240 c | 0.260 a | 0.250 b | 0.270 a | 0.230 b |
Ω 6:Ω 3 | *** | *** | 4.31 a | 4.24 a | 3.86 b | 3.68 c | 4.47 a | 3.57 b |
Saturated (SFA) | *** | *** | 37.5 b | 43.7 a | 35.0 | 35.6 c | 39.8 a | 36.1 b |
Monounsaturated (MUFA) | *** | *** | 80.1 a | 78.8 a | 70.9 b | 70.0 b | 82.8 a | 67.1 b |
Polyunsaturated (PUFA) | *** | *** | 358 b | 386 a | 321 d | 336 c | 353 a | 347 a |
PUFA:SFA | *** | *** | 9.81 a | 8.81 c | 9.16 bc | 9.46 ab | 8.87 b | 9.75 a |
PUFA:MUFA | *** | *** | 4.78 a | 4.89 a | 4.61 b | 4.82 a | 4.33 b | 5.22 a |
(MUFA + PUFA)/SFA | *** | *** | 11.9 a | 10.6 c | 11.2 b | 11.4 ab | 10.9 b | 11.6 a |
Atherogenic index | *** | *** | 0.06 c | 0.07 a | 0.06 b | 0.06 b | 0.065 a | 0.064 a |
Thrombogenic index | *** | *** | 0.09 b | 0.10 a | 0.09 b | 0.09 b | 0.10 a | 0.09 b |
Σ FAMEs | *** | *** | 475 b | 508 a | 427 d | 441 c | 475 a | 451 b |
Outer Color | Size | Veins | Sweetness | Bitterness | Astringency | Overall nuts | Walnut ID | Floral/Fruity | Woody | Hardness | Cohesiveness | Crispiness | Adhesiveness | Aftertaste | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ANOVA Test † | |||||||||||||||
Irrigation | *** | *** | *** | *** | NS | ** | *** | NS | *** | *** | NS | NS | NS | NS | NS |
Cultivar | *** | *** | *** | *** | * | NS | *** | *** | *** | *** | NS | NS | NS | NS | *** |
Irrigation × Cultivar | *** | *** | *** | *** | * | ** | *** | *** | *** | *** | NS | NS | NS | NS | *** |
Tukey’s Multiple Range Test ‡ | |||||||||||||||
Irrigation | |||||||||||||||
C100 | 4.2 b | 6.0 a | 6.4 a | 4.6 b | 0.6 | 1.7 c | 7.2 a | 7.6 | 0.8 a | 2.9 c | 3.2 | 7.1 | 2.0 | 7.9 | 8.1 |
SDI75 | 4.0 b | 5.8 a | 2.9 c | 5.1 a | 0.8 | 2.2 b | 7.2 a | 7.3 | 0.1 b | 4.2 a | 4.0 | 6.9 | 2.9 | 7.3 | 7.4 |
SDI50 | 5.3 a | 5.8 a | 4.7 b | 5.1 a | 1.2 | 2.0 b | 7.4 a | 7.8 | 0.1 b | 2.8 c | 3.5 | 6.8 | 2.8 | 7.5 | 7.9 |
SDI33 | 3.1 c | 3.1 b | 2.3 c | 4.6 b | 1.1 | 2.6 a | 6.9 b | 7.5 | 0.4 b | 3.7 b | 3.6 | 6.8 | 2.6 | 7.4 | 7.8 |
Cultivar | |||||||||||||||
Cisco | 5.2 a | 4.5 b | 4.6 a | 4.3 b | 0.7 b | 2.1 | 8.1 a | 8.3 a | nd | 3.8 a | 3.3 | 7.0 | 2.5 | 7.6 | 7.5 b |
Chandler | 3.1 b | 5.9 a | 3.5 b | 5.5 a | 1.2 a | 2.1 | 6.2 b | 6.8 b | 0.6 a | 3.0 b | 3.8 | 6.8 | 2.6 | 7.4 | 8.1 a |
Irrigation × Cultivar | |||||||||||||||
C100 × Cisco | 4.4 c | 4.8 c | 6.2 | 3.8 c | 0.5 b | 2.0 b | 8.0 b | 8.4 a | nd | 3.0 d | 3.0 | 7.2 | 2.0 | 8.0 | 8.0 a |
SDI75 × Cisco | 5.0 b | 5.4 b | 4.0 | 5.0 b | 0.2 c | 1.5 c | 8.8 a | 9.1 a | nd | 3.8 c | 3.6 | 7.0 | 3.0 | 7.2 | 7.0 b |
SDI50 × Cisco | 7.6 a | 5.4 b | 5.5 | 5.0 b | 1.2 b | 2.4 b | 8.8 a | 8.8 a | nd | 3.2 d | 3.3 | 6.8 | 2.8 | 7.7 | 7.5 b |
SDI33 × Cisco | 3.8 d | 2.2 e | 2.6 | 3.2 c | 1.0 b | 2.5 b | 6.9 c | 7.0 b | nd | 5.2 a | 3.2 | 6.8 | 2.2 | 7.4 | 7.5 b |
C100 × Chandler | 4.0 c | 7.2 a | 6.6 | 5.4 a | 0.7 b | 1.3 c | 6.4 d | 6.8 b | 1.5 a | 2.8 d | 3.4 | 6.9 | 2.0 | 7.8 | 8.2 a |
SDI75 × Chandler | 3.0 d | 6.1 b | 1.7 | 5.2 a | 1.5 a | 2.9 a | 5.6 e | 5.5 c | 0.1 c | 4.6 b | 4.4 | 6.8 | 2.7 | 7.4 | 7.8 a |
SDI50 × Chandler | 3.0 d | 6.2 b | 3.8 | 5.6 a | 1.2 b | 1.5 c | 6.0 d | 6.8 b | 0.2 c | 2.4 e | 3.6 | 6.8 | 2.7 | 7.2 | 8.2 a |
SDI33 × Chandler | 2.3 e | 4.0 d | 2.0 | 5.9 a | 1.2 b | 2.6 b | 6.9 c | 7.9 b | 0.7 b | 2.2 e | 3.9 | 6.7 | 2.9 | 7.3 | 8.0 a |
Descriptor | Definition | Reference ‡ | Intensity |
---|---|---|---|
Appearance | |||
Color | The intensity of the color from light to dark | Figure 1 | 1.0−9.0 |
Size | The visual width of the almond from side to side | Figure 1 | 1.0−9.0 |
Veins | The visual vessels on the walnut skin | Figure 1 | 1.0−9.0 |
Basic Taste and Flavor | |||
Sweetness | The basic taste associated with a sucrose solution | 1% sucrose | 5.0 |
2% sucrose | 7.0 | ||
Bitterness | The basic taste associated with a caffeine or quinine solution | 0.01% caffeine | 2.0 |
0.02% caffeine | 4.0 | ||
Astringency | A drying and puckering sensation on the mouth’s surface | 0.05% alum | 3.0 |
Flavor | |||
Overall nuts | The aroma notes related to all nutty characteristics | Mix of ground Hacendado | 7.0 |
Walnut ID | The aromatics associated with walnut | Ground Hacendado walnuts | 8.0 |
Floral/Fruity | The sweet, light, and slightly perfumy impression associated with flowers and fruits such as apples and pears | Floral and fruity aroma of SOSA Ingredients® | 8.0 |
Woody | The sweet, musty, dark, and dry aromatics associated with the tree bark | Ground Hacendado walnuts | 3.0 |
Aftertaste | The longevity of key attributes after swallowing the sample | 1 min | 3.0 |
2.5 min | 5.0 | ||
2.0 min | 7.0 | ||
Texture | |||
Hardness | The force needed to complete a bite through the sample with molar teeth, evaluated on the first bite down with the molars | Hacendado walnuts | 8.0 |
Hacendado almonds | 10.0 | ||
Cohesiveness | The deformation degree of the sample prior to breaking when compressed between molars | Hacendado almonds | 1.0 |
Hacendado raisins | 10.0 | ||
Crispiness | The intensity of audible noise perceived at first chew with molars | Biscuit “Galleta María” Hacendado | 6.0 |
Nestlé fitness | 8.0 | ||
Adhesiveness | The work performed to completely eliminate the sample from the teeth | Hacendado almonds | 3.0 |
Hacendado raisins | 10.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Durán Zuazo, V.H.; Cárceles Rodríguez, B.; Sendra, E.; Carbonell-Barrachina, Á.A.; Lipan, L.; Hernández, F.; Gálvez Ruiz, B.; García-Tejero, I.F. Yield and Quality of Walnuts Subjected to Deficit Irrigation in Mountainous Water-Starved Environments. Plants 2025, 14, 1777. https://doi.org/10.3390/plants14121777
Durán Zuazo VH, Cárceles Rodríguez B, Sendra E, Carbonell-Barrachina ÁA, Lipan L, Hernández F, Gálvez Ruiz B, García-Tejero IF. Yield and Quality of Walnuts Subjected to Deficit Irrigation in Mountainous Water-Starved Environments. Plants. 2025; 14(12):1777. https://doi.org/10.3390/plants14121777
Chicago/Turabian StyleDurán Zuazo, Víctor Hugo, Belén Cárceles Rodríguez, Esther Sendra, Ángel Antonio Carbonell-Barrachina, Leontina Lipan, Francisca Hernández, Baltasar Gálvez Ruiz, and Iván Francisco García-Tejero. 2025. "Yield and Quality of Walnuts Subjected to Deficit Irrigation in Mountainous Water-Starved Environments" Plants 14, no. 12: 1777. https://doi.org/10.3390/plants14121777
APA StyleDurán Zuazo, V. H., Cárceles Rodríguez, B., Sendra, E., Carbonell-Barrachina, Á. A., Lipan, L., Hernández, F., Gálvez Ruiz, B., & García-Tejero, I. F. (2025). Yield and Quality of Walnuts Subjected to Deficit Irrigation in Mountainous Water-Starved Environments. Plants, 14(12), 1777. https://doi.org/10.3390/plants14121777